Synthesis of 2- and 4-hydroxymethyl Loratadine, usual impurities in Loratadine syrup formulations

Verónica Cerrada, M. Paz Matía-Martín, J. Luis Novella, and Julio Alvarez-Builla*
Planta Piloto de Química Fina, Universidad de Alcalá. 28871 Alcalá de Henares, Madrid, Spain E-mail: julio.alvarez@uah.es

Dedicated to Prof. José Elguero
(received 31 Dec 04; accepted 21 Mar 05; published on the web 25 Mar 05)

Abstract

The synthesis of two contaminants of Loratadine, generated when the product is formulated as a syrup, is described. The products, identified as 2- and 4-hydroxymethyl derivatives of the starting compounds, are obtained by the corresponding substitution of the pyridine moiety of Loratadine.

Keywords: Fused pyridines, pharmaceuticals, Loratadine, synthesis, contaminants

Introduction

Loratadine, $\mathbf{1 ,}$ is [4-(8-chloro-5,6-dihydrobenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine -1-carboxylic acid ethyl ester]. It is a non-sedating anthistamine, ${ }^{1}$ marketed, inter alia, as a syrup. The formation of the 2 - and 4-hydroxymethyl derivatives 2,3 (Figure 1) on the pyridine ring has been described, which result from a redox process of the drug with other formulation components. ${ }^{2,3}$ Accelerated degradation experiments showed the formation of 0.5% of both contaminants in the syrup, dependent on the presence of air, and eventually related to the in situ generation of formaldehyde. ${ }^{3}$ The preparation of both contaminants has been necessary to prepare references for quality control of drug formulations, and a scheme has been developed starting from the parent Loratadine $\mathbf{1 .}$

1 Loratadine R1 = R2 = H
2 R1 $=\mathrm{CH}_{2} \mathrm{OH} ; \mathrm{R}_{2}=\mathrm{H}$
$3 \mathrm{R} 1=\mathrm{H} ; \mathrm{R} 2=\mathrm{CH}_{2} \mathrm{OH}$

Figure 1

Results and Discussion

The substitution of the pyridine moiety has been performed using the strategy of Okamota and Tani, ${ }^{4}$ and Feely and Beavers-Tani, ${ }^{5}$ as a crucial step (Scheme 1), by cyanide nucleophilic substitution of the corresponding 1-methoxypyridinium salts. The starting Loratadine $\mathbf{1}$ was converted into the N -oxide 4 , and then into the N -methoxypyridinium salt 5 . The attack of cyanide ion produced a mixture of the corresponding nitriles $\mathbf{6}$ and 7 , in which the 2 -isomer predominated (4:1). Both products were separated by chromatography, and used to prepare the final compounds.

Scheme 1

A more selective approach to 6 was performed by bromination of the N -oxide 4 , in the presence of $\mathrm{Br}_{3} \mathrm{PO}$, by adapting the process described by Jung et al., ${ }^{6}$ which allowed the preparation of $\mathbf{8}$. An alternative chlorination with $\mathrm{Cl}_{3} \mathrm{PO}$, always produced smaller yields. Then, treatment of $\mathbf{8}$ with CuCN produced 6. Extensive deacylation of the piperidine nitrogen was produced in both steps, and was the cause of the observed reduction of yields.

The process for obtaining 2 is indicated in Scheme 2, in which a classical Pinner process converted 6 into the ester 9 . Finally, the best results in the reduction step were obtained with DIBAL-H, which produced the hydroxymethyl derivative $\mathbf{2}$ in small yield.

Scheme 2

A similar approach was applied to 7, going to the ester 10, which, on reduction, produced the hydroxymethyl derivative 3 (Scheme 3) also, in small yield.

