
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

76 | P a g e

www.ijacsa.thesai.org

A Multi-Threaded Symmetric Block Encryption

Scheme Implementing PRNG for DES and AES

Systems

Adi A. Maaita

Department of Software Engineering

Faculty of Information Technology, Isra University

Amman, Jordan

Hamza A. Alsewadi

Faculty of Information Technology

Middle East University

Amman, Jordan

Abstract—Due to the ever-increasing efficiency of computer

systems, symmetric cryptosystem are becoming more vulnerable

to linear cryptanalysis brute force attacks. For example, DES

with its short key (56 bits) is becoming easier to break, while AES

has a much longer key size (up to 256 bits), which makes it very

difficult to crack using even the most advanced dedicated

cryptanalysis computers. However, more complex algorithms,

which exhibit better confusion and diffusion characteristics, are

always required. Such algorithms must have stronger resistance

against differential and linear cryptanalysis attacks. This paper

describes the development of an algorithm that implements a

pseudo random number generator (PRNG) in order to increase

the key generation complexity. Experimental results on both DES

and AES cryptosystems complemented with the PRNG have

shown an average improvement of up to 36.3% in the avalanche

error computation over the original standard systems, which is a

considerable improvement in the time complexity of both

systems.

Keywords—Computer Security; Symmetric cryptography; DES;

AES; pseudo random number generators

I. INTRODUCTION

Governments, banks, universities, and regular individuals
are sending and receiving colossal amounts of digital data over
networks and through other digital means non-stop. The ever
flowing torrent of data holds information of varying levels of
importance and sensitivity, such of which is determined by the
purpose to which it will be put to use by its sender and
receiver, and the damage which results from it falling into the
wrong hands.

Keeping government, industrial, financial, and personal
secrets safe is a paramount concern in a world controlled
through digital communications and integrated data storage.
Secrets flow from one computer to another until they reach
their designated destinations. But what if those secrets were
intercepted?

Encryption is an ancient solution designed to protect
information which can be intercepted by those who were not
meant to receive it. Many algorithms were developed over
thousands of years for that purpose. In the digital age,
encryption algorithms are classified into symmetric algorithms
(secret-key algorithms), and asymmetric algorithms (public-
key algorithms) [1, 2]. Symmetric algorithms require both the
sender and the receiver of encrypted data to have the same key

which will be used for both encryption and decryption, while
for asymmetric algorithms, the key used to perform encryption
of some data is different from the key which will be used to
decrypt that data.

This work is concerned with the enhancement of the secret
key generation process using random number generator, that
will be used with symmetric cryptographic systems, in
particular data encryption standard (DES) and advanced
encryption standard (AES). Hence only these two systems will
be reviewed together with pseudo random number generators
in the following sections. After the brief introduction and the
literature review presented in sections 1 and 2, section 3 will
include the methodology of the proposed algorithm. Section 4
lists out the obtained results. Section 5 provides a
comprehensive discussion of the obtained results. Finally,
section 6 concludes the work.

II. LITERATURE REVIEW

This paper is concerned with the improvement of two
widely used symmetric cryptosystems: the Data Encryption
Standard (DES) and the Advanced Encryption Standard (AES),
by the implementation of a pseudorandom number generator
(PRNG). Hence, a brief literature review will be included in
this section.

A. The Data Encryption Standard (DES)

The widely used DES crypto-system was first developed by
an IBM team and modified by the National Security Agency
(NSA) to be adopted by the National Bureau of Standards
(NBS) in 1976. It is an iterative block cipher system with a
block size of 64 bits. It implements 16 rounds using a 56-bit
key that changes for each round according a key generation
algorithm. Confusion and diffusion were guaranteed through
various substitution and transposition steps [1-4]. It was
standardized in 1977 by the National Institute of Standards and
Technology, and used internationally since then. It was secure
enough at the beginning, however, due to its comparatively
small key space, the existence of some weak and semi-weak
keys, and the vast increase in the computing power, breaching
its security became an easy task.

The DES algorithm weakness and vulnerability was
exploited in the last decade of the twentieth century. Electronic
Frontier Foundation was able to break DES in 1998 using the
so called DES cracker [5]. Around the same period,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

77 | P a g e

www.ijacsa.thesai.org

DESCHEALL project, led by Rocke Verser, Matt Curtin, and
Justin Dolske, were also able to break DES. They used idle
cycles of thousands of computers across the Internet.

