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Abstract

We consider the general problem of constructing nonparametric Bayesian models
on infinite-dimensional random objects, such as functions, infinite graphs or infi-
nite permutations. The problem has generated much interest in machine learning,
where it is treated heuristically, but has not been studied in full generality in non-
parametric Bayesian statistics, which tends to focus on models over probability
distributions. Our approach applies a standard tool of stochastic process theory,
the construction of stochastic processes from their finite-dimensional marginal
distributions. The main contribution of the paper is a generalization of the classic
Kolmogorov extension theorem to conditional probabilities. This extension allows
a rigorous construction of nonparametric Bayesian models from systems of finite-
dimensional, parametric Bayes equations. Using this approach, we show (i) how
existence of a conjugate posterior for the nonparametric model can be guaranteed
by choosing conjugate finite-dimensional models in the construction, (ii) how the
mapping to the posterior parameters of the nonparametric model can be explicitly
determined, and (iii) that the construction of conjugate models in essence requires
the finite-dimensional models to be in the exponential family. As an application
of our constructive framework, we derive a model on infinite permutations, the
nonparametric Bayesian analogue of a model recently proposed for the analysis
of rank data.

1 Introduction

Nonparametric Bayesian models are now widely used in machine learning. Common models, in
particular the Gaussian process (GP) and the Dirichlet process (DP), were originally imported from
statistics, but the nonparametric Bayesian idea has since been adapted to the needs of machine
learning. As a result, the scope of Bayesian nonparametrics has expanded significantly: Whereas
traditional nonparametric Bayesian statistics mostly focuses on models on probability distributions,
machine learning researchers are interested in a variety of infinite-dimensional objects, such as func-
tions, kernels, or infinite graphs. Initially, existing DP and GP approaches were modified and com-
bined to derive new models, including the Infinite Hidden Markov Model [2] or the Hierarchical
Dirichlet Process [15]. More recently, novel stochastic process models have been defined from
scratch, such as the Indian Buffet Process (IBP) [8] and the Mondrian Process [13]. This paper
studies the construction of new nonparametric Bayesian models from finite-dimensional distribu-
tions: To construct a model on a given type of infinite-dimensional object (for example, an infinite
graph), we start out from available probability models on the finite-dimensional counterparts (prob-
ability models on finite graphs), and translate them into a model on infinite-dimensional objects
using methods of stochastic process theory. We then ask whether interesting statistical properties of
the finite-dimensional models used in the constructions, such as conjugacy of priors and posteriors,
carry over to the stochastic process model.
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In general, the term nonparametric Bayesian model refers to a Bayesian model on an infinite-
dimensional parameter space. Unlike parametric models, for which the number of parameters is
constantly bounded w.r.t. sample size, nonparametric models allow the number of parameters to
grow with the number of observations. To accommodate a variable and asymptotically unbounded
number of parameters within a single parameter space, the dimension of the space has to be infinite,
and nonparametric models can be defined as statistical models with infinite-dimensional parameter
spaces [17]. For a given sample of finite size, the model will typically select a finite subset of the
available parameters to explain the observations. A Bayesian nonparametric model places a prior
distribution on the infinite-dimensional parameter space.

Many nonparametric Bayesian models are defined in terms of their finite-dimensional marginals:
For example, the Gaussian process and Dirichlet process are characterized by the fact that their
finite-dimensional marginals are, respectively, Gaussian and Dirichlet distributions [11, 5]. The
probability-theoretic construction result underlying such definitions is the Kolmogorov extension
theorem [1], described in Sec. 2 below. In stochastic process theory, the theorem is used to study
the properties of a process in terms of its marginals, and hence by studying the properties of finite-
dimensional distributions. Can the statistical properties of a nonparametric Bayesian model, i.e. of
a parameterized family of distributions, be treated in a similar manner, by considering the model’s
marginals? For example, can a nonparametric Bayesian model be guaranteed to be conjugate if
the marginals used in its construction are conjugate? Techniques such as the Kolmogorov theo-
rem construct individual distributions, whereas statistical properties are properties of parameterized
families of distributions. In Bayesian estimation, such families take the form of conditional prob-
abilities. The treatment of the statistical properties of nonparametric Bayesian models in terms of
finite-dimensional Bayes equations therefore requires an extension result similar to the Kolmogorov
theorem that is applicable to conditional distributions. The main contribution of this paper is to
provide such a result.