Scheme 3

Identification of the products in the reduction steps $9-\mathbf{2}$ and $\mathbf{1 0}-\mathbf{3}$, was performed by HPLCMS of the crude mixture obtained in the process. The acid $\mathbf{1 1}$ was detected in the mixture used to obtain 2, with a yield of 43%, while 12 was detected in the mixture used to obtain 3, with a yield of 48% (Figure 2). ${ }^{7}$

11

Figure 2

Experimental Section

General Procedures. All melting points were measured in capillary tubes and are uncorrected. IR spectra were determined on KBr disks using a Nicolet Impact 410 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were obtained at 200 or 300 MHz on VARIAN GEMINI or UNITY apparatus. Chemical shifts (δ) were determined using TMS as internal standard, and multiplicity (s, singlet; d, doublet; dd, double-doublet; t, triplet; q, quartet; m, multiplet) is indicated for every signal. HPLC-MS analyses were performed on an Agilent 1100 apparatus. A chromatographic column Luna C18 ($150 \times 4.6 \mathrm{~mm}$) $5 \mu \mathrm{~m}$ Phenomenex, was used, with a mobile phase formed by a triple gradient of 4% aq. formic acid (A), water (B), and acetonitrile (C). The gradient started as A (2.5\%), B (93\%) and C (4.5\%), and in 30 min. reached A (2.5\%), B (4.5\%) and C (93\%). In the Mass detector, the fragmenter operated at 70 eV . HRMS was performed on an Applied Biosystems 4700 spectrometer. Elemental analysis was performed on a LECO CHNS-932 instrument. All reactions were carried under Ar using solvents dried by routine procedures. Column chromatography was performed using silica gel ($60 \mathrm{~F}_{254}, 70-200 \mu \mathrm{~m}$) as the stationary phase. RT means room temperature.