Encryption twice using DES (or 2DES) which doubles the
key length to 112 bit was suggested as a modification to DES,
but unfortunately, it suffered from man-in-the-middle attack.
This drawback lead to a minor improvement in the key space
by only increasing the key length from 56 to 57 bits [6].

The drawbacks of 2DES lead to the development of 3DESs
which was a far more secure cryptosystem than DES. It was
developed by an IBM team in 1999. The application of 3DES
with three different keys extends the key space by practically
achieving a key length of 168-bit, thus securing the system for
few more years to come [7].

Many other variants of DES with less computational efforts
were suggested, such as DES-X with key space enhanced by
XOR’ing with other elements before and after the encryption
process, and GDES that speeds up encryption. However, they
were susceptible to differential cryptanalysis [8, 9].

The need arose for a successor to DES, and accordingly,
National Institute of Standards and Technology (NIST) put
forward a competition for designing a strong encryption
algorithm. The criteria for the competing algorithms were to be
efficient and easy to implement using both hardware and
software, besides being royalty-free in order to be used
internationally [10]. This competition was won by the Belgian
cryptographers Joan Daemen and Vincent Rijmen in 2000 [11]
and was named as the Rijndael algorithm, carrying the
acronym of some characters of their names (pronounced
"Rhine doll"). Then this algorithm wass termed Advanced
Encryption Standard (AES) and defined by FIPS 197. It was
approved by the US government to be used for secret and top
Secret classified information [12].

B. The Advanced Encryption Standard (AES)

AES is an iterative symmetric cryptosystem operating on
128 bits data block size, i.e. double the data size for DES.
There are three variants of AES according to the key lengths;
128, 192 and 256 bits, and the number of rounds; 10, 12, and
14 rounds. These increases in block size, key length and the
number of rounds have given the AES algorithm dramatic
security improvements as compared to DES when a brute force
attack is used, besides no trace of "weak" and "semi-weak"
keys are detected so far.

Diffusion and confusion are achieved in the AES
computation through four operations that are executed in every
round. Those operations are: byte substitution, shift rows, mix
columns and add round keys. Also, an excellent key generation
algorithm is implemented to produce a different key for each
round. It implements S-box tables resulting from
transformation using the Galois Field GF(2

8
). It defines the

transformation algebraically using the GF(2
8
) field with the

irreducible polynomials (x
8
 + x

4
 + x

3
+ x + 1) [9, 10]. The

detailed design and operation of the AES algorithm will not be
listed here but can be found in the literature [9–12].

Although potential attacks against the AES algorithm, such
as interpolation, saturation, Gilbert-Minier, truncated

differential, and related-key attacks were suggested by
Rijndael, most attacks have focused on the “side-channels”,
which rely on weaknesses in the security of the application
rather than the algorithm [11]. Besides the strength of its
security, AES can efficiently be implemented in both hardware
and software, which makes it safe and practically beneficial
now and for years to come.

C. Pseudo Random Number Generators (PRNGs)

Deterministic or Pseudo-random number generators are
algorithms used to generate sequences of numbers having an
approximate random property [13]. Pseudo-random number
generation is initiated using relatively small key seeds, and the
numbers are easy to generate and reproduce. PRNGs are
classified into integer generators, sequence generators, integer
set generators, narrators, sequence generators, integer set
generators, Gaussian generators, decimal fraction generators or
row random byte generators. This classification is based on the
type of data they produce, such as integers, integer sequences,
sets of random integers, integers that fit normal distribution or
numbers in the 0 and 1 range with configurable decimal places,
respectively. Each of the mentioned types is useful for many
cryptographic purposes [14].

Some PRNGs generate pseudo-random numbers using
seeds supplied by chaotic systems (dynamic, iterative,
decimation) to achieve high speed and good security [15-17].
They are advantageous in having unpredictability or disorder-
like, that are required for generating complex sequences.
However, they have the problems of non-ideal distribution and
short cycle length.

Behnia et. al. proposed a cryptographically secure
algorithm for the generation of PRNGs based on three coupled
and mutually perturbed Lagged Fibonacci generators [18]. It
includes bitwise XOR cross-addition of each generator output
with the right-shifted output of the nearby generator. It showed
enhanced entropy and acceptable repetition period than the
conventional Lagged Fibonacci Generator.