We present an analogue of the Kolmogorov theorem for conditional probabilities, which permits the
direct construction of conditional stochastic process models on countable-dimensional spaces from
finite-dimensional conditional probabilities. Application to conjugate models shows how a conju-
gate nonparametric Bayesian model can be constructed from conjugate finite-dimensional Bayes
equations – including the mapping to the posterior parameters. The converse is also true: To con-
struct a conjugate nonparametric Bayesian model, the finite-dimensional models used in the con-
struction all have to be conjugate. The construction of stochastic process models from exponential
family marginals is almost generic: The model is completely described by the mapping to the poste-
rior parameters, which has a generic form as a function of the infinite-dimensional counterpart of the
model’s sufficient statistic. We discuss how existing models fit into the framework, and derive the
nonparametric Bayesian version of a model on infinite permutations suggested by [9]. By essentially
providing a construction recipe for conjugate models of countable dimension, our theoretical results
have clear practical implications for the derivation of novel nonparametric Bayesian models.

2 Formal Setup and Notation

Infinite-dimensional probability models cannot generally be described with densities and therefore
require some basic notions of measure-theoretic probability. In this paper, required concepts will
be measures on product spaces and abstract conditional probabilities (see e.g. [3] or [1] for general
introductions). Randomness is described by means of an abstract probability space (Ω,A,P). Here,
Ω is a space of points ω, which represent atomic random events, A is a σ-algebra of events on Ω,
and P a probability measure defined on the σ-algebra. A random variable is a measurable mapping
from Ω into some space of observed values, such as X : Ω → Ωx. The distribution of X is the
image measure PX := X(P) = P ◦ X−1. Roughly speaking, the events ω ∈ Ω represent abstract
states of nature, i.e. knowing the value of ω completely describes all probabilistic aspects of the
model universe, and all random aspects are described by the probability measure P. However, Ω, A
and P are never known explicitly, but rather constitute the modeling assumption that any explicitly
known distribution PX is derived from one and the same probability measure P through some random
variable X .

Multiple dimensions of random variables are formalized by product spaces. We will generally deal
with an infinite-dimensional space such as ΩE

x, were E is an infinite index set and ΩE
x is the E-
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fold product of Ωx with itself. The set of finite subsets of E will be denoted F(E), such that
ΩI
x with I ∈ F(E) is a finite-dimensional subspace of ΩE

x. Each product space ΩI
x is equipped

with the product Borel σ-algebra BI
x. Random variables with values on these spaces have product

structure, such as X I =
⊗

i∈I X
{i}. Note that this does not imply that the corresponding measure

P I
X := X I(P) is a product measure; the individual components of X I may be dependent. The

elements of the infinite-dimensional product space ΩE
x can be thought of as functions of the form

E → Ωx. For example, the space RR contains all real-valued functions on the line.

Product spaces ΩI
x ⊂ ΩJ

x of different dimensions are linked by a projection operator πJI, which
restricts a vector xJ ∈ ΩJ

x to xI, the subset of entries of xJ that are indexed by I ⊂ J . For a set
AI ⊂ ΩI

x, the preimage π-1
JIA

I under projection is called a cylinder set with base AI. The projection
operator can be applied to measures as [πJIP

J
X] := P J

X ◦ π-1
JI , so for an I-dimensional event AI ∈ BI

x,
we have [πJIP

J
X](AI) = P J

X(π-1
JIA

I). In other words, a probability is assigned to the I-dimensional
set AI by applying the J-dimensional measure P J

X to the cylinder with base AI. The projection
of a measure is just its marginal, that is, [πJIP

J
X] is the marginal of the measure P J

X on the lower-
dimensional subspace ΩI

x.