4-(8-Chloro-1-oxy-5,6-dihydrobenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene) piperidine-1carboxylic acid ethyl ester (4). In a 25 mL round-bottomed flask adapted with a condenser, 1 g (2.61 mmol) of Loratadine was loaded and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. Then $0.61 \mathrm{~g}(2.72 \mathrm{mmol})$ of MCPBA was added in one portion and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 25 h . The (reaction was monitored by TLC (hexane/AcOEt/MeOH 1:1:0.1). When the reaction was finished, the mixture was cooled to RT and the solvent evaporated to dryness to give a viscous crude material. This was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt/MeOH 1:1:0.1) to give compound 4 as a white solid ($0.9 \mathrm{~g}, 87 \%$). Mp $139-141^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3437, 2924, 2855, 1695, 1478, 1428, 1385, 1240, 1220, 1116, 995, 795. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 8.08(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}$ $=3.8 \mathrm{~Hz}) ; 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}) ; 7.14-7.06(\mathrm{~m}, 4 \mathrm{H}) ; 4.11$ (q, 2H, J = 7.1 Hz); 3.84-3.64 (m, 2H); 3.47-3.30 (m, 4H); 2.96-2.75 (m, 2H); 2.59-2.46 (m, 1H); 2.38-2.25 (m, 2H); 2.14-1.90 (m, $1 \mathrm{H}) ; 1.25(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) \mathrm{ppm}$. MS (ESI $)$: m/z: $399(\mathrm{M}+1)$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 66.24; H, 5.81; N, 7.02. Found: C, 66.49; H, 5.70; N, 6.88\%.
4-(8-Chloro-2-cyano-5,6-dihydrobenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene) piperidine-1-carboxylic acid ethyl ester (6) and 4-(8-Chloro-4-cyano-5,6-dihydrobenzo-[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylic acid ethyl ester (7). Compound $4(17 \mathrm{~g}, 42.7 \mathrm{mmol})$ dissolved in acetone (500 mL), stirring at $60^{\circ} \mathrm{C}$ had dimethyl sulfate ($4.05 \mathrm{~mL}, 42.7 \mathrm{mmol}$) added dropwise. The reaction mixture was stirred at the same temperature for 6 hours further. The solvent was evaporated to give 19.86 g of the pyridinium salt 5 as a brown oil. This was used in the next step without further purification. Then, KCN (8.2g, 0.13 mol) was dissolved in water (100 mL) and 5 ($19.86 \mathrm{~g}, 0.15 \mathrm{~mol}$) dissolved in water (200 mL) was added slowly. The reaction mixture was stirred at RT for 10 min , then was extracted with diethyl ether ($3 \times 100 \mathrm{~mL}$). The organic layer was separated and a solid formed. This solid
was filtered and characterized as compound 6. The filtrate was washed with $\mathrm{HCl} 10 \%$ ($2 \times 50 \mathrm{~mL}$), the aqueous layer neutralized with saturated aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with diethyl ether. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated to dryness, and the crude mixture purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, Hexane/AcOEt $\left.1: 1\right)$ to give compounds 6 ($11.76 \mathrm{~g}, 60 \%$, yellow solid) and 7 ($2.38 \mathrm{~g}, 14 \%$, yellow solid).
6: Mp 193-195 ${ }^{\circ} \mathrm{C} . \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3439, 2922, 2853, 2229, 1690, 1485, 1465, 1438, 1231, 1119, 1091. 985. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 7.59-7.47(\mathrm{~m}, 2 \mathrm{H}) ; 7.20-7.09(\mathrm{~m}, 3 \mathrm{H}) ; 4.15(\mathrm{q}$, 2H, J = 7.1 Hz); 3.78-3.72 (m, 2H); 3.47-3.36 (m, 2H); 3.29-3.16 (m, 2H); 2.98-2.77 (m, 2H); 2.55-2.19 (m, 4H); 1.26 (t, 3H, J = 7.1 Hz) ppm. MS (ESI $)$: m/z: 408 (M+1). Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2}$: C, 67.73; H, 5.44; N, 10.30. Found: C, 67.49; H, 5.60; N, 10.18\%.
7: mp 99-100 ${ }^{\circ} \mathrm{C}$. IR (KBr, cm^{-1}): 3427, 2923, 2852, 2360, 1697, 1472, 1436, 1278, 1223, 1115, 1086, 986. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 8.57(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}) ; 7.39(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}) ; 7.16-$ 7.12 (m, 3H); 4.17 (q, 2H, J = 6.9 Hz); 3.90-3.72 (m, 2H); 3.51-3.38 (m, 2H); 3.34-3.82 (m, $4 \mathrm{H}) ; 2.34-2.37(\mathrm{~m}, 4 \mathrm{H}) ; 1.25(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) \mathrm{ppm} . \mathrm{MS}\left(\mathrm{ESI}^{+}\right): \mathrm{m} / \mathrm{z}: 408(\mathrm{M}+1)$. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2}$: C, 67.73 ; H, 5.44 ; N, 10.30. Found: C, 67.89 ; H, 5.60 ; N, 10.07%.
4-(2-Bromo-8-chloro-5,6-dihydrobenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)piperidine-1-carboxylic acid ethyl ester (8). The procedure of Jung et al. ${ }^{6}$ was adapted. Compound $\mathbf{4}$ (10 g , $25 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(4.1 \mathrm{~mL}, 30 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL})$. Then, the mixture was cooled at $0{ }^{\circ} \mathrm{C}$ and a solution of $\mathrm{Br}_{3} \mathrm{OP}(8.6 \mathrm{~g}, 30 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added dropwise. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 30 min . and then heated to $60^{\circ} \mathrm{C}$ for 10 h . After cooling at RT and washing with water ($2 \times 50 \mathrm{~mL}$) the organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. The residue was purified by flash chromatography (SiO_{2}, Hexane/AcOEt 5:1) to give 10 as a white solid (3.5g, 30\%). Mp 164$166^{\circ} \mathrm{C}$. IR (KBr, cm^{-1}): 3398, 1699, 1622, 1417, 1384, 1340, 1276, 1230, 1112, 1066, 723, 612. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 7.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}) ; 7.26-7.10(\mathrm{~m}, 4 \mathrm{H}) ; 4.14(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1$ Hz); 3.91-3.36 (m, 2H); 3.31-3.20 (m, 2H); 3.17-3.04 (m, 2H); 2.90-2.76 (m, 2H); 2.54-2.28 (m, 4H); 1.25 (t, 3H, J = 7.1 Hz) ppm. MS (ESI ${ }^{+}$) m/z: 463 (M+1). Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrClN}_{2} \mathrm{O}_{2}$: C, 57.22; H, 4.80; N, 6.07. Found: C, 57.49; H, 4.60; N, 6.18\%.
4-(8-Chloro-2-cyano-5,6-dihydrobenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene) piperidine-1-carboxylic acid ethyl ester (6). Compound $8(0.2 \mathrm{~g}, 0.43 \mathrm{mmol})$ was suspended in DMF (3 mL) and pyridine (3 drops) and $\mathrm{CuCN}(0.039 \mathrm{~g}, 0.43 \mathrm{mmol}$) were added at RT. The mixture was then heated for 5 h at $180^{\circ} \mathrm{C}$, then cooled and poured into ammonium hydroxide solution (3.8 mL NH 3 and 3.8 g of crushed ice). The suspension formed was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 5 mL). The organic layer was washed with $5 \% \mathrm{HCl}(2 \times 5 \mathrm{~mL}$), then water (2 x 5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude product was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, Hexane/AcOEt 3:1) yielding $0.04 \mathrm{~g}(40 \%)$ of compound 6 as a yellow solid. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{ClN}_{3} \mathrm{O}_{2}$: C, 67.73; H, 5.44; N, 10.30. Found: C, 67.49; H, 5.60; N, 10.18\%.