An enhancement to the work discussed above was done
through a multi-stage PRNG algorithm that is based on
Shannon’s concept of confusion and diffusion. This algorithm
was designed and tested for randomness using NIST
randomness tests by the authors [19, 20]. It implements bitwise
manipulation in order to achieve adequate bit string confusion
and diffusion by combining various processes such as bit
swapping, modular operations and secret splitting techniques.
This algorithm will be implemented in this work to improve
the key generation and manipulation of symmetric
cryptosystems, such as DES and AES.

III. THE MULTI-THREADED BLOCK ENCRYPTION SCHEME

This paper proposes a multi-threaded block encryption
scheme (MTBES). It is designed with the notion to enhance
symmetric cryptosystems by improving the diffusion and
confusion processes. This will be done through the introduction
of more randomness into the key generation algorithms and
utilizing the multi-threaded features in modern computers. In
this work, the two widely used cryptosystems, namely DES
and AES will considered. Each of these systems includes a
number of rounds, where each round requires a certain sub-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

78 | P a g e

www.ijacsa.thesai.org

key. These sub-keys are normally generated by an algorithm
that starts with an input secret key. Basically, this research
work suggests two modifications; first, the incorporation of a
pseudo-random number generator that participates in the
generation of the rounds sub-keys needed for either DES or
AES cryptosystems. Second, splitting the original message into
sets of packets through various threads in the processer, that
will be encrypted concurrently, each thread uses the suitable
PRNG sub-keys, and then in the end, they are mixed and
transmitted to the recipient where the packets are sorted and
then decrypted. These two modifications are described in the
following sections.

A. Sub-key Generation

Generally, each cryptosystem requires a secret key of
certain length, namely it is of 64 bits length for DES and 128,
192, or 256 bits for AES. This key is normally used to generate
a set of sub-keys K = {K1, K2, …, Kn} according to fixed
procedure, where n is the number sub-keys required by the
system. The number of sub-keys depends on the system used,
namely 16 sub-keys for DES and 10, 12, or 14 sub-keys for
AES different key length 128, 192 0r 256 bits, respectively (as
shown in fig 1 for DES for example).

In this paper, a PRNG is used to randomly generate another
set of n sub-keys, S = {S1, S2, …, Sn}. To generate this set of
sub-keys, PRNG requires a secret key, too to be used as seed.
Each of these sub-keys length is the same as that for K and S.
Next, the generated sub-keys, K and S are XOR’ed with each
other producing a set of sub-keys Ki as illustrated in Figure I.

Fig. 1. Block diagram for the proposed sub-key generation scheme

This resulting set of sub-keys will be the one used for the
successive rounds of the system under consideration.

As an example, the PRNG implemented in this work that
combines logical operation and bits manipulation to achieve
the confusion and diffusion concept. It accepts a certain secret
key (as a seed) of the required length consisting of any
alphanumeric and special characters agreed upon by the
communicating parties. The produced sub-keys lengths and the
secret seed length depend on the cryptosystem under
consideration, (for example, 48 bits for DES and 128, 196, or

256 bits depending on the AES type used). This PRNG is
designed and tested for accepted randomness using NIST
randomness criterion [20].

B. Multi-threaded Operation

A program is written to arrange the algorithm execution
through a multi-threaded processor, which means that its
operation is divided over a number of threads. The number of
threads is determined by the size of the data to be encrypted, as
each thread should be responsible for encrypting a piece of the
original text. The number of threads is determined by reading
the threading capability of the CPU from the OS and segment
the data to fit such threading capability. This process has
exhibited an efficient execution practice that is expected to
enhance the time complexity measurement.

Multi-threaded programming is used to enhance the
performance of the algorithm when it is executed on a
computer supporting multi-threading. However, the algorithm
operates perfectly on a single core processor that does not
support multi-threading.

The algorithm utilizes multi-threading by splitting the data
to be encrypted into a number of packet lists equal to the
possible number of threads supported by the processor. Each
packet of each packet list is then encrypted using a separate
thread, and then added to a master packet array in their original
order. This order is preserved regardless of unpredictability of
thread execution behavior as a packet is placed in the correct
location within the array. This master array of packets is then
converted to a string representing the final encrypted message,
which is finally sent to the recipient.

