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Abstract: Pancreatic cystic lesions (PCL) are a frequent and underreported incidental finding on CT
scans and can transform into neoplasms with devastating consequences. We developed and evaluated
an algorithm based on a two-step nnU-Net architecture for automated detection of PCL on CTs. A
total of 543 cysts on 221 abdominal CTs were manually segmented in 3D by a radiology resident in
consensus with a board-certified radiologist specialized in abdominal radiology. This information
was used to train a two-step nnU-Net for detection with the performance assessed depending on
lesions’ volume and location in comparison to three human readers of varying experience. Mean
sensitivity was 78.8 ± 0.1%. The sensitivity was highest for large lesions with 87.8% for cysts
≥220 mm3 and for lesions in the distal pancreas with up to 96.2%. The number of false-positive
detections for cysts ≥220 mm3 was 0.1 per case. The algorithm’s performance was comparable to
human readers. To conclude, automated detection of PCL on CTs is feasible. The proposed model
could serve radiologists as a second reading tool. All imaging data and code used in this study are
freely available online.

Keywords: pancreatic cystic lesion; intraductal papillary mucinous neoplasia; tomography; X-ray
computed; detection; artificial intelligence; deep learning; nnU-Net

1. Introduction

Pancreatic cystic lesions (PCLs) are a common finding in cross-sectional imaging. The
prevalence of incidental pancreatic cysts in abdominal CTs range from 2.6 to 5.4% in the
normal population [1,2], increasing with age [1,3]. On an MRI, this prevalence is even
higher with up to 45% [4].

Whereas non-neoplastic lesions, like retention cysts or pseudocysts consecutive to
pancreatitis, are not at risk for malignant transformation, mucinous cysts are considered
potential cancer precursors [5]. Around 90% of non-inflammatory PCLs are intraductal
papillary mucinous neoplasms (IPMNs), mucinous cystic neoplasms and serous cystade-
nomas [3]. In surgical studies, IPMNs represent the most frequent premalignant PCLs
and about 50% of all resected pancreatic cysts [6,7]. They are topographically classified
according to their relation with the main pancreatic duct (MPD), with progression to inva-
sive cancer in 42–48% of the main duct-IPMNs and mixed type-IPMNs, and 11–26% of the
BD-IPMNs [5,6,8,9]. Apart from the malignant degeneration of an IPMN into an invasive
carcinoma, the rate of concomitant carcinoma in the presence of an IPMN can be as high as
4.4% to 11.2% of patients [10–12].
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The performance of radiologists in making precise and consistent diagnoses is chal-
lenged by the increasing workload and associated fatigue [13,14]. In a large study involving
radiology reports written by residents, Vosshenrich et al. found higher rates of incongru-
ences in conjunction with increasing work hours [13]. Surrogate endpoints for physicians’
fatigue, like detection of pathology and diagnosis accuracy [15], could benefit from the help
of artificial intelligence (AI) [16,17]. Over the past few decades, several AI-algorithms have
proven their performance in radiology [18–22], reducing the number of missed findings
and false-positive findings (FPs) [23]. Furthermore, automated pathology detection allows
radiologists to put their capacities into more complex tasks, such as making the final
diagnosis [24,25].

Automated detection of precursor lesions for pancreatic cancer, which PCLs are a
part of, would help with appropriate surveillance. This task is technically challenging.
The pancreas and its cysts represent a very small part of the entire pool of voxels of a
CT scan, often only about 1% and 0.1%, respectively [26]. The current state of the art for
the automatic segmentation of the pancreas uses organ-attention networks with reverse
connections to achieve a mean Dice-Sørensen coefficient (DSC) of 87.8 ± 3.1% [27]. The
number of algorithms for the challenging detection of pancreatic cysts are very limited and
none are clinically implemented [26,28].

The aim of this study is to develop and test an nnU-Net algorithm for automated
detection of pancreatic cystic lesions. It could help radiologists to cope with increasing
numbers of imaging tests and reduce the numbers of PCLs not mentioned in radiology
reports, therefore potentially improving early diagnosis of pancreatic cancer.

2. Materials and Methods

This retrospective study was approved by the local Institutional Review Board (Ethikkom-
mission Nordwest- und Zentralschweiz; project-ID: Req-2021-00216). Patient data was
fully anonymized.

2.1. Data Selection

All consecutive abdominal CTs acquired at our institution between January 2010 and
October 2020, and meeting the criteria mentioned below were identified with an in-house
developed RIS/PACS search engine [29]. In order to identify all relevant cases despite the
plethora of terms describing PCLs in radiology reports, we used multiple search strings,
which are documented in Appendix A.