8-Chloro-11-(1-ethoxycarbonylpiperidin-4-ylidene)-6,11-dihydro-5H-benzo[5,6]cyclo-hepta-[1,2-b]pyridine-2-carboxylic acid methyl ester (9). Compound $\mathbf{6}$ ($0.33 \mathrm{~g}, 0.8 \mathrm{mmol}$) was
dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and methanol (7 mL). The mixture was cooled at $0{ }^{\circ} \mathrm{C}$ and HCl gas bubbled through it for 5 hours, then it was stirred at RT for 15 h . The solvent was evaporated to dryness and the residue washed with water (50 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt 2:1) to give $9(0.32 \mathrm{~g}, 75 \%)$ as a yellow solid. Mp 145-148 ${ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3455, 2923, 2853, 1697, 1433, 1319, 1279, 1228, 1138, 1114, 1025, 991. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 7.91$ (d, 1H, J = 7.8 Hz); 7.57 (d, 1H, J = 7.8 Hz); 7.21-7.12 (m, 3H); 4.13 (q, 2H, J = 7.1 Hz); 3.95 (s, 3H); 3.88-3.75 (m, 2H); 3.44-3.35 (m, 2H); 3.15-3.08 (m, 2H); 2.96-2.77 (m, 2H); 2.53-2.28 (m, 4H); 1.25 (t, 3H, J = 7.1 Hz) ppm. MS (ESI ${ }^{+}$): m/z: $441(\mathrm{M}+1)$. Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4}$: C, 65.38; H, 5.72; N, 6.35. Found: C, 65.59; H, 5.60; N, 6.14\%.
4-(8-Chloro-2-hydroxymethyl-5,6-dihydrobenzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidene)-piperidine-1-carboxylic acid ethyl ester (2). Compound 9 ($0.31 \mathrm{~g}, 0.7 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled at $0{ }^{\circ} \mathrm{C}$ under N_{2}. Then, DIBAL-H ($0.5 \mathrm{~mL}, 3.5 \mathrm{mmol}$) was added in three portions. After each addition, the reaction mixture was heated at reflux for 16 h . When the reaction was finished (monitored by LC-MS), the mixture was cooled at RT and washed with sat. aq. sodium tartrate. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt 2:1) yielding $0.049 \mathrm{~g}(12 \%)$ of 2 as a white solid. $\mathrm{Mp} 88-90{ }^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3452, 2922, 2853, 1698, 1683, 1651, 1557, 1455, 1385, 1232, 1081, 667. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 7.44$ (d, 1H, J = 7.8 Hz); 7.19-7.04 (m, 4H); $4.70(\mathrm{~s}, 2 \mathrm{H}) ; 4.15(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ; 3.79-3.70(\mathrm{~m}$, 2H); 3.41-3.31 (m, 2H); 3.25-3.16 (m, 2H); 2.91-2.77 (m, 2H); 2.50-2.45 (m, 1H); 2.38-2.28 ($\mathrm{m}, 3 \mathrm{H}$); $1.25(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) \mathrm{ppm}$. MS (ESI ${ }^{+}$) m/z: 413 (M+1). Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 66.90; H, 6.10; N, 6.78. Found: C, 67.08; H, 5.91; N, 6.63\%.