IV. EXPERIMENTAL RESULTS

The proposed algorithm is incorporated in both DES and
AES cryptosystems in order to change them to modified
versions, named randomized key DES (named RKDES) and
randomized key AES (named RKAES).

The criteria used for the test is the average avalanche effect.
The avalanche phenomena may be defined as the percentage of
change in the ciphertext contents when the input plaintext is
altered. The resulting Average Avalanche Effect percentage
(AAE) for these algorithms are compared with original DES
and AES cryptosystems running on the same computing
environment. Moreover, different input plaintext lengths were
considered ranging from 512 bits to 1048576 bits with various
number of iterations ranging from 100 to 10000 epochs. These
experiments were repeated for three different combinations of
input data, namely, numeric only, alphanumeric and Unicode.
In the following, some selected results are displayed.

The average avalanche effect (AAE) percentage for the
original AES and the modified AES with random key RKAES
are calculated for different data sizes ranging from 512 to
1048576 bits, and for different numbers of iterations ranging
from 100 to 10000 iterations. The obtained results for the case
of 10000 iterations are listed in tables I, II, and III. A graphical
representation of the data is shown in the figures II, III, and IV.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

79 | P a g e

www.ijacsa.thesai.org

TABLE I. AVERAGE AVALANCHE EFFECT OF AES AND RKAES FOR

NUMERIC DATA AFTER 10000 ITERATIONS

Average Avalanche Effect of AES and RKAES for Numeric data after
10000 iterations

Data size AAE AES AAE RKAES

512 36.50% 47.30%

4096 37.00% 47.60%

65536 37.10% 47.90%

1048576 37.60% 52.90%

Average 37.05% 48.93%

TABLE II. AVERAGE AVALANCHE EFFECT OF AES AND RKAES FOR

ALPHANUMERIC DATA AFTER 10000 ITERATIONS

Average Avalanche Effect of AES and RKAES for Alpha-numeric data
after 10000 iterations

Data size AAE AES AAE RKAES

512 36.80% 47.60%

4096 36.80% 47.70%

65536 36.90% 47.90%

1048576 36.80% 53.80%

Average 36.83% 49.25%

TABLE III. AVERAGE AVALANCHE EFFECT OF AES AND RKAES FOR

UNICODE DATA AFTER 10000 ITERATIONS

Average Avalanche Effect of AES and RKAES for Unicode data after
10000 iterations

Data size AAE AES AAE RKAES

512 36.50% 48.40%

4096 36.70% 48.50%

65536 36.80% 48.80%

1048576 36.70% 54.20%

Average 36.68% 49.98%

Fig. 2. Average Avalanche Effect of AES and RKAES for Numeric data

after 10000 iterations

Fig. 3. Average Avalanche Effect of AES and RKAES for Alphanumeric

data after 10000 iterations

Fig. 4. Average Avalanche Effect of AES and RKAES for Unicode data

after 10000 iterations

Similarly, the average avalanche effect (AAE) percentage
for the original DES and the modified DES with random key
RKDES are calculated for different data sizes ranging and for
different numbers of iterations as those for the AES
cryptosystem and the obtained results for the case of 10000
iterations are listed in tables IV, V, and VI, and illustrated in
the figures V, VI, and VII for the three types of data.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

80 | P a g e

www.ijacsa.thesai.org

TABLE IV. AVERAGE AVALANCHE EFFECT OF DES AND RKDES FOR

NUMERIC DATA AFTER 10000 ITERATIONS

Average Avalanche Effect of DES and RKDES for Numeric data after
10000 iterations

Data size AAE AES AAE RKAES

512 23.90% 37.50%

4096 23.80% 37.40%

65536 23.70% 37.60%

1048576 23.80% 38.10%

Average 23.80% 37.65%

TABLE V. AVERAGE AVALANCHE EFFECT OF DES AND RKDES FOR

ALPHANUMERIC DATA AFTER 10000 ITERATIONS

Average Avalanche Effect of DES and RKDES for Alpha-numeric data
after 10000 iterations

Data size AAE AES AAE RKAES

512 24.20% 38.00%

4096 24.40% 38.10%

65536 24.70% 38.70%

1048576 24.80% 39.40%

Average 24.53% 38.55%

TABLE VI. AVERAGE AVALANCHE EFFECT OF DES AND RKDES FOR

UNICODE DATA AFTER 10000 ITERATIONS

Average Avalanche Effect of DES and RKDES for Unicode data after
10000 iterations