We denote observation variables (data) by X I, parameters by ΘI and hyperparameters by ΨI. The
corresponding measures and spaces are indexed accordingly, as PX, PΘ, Ωθ etc. The likelihoods and
posteriors that occur in Bayesian estimation are conditional probability distributions. Since densities
are not generally applicable in infinite-dimensional spaces, the formulation of Bayesian models on
such spaces draws on the abstract conditional probabilities of measure-theoretic probability, which
are derived from Kolmogorov’s implicit formulation of conditional expectations [3]. We will write
e.g. PX(X|Θ) for the conditional probability of X given Θ. For the reader familiar with the theory,
we note that all spaces considered here are Borel spaces, such that regular versions of conditionals
always exist, and we hence assume all conditionals to be regular conditional probabilities (Markov
kernels). Introducing abstract conditional probabilities here is far beyond the possible scope of this
paper. A reader not familiar with the theory should simply read PX(X|Θ) as a conditional distribu-
tion, but take into account that these abstract objects are only uniquely defined almost everywhere.
That is, the probability PX(X|Θ = θ) can be changed arbitrarily for those values of θ within some
set of exceptions, provided that this set has measure zero. While not essential for understanding
most of our results, this fact is the principal reason that limits the results to countable dimensions.

Example: GP. Assume that P E
X (XE|ΘE) is to represent a Gaussian process with fixed covariance

function. Then XE is function-valued, and if for example E := R+ and Ωx := R, the product space
ΩE
x = RR+ contains all functions xE of the form xE : R+ → R. Each axis label i ∈ E in the product

space is a point on the real line, and a finite index set I ∈ F(E) is a finite collection of points I =
(i1, . . . , im). The projection πEIx

E of a function in ΩE
x is then the vector xI := (xE(i1), . . . , xE(im))

of function values at the points in I . The parameter variable ΘE represents the mean function of the
process, and so we would choose ΩE

θ := ΩE
x = RR+ .

Example: DP. If P E
X (XE|ΘE) is a Dirichlet process, the variable XE takes values xE in the set of

probability measures over a given domain, such as R. A probability measure on R (with its Borel
algebra B(R)) is in particular a set function B(R) → [0, 1], so we could choose E = B(R) and
Ωx = [0, 1]. The parameters of a Dirichlet process DP(α,G0) are a scalar concentration parameter
α ∈ R+, and a probability measure G0 with the same domain as the randomly drawn measure xE.

The parameter space would therefore be chosen as R+ × [0, 1]B(R).

2.1 Construction of Stochastic Processes from their Marginals

Suppose that a family P I
X of probability measures are the finite-dimensional marginals of an infinite-

dimensional measure P E
X (a “stochastic process”). Each measure P I

X lives on the finite-dimensional
subspace ΩI

x of ΩE
x. As marginals of one and the same measure, the measures must be marginals of

each other as well:

P I
X = P J

X ◦ π-1
JI whenever I ⊂ J . (1)

Any family of probability measures satisfying (1) is called a projective family. The marginals of
a stochastic process measure are always projective. A famous theorem by Kolmogorov states that
the converse is also true: Any projective family on the finite-dimensional subspaces of an infinite-
dimensional product space ΩE

x uniquely defines a stochastic process on the space ΩE
x [1]. The only

assumption required is that the “axes” Ωx of the product space are so-called Polish spaces, i.e.
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topological spaces that are complete, separable and metrizable. Examples include Euclidean spaces,
separable Banach or Hilbert spaces, countable discrete spaces, and countable products of spaces that
are themselves Polish.

Theorem 1 (Kolmogorov Extension Theorem). LetE be an arbitrary infinite set. Let Ωx be a Polish

space, and let {P I
X|I ∈ F(E)} be a family of probability measures on the spaces (ΩI

x,BI
x). If the

family is projective, there exists a uniquely defined probability measure P E
X on ΩE

x with the measures

P I
X as its marginals.

The infinite-dimensional measure P E
X constructed in Theorem 1 is called the projective limit of the

family P I
X. Intuitively, the theorem is a regularity result: The marginals determine the values of

P E
X on a subset of events (namely on those events involving only a finite subset of the random

variables, which are just the cylinder sets with finite-dimensional base). The theorem then states that
a probability measure is such a regular object that knowledge of these values determines the measure
completely, in a similar manner as continuous functions on the line are completely determined by
their values on a countable dense subset. The statement of the Kolmogorov theorem is deceptive in
its generality: It holds for any index set E, but if E is not countable, the constructed measure P E

X is
essentially useless – even though the theorem still holds, and the measure is still uniquely defined.
The problem is that the measure P E

X , as a set function, is not defined on the space ΩE
x, but on the

σ-algebra BE
x (the product σ-algebra on ΩE

x). If E is uncountable, this σ-algebra is too coarse to
resolve events of interest1. In particular, it does not contain the singletons (one-point sets), such that
the measure P E

X is incapable of assigning a probability to an event of the form {XE = xE}.