The inclusion criteria were: (I) CT scan of the abdomen in portal venous phase; (II)
slice thickness of 1–1.5 mm; and a (III) formal description of a PCL in the written radiology
report. The exclusion criteria were: (I) disagreement of patient to use their data; (II) formal
report describing a pancreatic tumor; (III) patient with acute or chronic pancreatitis based
on clinical history or report; (IV) images with movement or beam hardening artefacts
described in the report; and (V) pseudocysts. If there were more than one study of a patient,
only the most recent CT was selected.

For the resulting 221 studies, a curated dataset based on the radiology reports was
compiled, documenting the location (uncinate process, head, body, tail) and size (mm) of
each cyst, if specified. Whenever provided, we retrieved the diagnosis suggested as most
probable for the PCLs from the reports. Patient characteristics at the time of CT acquisition
were collected from the clinical information system. Figure 1 shows the detailed data
selection flowchart.
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selection stage, based on comprehensive assessment of each report by a radiology resident, reports 
that did not describe PCLs or described other findings like signs of acute or chronic pancreatitis, 
were excluded. 

2.2. Patient Characteristics and Radiology Report Information 
The final dataset comprised 221 series matching our inclusion criteria. Patients’ mean 
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described in radiology reports is summarized in Table 1. An assumption on the most prob-
able diagnosis was missing in 36 reports. 

  

Figure 1. Study selection flowchart. The starting point was the collection of abdominal CTs with
reports possibly describing PCL based on the search strings documented in Appendix A. At a later
selection stage, based on comprehensive assessment of each report by a radiology resident, reports
that did not describe PCLs or described other findings like signs of acute or chronic pancreatitis,
were excluded.

2.2. Patient Characteristics and Radiology Report Information

The final dataset comprised 221 series matching our inclusion criteria. Patients’ mean
age was 72.9 ± 12.7 years and 138 were female (62.4%). The information related to the
cysts described in radiology reports is summarized in Table 1. An assumption on the most
probable diagnosis was missing in 36 reports.
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Table 1. Cyst size and most probable diagnosis as provided in the 221 radiology reports. Information
on the exact number of PCLs and their size was provided in 199 and 194 reports, respectively.
Minimal and maximal diameter represent the measurements of the cysts given on reports. An
average diameter was calculated only if both were mentioned.

Parameter n (%) Mean (±SD 1)
in mm

Median
in mm

Reported number of cysts per patient 1.2 (0.4)

Size:
Maximal diameter 12.8 (7.7) 12.0
Minimal diameter 11.6 (7.3) 10.0

Mean diameter 13.3 (7.4) 11.5

Radiologically suspected diagnosis:
IPMN 173 (78.3)

Indeterminate 36 (16.2)
SCN 2 5 (2.3)
MCN 3 5 (2.3)

Others (lymphangioma, ontogenetic cyst) 2 (0.9)
1 standard deviation; 2 serous cystic neoplasm; 3 mucinous cystic neoplasm.

2.3. CT Protocols

CT examinations were performed on the following scanners: SOMATOM Definition
Edge (n = 68), SOMATOM Definition AS+ (n = 52), SOMATOM Definition Flash (n = 86),
SOMATOM Force (n = 3), Emotion 16 (n = 11) (all Siemens Healthcare), and GE LightSpeed
VCT (n = 1) (GE Healthcare). Slice thickness was 1.49 ± 0.1 mm. Mean tube current was
327.9 ± 133.4 mAs and mean peak kilovoltage was 109.1 ± 9.9 kVp. Contrast agent was
administered with injection rates ranging from 1.5 to 3.5 mL/s, using Ultravist or Iopamiro
(both 370 mg iodine per mL).

2.4. Data Preprocessing: Cropping of CTs to the Region Showing the Pancreas

Based on the fact that PCLs are anatomically strictly associated with the pancreas,
the first step was automatic segmentation of the organ using a nnU-Net pretrained on
the 282 CTs of the pancreas (portal venous phase) from the public Medical Segmentation
Decathlon, reaching a DSC of 82% [30]. Based on the predicted segmentations of the
pancreas, the abdominal CT scans were cropped to the CT slices that show the organ. All
cropped CTs were reviewed by the main reader slice-by-slice (L.A.) and excluded in the
case of incomplete pancreas segmentation.