Data size AAE AES AAE RKAES

512 24.50% 39.00%

4096 24.40% 39.00%

65536 24.90% 39.70%

1048576 25.10% 40.60%

Average 24.73% 39.58%

Fig. 5. Average Avalanche Effect of DES and RKDES for Numeric data

after 10000 iterations

Fig. 6. Average Avalanche Effect of DES and RKDES for Alphanumeric

data after 10000 iterations

Fig. 7. Average Avalanche Effect of DES and RKDES for Unicode data

after 10000 iterations

The average improvement of the avalanche effect when the
key is randomized by the incorporation of the PRNG in the
sub-key generation can be calculated by the formula shown in
equation (1).

Average improvement of the avalanche effect,

 (1)

Computing the average improvement of the avalanche

effect, for various combinations of data types, input sizes,
and number of iterations performed produced the results listed
in table III.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

81 | P a g e

www.ijacsa.thesai.org

TABLE VII. AVERAGE IMPROVEMENT OF THE AVALANCHE EFFECT

Table III indicates a considerable improvement in
cryptographic strength or system security. The calculated
average avalanche effect showed and improvement of more
than 33%. Actually the average improvement when various
parameters are considered for DES was 33.50% and for AES
was 33.52 %, which are almost equal. Such improvement has
resulted from the involvement of the PRNG involvement in
generating the sub-keys, which indicates that such technique
would prove useful in other block cipher systems.

V. RESULTS ANALYSIS

Application of the proposed PRNG algorithm modification
as part of the sub-key generation process within AES and DES
algorithms has resulted into considerable improvements in the
diffusion attribute of both algorithms. This was observed
through the considerable increase in the avalanche effect
(AAF), which was measured using a custom software package,
developed for the testing of encryption strength attributes of
block ciphers. The avalanche effect measurements for DES
showed an increase by 33.5% in the case of the modified
algorithm compared to the original DES, while that for AES
showed an enhancement of 33.52% in the avalanche effect in
the case of the modified algorithm compared to the original
AES.

It can also be stated that the incorporation of PRNG as part
of the sub-key generation process, can be considered a form of
cryptography applied on the original key and subsequent sub-
keys, in a cascading manner. This leads to what is known as
domino effect that enhances the confusion and diffusion
attributes for block ciphers by applying a multi-stage sub-key
generation process.

Moreover, the incorporation of a key encryption algorithm
exhibiting highly random outcomes, as measured by the NIST
pseudo-randomness tests, such as the implemented PRNG in
this work, would lead to enhanced bit diffusion behavior within
multi-stage, multi-sub-key block ciphers such as DES and AES
which were considered here.

From tables VII, it can be observed that the average
avalanche effect for data constructed from larger alphabets was
greater than that observed for data constructed from smaller
alphabets. Namely, data in Unicode format showed a larger
enhancement in the average avalanche effect than alpha-
numeric data, and numeric data for the same data size and
number of iterations involved. This is also manifested when

comparing the average avalanche effects for numeric and
alpha-numeric data, i.e. alpha-numeric data, shows better
enhancement than numeric data. Besides, when different data
sizes are compared, larger data samples showed better
enhancement in the average avalanche effect than smaller data
samples.

VI. CONCLUSIONS

Significant improvement has clearly resulted due to the
incorporation of pseudo-random number generation into the
sub-key generation process for both DES and AES algorithms.
This means that such a process significantly enhances the
diffusion property of the algorithm. This in turn has led to a
higher level of security than those obtained using the original
algorithms. Moreover, it was noticed that the average
avalanche effects get better as one goes from numeric to
Unicode through alphanumeric data with increasing number of
iterations.

Furthermore, security is achieved by splitting the original
message into packets, where each set of packets is encrypted
using a pseudo-random sub-key. Using different sub-keys for
encrypting sets of packets increases the difficulty of
cryptanalysis through differential attacks which require the
presence of a large number of original messages and their
corresponding cipher texts.

REFERENCES

[1] Bruce Schneier, 1996, “Applied Cryptography: protocols, algorithms
and source code in C”, John Wiley & Sons.

[2] William Stallings & Lawrie Brown, 2015, “Computer Security:
Principles and Practice”. 3rd Ed., Pearson Press.