3 Extension of Conditional and Bayesian Models

According to the Kolmogorov extension theorem, the properties of a stochastic process can be an-
alyzed by studying its marginals. Can we, analogously, use a set of finite-dimensional Bayes equa-
tions to represent a nonparametric Bayesian model? The components of a Bayesian model are condi-
tional distributions. Even though these conditionals are probability measures for (almost) each value
of the condition variable, the Kolmogorov theorem cannot simply be applied to extend conditional
models: Conditional probabilities are functions of two arguments, and have to satisfy a measurabil-
ity requirement in the second argument (the condition). Application of the extension theorem to each
value of the condition need not yield a proper conditional distribution on the infinite-dimensional
space, as it disregards the properties of the second argument. But since the second argument takes
the role of a parameter in statistical estimation, these properties determine the statistical properties of
the model, such as sufficiency, identifiability, or conjugacy. In order to analyze the properties of an
infinite-dimensional Bayesian model in terms of finite-dimensional marginals, we need a theorem
that establishes a correspondence between the finite-dimensional and infinite-dimensional condi-

tional distributions. Though a number of extension theorems based on conditional distributions is
available in the literature, these results focus on the construction of sequential stochastic processes
from a sequence of conditionals (see [10] for an overview). Theorem 2 below provides a result that,
like the Kolmogorov theorem, is applicable on product spaces.

To formulate the result, the projector used to define the marginals has to be generalized from mea-
sures to conditionals. The natural way to do so is the following: If P J

X(X J|ΘJ) is a conditional
probability on the product space ΩJ, and I ⊂ J , define

[πJIP
J
X]( . |ΘJ) := P J

X(π-1
JI . |ΘJ) . (2)

This definition is consistent with that of the projector above, in the sense that it coincides with the
standard projector applied to the measure P J

X( . |ΘJ = θJ) for any fixed value θJ of the parameter. As
with projective families of measures, we then define projective families of conditional probabilities.

Definition 1 (Conditionally Projective Probability Models). Let P I
X(X I|ΘI) be a family of regu-

lar conditional probabilities on product spaces ΩI
x, for all I ∈ F(E). The family will be called

conditionally projective if [πJIP
J
X]( . |ΘJ) =a.e. P

I
X( . |ΘI) whenever I ⊂ J .

As conditional probabilities are unique almost everywhere, the equality is only required to hold al-
most everywhere as well. In the jargon of abstract conditional probabilities, the definition requires

1This problem is unfortunately often neglected in the statistics literature, and measures in uncountable
dimensions are “constructed” by means of the extension theorem (such as in the original paper [5] on the
Dirichlet process). See e.g. [1] for theoretical background, and [7] for a rigorous construction of the DP.
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that P I
X( . |ΘI) is a version of the projection of P J

X( . |ΘJ). Theorem 2 states that a conditional prob-
ability on a countably-dimensional product space is uniquely defined (up to a.e.-equivalence) by a
conditionally projective family of marginals. In particular, if we can define a parametric model on
each finite-dimensional space ΩI

x for I ∈ F(E) such that these models are conditionally projective,
the models determine an infinite-dimensional parametric model (a “nonparametric” model) on the
overall space ΩE

x.

Theorem 2 (Extension of Conditional Probabilities). LetE be a countable index set. Let P I
X(X I|ΘI)

be a family of regular conditional probabilities on the product space ΩI
x. Then if the family is

conditionally projective, there exists a regular conditional probability P E
X (XE|CE) on the infinite-

dimensional space ΩE
x with the P I

X(X I|ΘI) as its conditional marginals. P E
X (XE|CE) is measurable

with respect to the σ-algebra CE := σ(∪I∈F(E)σ(ΘI)). In particular, if the parameter variables

satisfy πJIΘJ = ΘI, then P E
X (XE|CE) can be interpreted as the conditional probability P E

X (XE|ΘE)
with ΘE :=

⊗
i∈E Θ{i}.