2.5. Ground-Truth Generation
2.5.1. Segmentation of PCLs

The medical image editing software NORA (University of Freiburg, Freiburg, Ger-
many) was used by a supervised radiology resident in their first year of professional
education (L.A.) to perform fully manual 3D-segmentation of all PCLs, reaching a sub-
jective accuracy of about two voxels at cyst margin [31]. Subsequently, all segmentations
were reviewed by a board-certified radiologist with 11 years of experience in abdominal
radiology (B.F.) who could overrule the decisions of the first reader.

This resulted in 543 manually segmented cysts that constituted the ground truth
(GT), with 2.5 ± 2.0 cyst per case on average. Volumes ranged between 10.2 mm3 and
39,973.5 mm3, with a mean of 1004.9 mm3.

2.5.2. Segmentation of Main Pancreatic Ducts (MPD)

MPDs potentially resemble a PCL, which might mislead the model. To overcome this
problem, we additionally provided the model with a manual segmentation of the MPD in
all 221 subjects as a separate class. Accessory ducts were not segmented.
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2.6. Algorithm

For the detection of PCLs, we trained a nnU-Net on our manually annotated dataset [30].
NnU-Nets are a medical segmentation framework, which automatically configures the data
preprocessing as well as the hyperparameters for training a U-Net. They are able to derive
heuristics for optimally setting the data preprocessing parameters (e.g., normalization
and resampling) as well as the U-Net configuration (e.g., number of layers and batch size)
based on the characteristics of the input dataset. Furthermore, they perform extensive
data augmentations (image rotation, blurring, etc.). On more than 20 public imaging
segmentation challenges, this automatically configured segmentation pipeline was superior
to other submissions. For this reason, we chose to use the nnU-Net for our project.

For our purposes, we were interested in finding PCLs (=detection) and not their precise
outline (=segmentation). We used segmentation maps returned by the nnU-Net for PCL
detection by using connected component analysis to convert the binary cyst segmentation
into a cyst instance segmentation. A lesion was considered detected if the predicted
segmentation overlapped at least 30% (in terms of DSC) with the GT segmentation. Besides
PCLs, the algorithm was trained to detect MDPs as a second class to improve PCL detection.
As PCLs were at the focus of this study, MDP segmentations were not analyzed in detail.
Processing times were recorded. The framework of our approach is shown in Figure 2.
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Figure 2. Structure of our segmentation approach. First, the original input volume was cropped
based on the automatic segmentation of the pancreas with a first nnU-Net. PCLs and MPDs were then
manually segmented on the cropped volume to create a ground truth. The trained algorithm detected
cysts. The image on the right shows the resulting cyst detection superposed to the ground truth.

For evaluation of the model, five-fold cross-validation was used to include each sample
in the testing set once. This is statistically sound because, in nnU-Nets, the hyperparameters
are chosen by fixed heuristics prior to training. We excluded PCLs with a volume below
10 mm3, considering the difficulty of their segmentation, even for humans, and their low
clinical relevance [32].

2.7. Performance Subanalyses Regarding PCL Size and Location within the Pancreas

Apart from general performance measures, the performance for different sizes of PCLs
was analyzed. Furthermore, in order to assess the difference in performance according to
the main regions of the pancreas, we automatically split the pancreatic parenchyma into
three equal volumes along the centerline of the pancreas mask. The proximal third roughly
corresponds to both the head and uncinate process. The middle third corresponds to the
body, and the distal third to the tail. PCLs located in two regions were attributed to the
region in which most voxels of the ground truth mask were located.

2.8. Comparison of Model’s Performance with Human Readers

Using the medical imaging platform NORA, one reader with seven (S.M.) and two
readers with four years of experience in diagnostic radiology (J.O., C.G.) manually anno-
tated the linear diameter (in mm) of each PCL on the orientation where it was the greatest
(axial, coronal or sagittal) on 47 randomly selected, cropped pancreatic series from the
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training dataset [33]. A cyst was considered successfully detected by the rater if a 3D-sphere
drawn around its linear diameter overlapped with the GT-segmentation by at least 10% (in
terms of DSC). Each rater was compared to the GT in terms of sensitivity and FPs.

2.9. Statistical Analysis

Statistical analysis was performed with SPSS Statistics, version 25 (IBM Corp., Armonk,
NY, USA). We assessed the detection rate of the model according to the cyst location in
either of the three regions and to their volume group with the chi-square test. A paired
sample t-test was used for comparing predictions and GT regarding PCL volumes and of
the mean number of lesions per patient. A McNemar test was used to compare dichotomous
traits between GT and predictions. p-values <0.05 were considered statistically significant.