[3] M. Ebrahim , S. Khan, and U. Bin Khalid, “Symmetric Algorithm
Survey: A Comparative Analysis”, International Journal of Computer
Applications, Vol. 61, No.20, January 2013

[4] FIBS, FIPS PUB 46-3 FEDERAL INFORMATION PROCESSING
STANDARDS PUBLICATION, 1999.
http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

[5] Curtin, M and J. Dolske, “A Brute-Force Search of DES Keyspace”,
Login: The Usenix Magazine, Vol. 23, No. 3, May 1998.

[6] Andrew D., K., “Computer Security”, Michaelmas, Oxford University,
2014. http://www.cs.ox.ac.uk/andrew.ker/docs/computersecurity-
lecture-notes-mt2014.pdf.

[7] Noura Aleisa, “A Comparison of the 3DES and AES Encryption
Standards”, International Journal of Security and Its Applications Vol.9,
No.7, 2015, pp.241-246.

[8] Eli Biham and Adi Shamir, “Differential Cryptanalysis of the Data
Encryption Standard”, Springer New York, Nov 9, 2011.

[9] William Stallings, “Cryptography and Network Security: Principles and
Practice”, Pearson Education, Prentice Hall, Feb 18, 2016.

[10] Behrouz Forouzan, “ Cryptography and Network Security”, McGraw-
Hill, 2008.

[11] Joan Daernen · Vincent Rijrnen, “The Design of Rijndael AES-The
Advanced Encryption Standard” https://autonome-
antifa.org/IMG/pdf/Rijndael.pdf

[12] Federal Information Processing Standards Publication 197,
“Announcing the Advanced Encryption Standard (AES),
2001.http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[13] D. Dilli, and S. Madhu, “Design of a New CryptographyAlgorithm using
Reseeding -Mixing Pseudo Random Number Generator,” IJITEE, vol.
52, no. 5, 2013.

[14] J. M. Bahi, and C. Guyeux, “Topological chaos and chaotic iterations,
application to hash functions,” IEEE World Congress on Computational
Intelligence WCCI’, Barcelona, Spain, July 2010. Best paper award, PP
1–7,

Data type

No. of

iteratio

ns

Average Improvement, (%)

DES AES

Numeric

100 32.53 32.7

1000 32.05 32

10000 32.06 32.1

Alphanumeric

100 33.19 33.2

1000 34.16 34.2

10000 33.75 33.7

Unicode

100 32.22 32.2

1000 35.29 35.3

10000 36.26 36.3

Average Improvement, 33.50 33.52

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

82 | P a g e

www.ijacsa.thesai.org

[15] J. Bahi, C. Guyeux, and Q. Wang, “A novel pseudo-random generator
based on discrete chaotic iterations,” INTERNET’09, 1-st International
conference on Evolving Internet, Cannes, France, August 2009, PP 71–
76.

[16] J. Bahi, C. Guyeux, and Qianxue Wang, ”A pseudo random numbers
generator based on chaotic iterations; Application to watermarking,”
International conference on Web Information Systems and Mining,
WISM 2010, vol. 6318 of LNCS, Sanya, China, October 2010, PP 202–
211.

[17] Y. Hu, X. Liao, K. W. Wong, and Qing Zhou, “A true random number
generator based on mouse movement and chaotic cryptography,” Chaos,
Solitons & Fractals, vol.40, no. 5, 2009, PP 2286–2293.

[18] S. Behnia, A. Akhavan, A. Akhshani, and A.Samsudin, “A novel
dynamic model of pseudo random number generator,” Journal of
computational and Applied Mathematics –Journal of Computer and
Appl. Math, vol. 235, no. 12, 2011, PP 3455-3463.

[19] Adi A. Maaita, Hamza A. A. Al_Sewadi, Abdulameer K. Husain, and
Osama M. Al-haj, “A cryptographically secure Multi-stage pseudo-
random number generator”, International Journal of Applied Research in
Computer and Communication Engineering IJARCCE, Vol. 4, Issue 5,
May 2015, DOI 10.17148/IJARCCE.2015.4503, PP 12-18.

[20] Adi A. Maaita, Hamza A. A. Al_Sewadi, “Deterministic Random
Number Generator Algorithm for Cryptosystem Keys”, World Academy
of Science, International Journal of Computer, Electrical, Automation,
Control and Information Engineering Vol:9, No:4, 2015, PP 972-977.