Proof Sketch2. We first apply the Kolmogorov theorem separately for each setting of the parameters
that makes the measures P I

X(X I|ΘI = θI) projective. For any given ω ∈ Ω (the abstract probability
space), projectiveness holds if θI = ΘI(ω) for all I ∈ F(E). However, for any conditionally
projective family, there is a set N ⊂ Ω of possible exceptions (for which projectiveness need not
hold), due to the fact that conditional probabilities and conditional projections are only unique almost
everywhere. Using the countability of the dimension set E, we can argue thatN is always a null set;
the resulting set of constructed infinite-dimensional measures is still a valid candidate for a regular
conditional probability. We then show that if this set of measures is assembled into a function of the
parameter, it satisfies the measurability conditions of a regular conditional probability: We first use
the properties of the marginals to show measurability on the subset of events which are preimages
under projection of finite-dimensional events (the cylinder sets), and then use the π-λ theorem [3]
to extend measurability to all events.

4 Conjugacy

The posterior of a Dirichlet process is again a Dirichlet process, and the posterior parameters can be
computed as a function of the data and the prior parameters. This property is known as conjugacy,
in analogy to conjugacy in parametric Bayesian models, and makes Dirichlet process inference
tractable. Virtually all known nonparametric Bayesian models, including Gaussian processes, Pólya
trees, and neutral-to-the-right processes are conjugate [16]. In the Bayesian and exponential family
literature, conjugacy is often defined as “closure under sampling”, i.e. for a given likelihood and a
given class of priors, the posterior is again an element of the prior class [12]. This definition does not

imply tractability of the posterior: In particular, the set of all probability measures (used as priors)
is conjugate for any possible likelihood, but obviously this does not facilitate computation of the
posterior. In the following, we call a prior and a likelihood of a Bayesian model conjugate if the
posterior (i) is parameterized and (ii) there is a measurable mapping T from the data x and the prior
parameter ψ to the parameter ψ′ = T (x, ψ) which specifies the corresponding posterior. In the
definition below, the conditional probability k represents the parametric form of the posterior. The
definition is applicable to “nonparametric” models, in which case the parameter simply becomes
infinite-dimensional.

Definition 2 (Conjugacy and Posterior Index). Let PX(X|Θ) and PΘ(Θ|Ψ) be regular conditional
probabilities. Let PΘ(Θ|X,Ψ) be the posterior of the model PX(X|Θ) under prior PΘ(Θ|Ψ). Model
and prior are called conjugate if there exists a regular conditional probability k : Bθ × Ωt → [0, 1],
parameterized on a measurable Polish space (Ωt,Bt), and a measurable map T : Ωx × Ωψ → Ωt,
such that

PΘ(A|X = x,Ψ = ψ) = k(A, T (x, ψ)) for all A ∈ Bθ . (3)

The mapping T is called the posterior index of the model.

The definition becomes trivial for Ωt = Ωx ×Ωψ and T chosen as the identity mapping; it is mean-
ingful if T is reasonably simple to evaluate, and its complexity does not increase with sample size.
Theorem 3 below shows that, under suitable conditions, the structure of the posterior index carries

2Complete proofs for both theorems in this paper are provided as supplementary material.
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over to the projective limit model: If the finite-dimensional marginals admit a tractable posterior
index, then so does the projective limit model.

Example. (Posterior Indices in Exponential Families) Suppose that PX(X|Θ) is an exponential
family model with sufficient statistic S and density p(x|θ) = exp(〈S(x), θ〉−γ(x)−φ(θ)). Choose
PΘ(Θ|Ψ) as the “natural conjugate prior” with parameters ψ = (α, y). Its density, w.r.t. a suitable
measure νΘ on parameter space, is of the form q(θ|α, y) = K(α, y)−1 exp(〈θ, y〉 − αφ(θ)). The
posterior PΘ(Θ|X,Ψ) is conjugate in the sense of Def. 2, and its density is q(θ|α + 1, y + S(x)).
The probability kernel k is given by k(A, (t1, t2)) :=

∫
A
q(θ|t1, t2)dνΘ(θ), and the posterior index

is T (x, (α, y)) := (α+ 1, y + S(x)).