3. Results
3.1. General Performance

The fully automated detection model took 1 min 43 sec on average, on a modern computer
with an NVIDIA GPU, to automatically detect PCLs in abdominal CT scans. The mean
sensitivity for all cases was 78.8 ± 0.1%. There were 0.48 FPs per case. The difference in
lesions count per patient between GT (2.47 in average) and predictions (1.76 in average) was
significant (p < 0.001). In total, 5 of 44 false-positive findings were caused by MPDs (11.4%).
Figure 3 provides examples of correct PCL detection, false-positive and false-negative findings.
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fat interdigitation; marked with arrows); and (J–L) failure at detecting multiple cysts. The star indicates the gallbladder.
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3.2. Performance Sub-Analyses
3.2.1. Performance Depending on Cyst Volume

PCLs were assigned to four groups based on their volume to assess the impact of
different volumes on the model’s performance. Table 2 provides information on the
performance of the model within distinct volume groups. Sensitivity markedly increased
with PCL volume to up to 91.9% for volumes ≥600 mm3. In parallel, FPs were rarest for
these volumes, with 0.08 per case. Figure 4 shows the sensitivity and frequency of FPs as a
function of PCL volumes.

Table 2. Sensitivity, FPs/Case and F1-score of the model regarding detection of PCLs as a function of
volume groups of PCLs.

Cyst Volume Group [mm3] Sensitivity (%) FPs/Case F1-Score

10–50 40.1 0.33 0.40
>50–200 65.5 0.19 0.66
>200–600 75.9 0.11 0.76

>600 91.9 0.08 0.91
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3.2.2. Performance Depending on Cysts’ Location within Pancreas

The number of PCLs present in the GT did not significantly differ from the number of
PCLs predicted by the model within each fictive pancreas region and neither did the detec-
tion rate significantly differ between regions (p = 0.379). Figure 5 shows the performance of
the model in the three regions of the pancreas. Sensitivity was highest and the number of
FPs per case was lowest in the distal part of the pancreas.
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3.3. Comparison of Model’s Performance with Human Readers

Figure 6 compares the sensitivity of the three readers and the model. The model
moderately outperformed the readers for all cyst volumes. However, for very small
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PCLs ≤ 40 mm3, two readers defined less FPs than the model. This trend inverses for
volumes ≥200 mm3, with the model finding approx. 0.2 less false-positive PCLs per case
than the most experienced reader.
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Compared to human readers, our model performed best in terms of FPs in the proximal
part of the pancreas, especially for PCLs ≥60 mm3. Detailed results are provided as graphs
in Appendix B.

4. Discussion

The aim of this study was to develop and evaluate an algorithm for automatic de-
tection of pancreatic cystic lesions. While AI has demonstrated excellent performance for
segmentation of organs with sharp borders like the lungs [34], organs with fuzzy delin-
eation like the pancreas (e.g., caused by fat interdigitations) and detection of lesions within
these entities remain a challenging task for algorithms [35]. The overall sensitivity of the
algorithm in detecting PCLs on abdominal CTs was 78.8%. Sensitivity increased with the
volume of the lesions up to 87.8% on average for lesions >220 mm3. This is expected, as
more voxels per lesion make it easier for the model to detect a PCL amongst the entire
voxels of an abdominal CT. The weaker performance of our model on smaller cysts has
to be put into perspective with their low clinical relevance. The American College of
Radiology showed the absence of growth on the 3 year follow-up of PCLs smaller than
5 mm at detection [32,36]. Overall, the presence of a PCL of 30 mm or larger is considered
an independent risk factor for malignancy [4,37]. Of note, the rate of FPs decreased to a
minimum of 0.1 per case with increasing cyst volumes.

Sensitivity was highest in the distal pancreas, reaching up to 96.2%. This can be partly
explained by the fact that the proximal pancreas is in close anatomical relation to structures
which resemble PCLs on cross-sectional imaging (e.g., bile duct, choledochal cyst, and
duodenal diverticula), which can confuse the model. Nonetheless, the model showed high
detection rates in the proximal region of the organ as well, corresponding to the head and
uncinate process, where two other groups found the IPMN to be the most frequent [8,9].
Regarding the comparison to human readers, the algorithm showed moderately superior
detection rates compared to three radiology residents, and detected less FPs. Therefore,
it could be used as a second reading tool for helping radiologists not to miss PCLs. The
actual benefit of this application in clinical routine and against the backdrop of current
guidelines remains to be evaluated in future research [4,33,38,39].