8-Chloro-11-(1-ethoxycarbonylpiperidin-4-ylidene)-6,11-dihydro-5H-benzo[5,6]cyclo-

 hepta[1,2-b]-pyridine-4-carboxylic acid methyl ester (10). Compound 7 ($1.26 \mathrm{~g}, 3.1 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ and methanol (40 mL). The mixture was cooled at $0{ }^{\circ} \mathrm{C}$ and HCl gas bubbled through it for 5 h and then it was stirred at RT for 15 h . The solvent was evaporated to dryness and the residue washed with water (100 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 100 \mathrm{~mL}$). The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to dryness. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt 2:1) to give 10 ($0.67 \mathrm{~g}, 48 \%$) as a yellow solid. Mp $150-153^{\circ} \mathrm{C}$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3434, 2925, 2851, 1731, 1698, 1470, 1434, 1279, 1224, 1111, 990, 776. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 8.48(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=4.94 \mathrm{~Hz}) ;$ 7.48 (d, 1H, J = 5.1 Hz); $7.09(\mathrm{~m}, 3 \mathrm{H}) ; 4.13(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) ; 3.93(\mathrm{~s}, 3 \mathrm{H}) ; 3.78-3.50(\mathrm{~m}, 2 \mathrm{H})$; 3.47-3.34 (m, 2H); 3.21-3.11 (m, 2H); 3.03-2.97 (m, 2H); 2.45-2.34 (m, 4H); $1.24(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ 7.1 Hz) ppm. MS (ESI ${ }^{+}$): m/z: 441 (M+1). Anal. Calcd. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{4}$: C, 65.38; H, 5.72; N, 6.35. Found: C, 65.53; H, 5.81; N, 6.44\%.4-(8-Chloro-4-hydroxymethyl-5,6-dihydrobenzo[5,6]cyclohepta[1,2-b]pyridino-11-ylidene)-piperidine-1-carboxylic acid ethyl ester (3). Compound 10 ($0.3 \mathrm{~g}, 0.68 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(12 \mathrm{~mL})$ and cooled at $0{ }^{\circ} \mathrm{C}$ under nitrogen. Then, DIBAL-H ($0.48 \mathrm{~mL}, 3.4 \mathrm{mmol}$) was
added in three portions. After each addition the reaction mixture was refluxed for 16 hours. When the process was finished (monitored by LC-MS), the mixture was cooled at RT, washed with sat. aq. sodium tartrate. The organic layer was separated, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to dryness. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ AcOEt 2:1) yielding 0.034 g (12%) of 3 as a white solid. $\mathrm{Mp} 83-85{ }^{\circ} \mathrm{C}$. $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3432, 2923, 2852, 1698, 1651, 1435, 1260, 1225, 1115, 1083, 843, 807. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right): 8.43$ (d, 1H, J = 4.6 Hz); 7.28-7.22 (m, 1H); $7.13(\mathrm{~m}, 3 \mathrm{H}) ; 4.70(\mathrm{~s}, 2 \mathrm{H}) ; 4.15(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz})$; 3.91-3.70 (m, 2H); 3.49-3.31 (m, 2H); 3.28-3.02 (m, 2H); 2.90-2.78 (m, 2H); 2.5-2.28 (m, 4H); $1.31(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}) \mathrm{ppm}$. MS (ESI $): \mathrm{m} / \mathrm{z}: 413(\mathrm{M}+1)$. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClN}_{2} \mathrm{O}_{3}: \mathrm{C}$, 66.90; H, 6.10; N, 6.78. Found: C, 66.76; H, 5.89; N, 6.63\%.

Acknowledgements

Thanks are given to the Perrigo Company, which supported the project.

References and Notes

1. Villani, F. J. US Patent 1981, 4, 282, 233; Chem. Abstr. 1981, 95, 203761 h.
2. Munayyer, F. J.; Guazzo, F.; Stupak, E. I.; Chaudry, I. A.; Sequeira, J. A. US Patent 2000, 6,132,758; Chem. Abstr. 2000, 133, 301192w.
3. Eyjolfsson, R. Pharmazie 2003, 58, 154.
4. Okamoto, T.; Tani, H. Chem. Pharm. Bull. 1959, 7, 130.
5. Feely, W. E.; Beavers, E. M. J. Am. Chem. Soc. 1959, 81, 4004.
6. Jung, J. C.; Jung, Y. J.; Park, O. S. Synthetic Comm. 2001, 31, 2507.
7. Both compounds were identified by HRMS. Calculated exact mass for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{ClN}_{2} \mathrm{O}_{4}$ of 426.1346. Found for 11: 426.1343. Found for 12: 426.1348.