The main result of this section is Theorem 3, which explains how conjugacy carries over from
the finite-dimensional to the infinite-dimensional case, and vice versa. Both extension theorems
discussed so far require a projection condition on the measures and models involved. A similar
condition is now required for the mappings T I: The preimages T I,-1 of the posterior indices T I must
commute with the preimage under projection,

(πEI ◦ T E)-1 = (T I ◦ πEI)-1 for all I ∈ F(E) . (4)

The posterior indices of all well-known exponential family models, such as Gaussians and Dirich-
lets, satisfy this condition. The following theorem states that (i) stochastic process Bayesian models
that are constructed from conjugate marginals are conjugate if the projection equation (4) is satisfied,
and that (ii) such conjugate models can only be constructed from conjugate marginals.

Theorem 3 (Functional Conjugacy of Projective Limit Models). Let E be a countable index set

and ΩE
x and ΩE

θ be Polish product spaces. Assume that there is a Bayesian model on each finite-

dimensional subspace ΩI
x, such that the families of all priors, all observation models and all poste-

riors are conditionally projective. Let P E
Θ(ΘE), P E

X (XE|ΘE) and P E
Θ(ΘE|XE) denote the respective

projective limits. Then P E
Θ(ΘE|XE) is a posterior for the infinite-dimensional Bayesian model de-

fined by P E
X (XE|ΘE) with prior P E

Θ(ΘE), and the following holds:

(i) Assume that each finite-dimensional posterior P I
Θ(ΘI|X I) is conjugate w.r.t. its respective

Bayesian model, with posterior index T I and probability kernel kI. Then if there is a mea-

surable mapping T : ΩE
x → ΩE

t satisfying the projection condition (4), the projective limit

posterior P E
Θ(ΘE|XE) is conjugate with posterior index T .

(ii) Conversely, if the infinite-dimensional posterior P E
Θ(ΘE|XE) is conjugate with posterior

index T E and probability kernel kE, then each marginal posterior P I
Θ(ΘI|X I) is conjugate,

with posterior index T I := πEI ◦ T E ◦ π-1
EI. The corresponding probability kernels kI are

given by

kI(AI, tI) := kE(π-1

EIA
I, t) for any t ∈ π-1

EIt
I . (5)

The theorem is not stated here in full generality, but under two simplifying assumptions: We have
omitted the use of hyperparameters, such that the posterior indices depend only on the data, and all
involved spaces (observation space, parameter space etc) are assumed to have the same dimension
for each Bayesian model. Generalizing the theorem beyond both assumptions is technically not dif-
ficult, but the additional parameters and notation for book-keeping on dimensions reduce readability.

Proof Sketch2. Part (i): We define a candidate for the probability kernel kE representing the projec-
tive limit posterior, and then verify that it makes the model conjugate when combined with the map-
ping T given by assumption. To do so, we first construct the conditional probabilities P I

Θ(ΘI|T I),
show that they form a conditionally projective family, and take their conditional projective limit
using Theorem 2. This projective limit is used as a candidate for kE. To show that kE indeed repre-
sents the posterior, we show that the two coincide on the cylinder sets (events which are preimages
under projection of finite-dimensional events). From this, equality for all events follows by the
Caratheodory theorem [1].
Part (ii): We only have to verify that the mappings T I and probability kernels kI indeed satisfy the
definition of conjugacy, which is a straightforward computation.

5 Construction of Nonparametric Bayesian Models

Theorem 3(ii) states that conjugate models have conjugate marginals. Since, in the finite-
dimensional case, conjugate Bayesian models are essentially limited to exponential families and
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their natural conjugate priors3, a consequence of the theorem is that we can only expect a non-
parametric Bayesian model to be conjugate if it is constructed from exponential family marginals –
assuming that the construction is based on a product space approach.