In their attempt to create an algorithm for automated PCL segmentation, Zhou et al.
trained their initial model on their own dataset of 131 cystic pancreas segmentations,
achieving a DSC of 63.44 ± 27.71% for cyst segmentation at testing in 2017 [26], and
68.98 ± 26.68% with their most recent algorithm [28]. As the aim of the study at hand was
PCL detection, the results cannot be directly compared.
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We chose the task of PCL detection on CT, considering its good spatial resolution,
lower sensitivity to motion artifacts, and the fact that abdominal CT is frequently performed.
Thin section, high-resolution, contrast-enhanced CT was found to provide enough details
regarding the structure of PCLs to make a diagnosis [40] and Lee, J. et al. recently declared
MRI and CT to be interchangeable for assessment and follow-up of patients with PCLs [41].
For patients refusing an MRI, pancreatic CT is the recommended alternative modality
according to the societies ICG, ACG and ESG [32], and offers a comparable accuracy to
MRCP in terms of PCL characterization [42]. However, we recognize the high diagnostic
value of other modalities such as multi-parametric MRI, MRCP, and endoscopic ultrasound
(EUS) [4,32,43,44]. Consequently, even though our model provides help for the detection of
PCLs on CT, models for other modalities would be useful for their accurate characterization.

This study has limitations. First, the PCL detection algorithm was trained and tested
on data from a single medical center, which limited the amount of available data. Second,
due to the lack of external validation, we cannot make a clear statement on the performance
of our algorithm on external data. However, given the high degree of standardization of
CT protocols, we do not expect a major drop in performance. Third, main duct-IPMN
were not included in the training as the sample size was too small and their morphologic
presentation is too different from other PCLs. Fourth, the first step (segmentation of the
pancreas) failed in 44 cases, which has a negative impact on direct clinical implementability.
Possible remedies are to improve the organ segmentation algorithm using more training
data or adding a verification step of the first algorithm’s output (“whole pancreas included
in the scan or not?”), e.g., by a third algorithm. Having exclusively confronted our model
with a pre-screened set of examinations containing PCLs and excluding pancreatitis and
tumorous pancreas, the amount of FPs might increase when used in a clinical setting, which
constitutes the fifth limitation of this study.

5. Conclusions

This study shows that automated AI-based detection of pancreatic cystic lesions on
contrast-enhanced CT is possible with good diagnostic performance comparable to that of
radiologists. As it has become clearer that a relevant proportion of pancreatic cysts, which
are an underreported entity on CTs, will develop into malignant lesions, the diagnosis and
surveillance of pancreatic cysts is gaining importance. The algorithm presented in this
study could help to improve the accuracy of detection and surveillance of PCLs by serving
radiologists as a second reading tool.
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Appendix A

PACS search queries, English translation in brackets.
*Pseudozyste* (pseudocyst) OR *IPMN* OR *pankreasschwanzzyste* (cyst of pancreatic

tail) OR *pankreaskopfzyste* (cyst of head of pancreas) OR *pankreaszyste* (pancreatic cyst)
OR “uncinatus zyste” (cyst of uncinate process) ~5 OR “pankreasschwanz zystisch” (cystic
pancreatic tail) ~5 OR “cauda zyste” (cyst of cauda) ~5 OR “Schwanz zyste” (cyst of tail) ~5 OR
“pankreasschwanz zystisch” (cystic pancreatic tail) ~5 OR „Pankreasschwanz zyste” (cyst
of pancreatic tail) ~5 OR “Pankreascorpus zyste” (cyst of pancreatic corpus) ~5 OR “corpus
zyste”~5 (cyst of corpus) OR “ ~5 OR “caput zyste” (cyst of caput) ~5 OR “kopf zyste” (head
cyst) ~5 OR “pankreaskopf zystisch” (cystic head of pancreas) ~5 OR “pankreaskopf zyste”
(cyst of head of pancreas) ~5 OR “pankreasparenchym zystisch” (cystic pancreatic parenchyma)
~5 OR “pankreasparenchym zyste” (cyst of pancreatic parenchyma) ~5 OR “pankreas zystisch”
(cystic pancreas) ~5 OR “bauchspeicheldrüse zyste” (cystic pancreas) ~5 OR “pankreas zyste”
(pancreatic cyst) ~5 OR “pancreas zyste” (pancreatic cyst) ~5
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