When an exponential family model and its conjugate prior are used in the construction, the form
of the resulting model becomes generic: The posterior index T of a conjugate exponential fam-
ily Bayesian model is always given by the sufficient statistic S in the form T (x, (α, y)) :=
(α + 1, y + S(x)). Addition commutes with projection, and hence the posterior indices T I of a
family of such models over all dimensions I ∈ F(E) satisfy the projection condition (4) if and
only if the same condition is satisfied by the sufficient statistics SI of the marginals. Accord-
ingly, the infinite-dimensional posterior index T E in Theorem 3 exists if and only if there is an
infinite-dimensional “extension” SE of the sufficient statistics SI satisfying (4). If that is the case,
T E(xE, (α, yE)) := (α+ 1, yE + SE(xE)) is a posterior index for the infinite-dimensional projective
limit model. In the case of countable dimensions, Theorem 3 therefore implies a construction recipe
for nonparametric Bayesian models from exponential family marginals; constructing the model boils
down to checking whether the models selected as finite-dimensional marginals are conditionally
projective, and whether the sufficient statistics satisfy the projection condition. An example con-
struction, for a model on infinite permutations, is given in below. The following table summarizes
some stochastic process models from the conjugate extension point of view:

Marginals (d-dim) Projective limit model Observations (limit)

Bernoulli/Beta Beta process; IBP Binary arrays
Multin./Dirichlet DP; CRP Discrete distributions

Gaussian/Gaussian GP/GP (continuous) functions
Mallows/conjugate Example below Bijections N→ N

A Construction Example. The analysis of preference data, in which preferences are represented
as permutations, has motivated the definition of distributions on permutations of an infinite number
of items [9]. A finite permutation on r items always implies a question such as “rank your favorite
movies out of r movies”. A nonparametric approach can generalize the question to “rank your
favorite movies”. Meila and Bao [9] derived a model on infinite permutations, that is, on bijections of
the set N. We construct a nonparametric Bayesian model on bijections, with a likelihood component
P E

X (XE|ΘE) equivalent to the model of Meila and Bao.

Choice of marginals. The finite-dimensional marginals are probability models of rankings of a finite
number of items, introduced by Fligner and Verducci [6]. For permutations τ ∈ Sr of length r,
the model is defined by the exponential family density p(τ |σ, θ) := Z(θ)−1 exp(

〈
S(τσ−1), θ

〉
),

where the sufficient statistic is the vector Sr(τ) := (S1(τ), . . . , Sr(τ)) with components Sj(τ) :=∑r
l=j+1 I{τ−1(j) > τ−1(l)}. Roughly speaking, the model is a location-scale model, and the

permutation σ defines the distribution’s mean. If all entries of θ are chosen identical as some con-
stant, this constant acts as a concentration parameter, and the scalar product is equivalent to the
Kendall metric on permutations. This metric measures distance between permutations as the min-
imum number of adjacent transpositions (i.e. swaps of neighboring entries) required to transform
one permutation into the other. If the entries of θ differ, they can be regarded as weights specifying
the relevance of each position in the ranking [6].

Definition of marginals. In the product space context, each finite set I ∈ F(E) of axis labels is a
set of items to be permuted, and the marginal P I

Θ(τ I|σI, θI) is a model on the corresponding finite
permutation group SI on the elements of I . The sufficient statistics SI maps each permutation to a
vector of integers, and thus embeds the group SI into RI. The mapping is one-to-one [6]. Projections,
i.e. restrictions, on the group mean deletion of elements. A permutation τ J is restricted to a subset
I ⊂ J of indices by deleting all items indexed by J \ I , producing the restriction τ J|I. We overload
notation and write πJI for both the restriction in the group SI and axes-parallel projection in the
Euclidean space RI, into which the sufficient statistic SI embeds SI. It follows from the definition
of SI that, whenever πJIτ

J = τ I, then πJIS
J(τ J) = SI(τ I). In other words, πJI ◦ SJ = SI ◦ πJI,

which is a stronger form of the projection condition SJ,-1 ◦ π-1
JI = π-1

JI ◦ SI,-1 given in Eq. 4. We
will define a nonparametric Bayesian model that puts a prior on the infinite-dimensional analogue

3Mixtures of conjugate priors are conjugate in the sense of closure under sampling [4], but the posterior
index in Def. 2 has to be evaluated for each mixture component individually. An example of a conjugate model
not in the exponential family is the uniform distribution on [0, θ] with a Pareto prior [12].
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of θ, i.e. on the weight function θE. For I ∈ F(N), the marginal of the likelihood component is

given by the density pI(τ I|σI, θI) := Z I(θI)−1 exp(
〈
SI(τ I(σI)−1), θI

〉
). The corresponding natural

conjugate prior on θI has density qI(θI|α, yI) ∝ exp(〈θI, yI〉 − α logZ I(θI)). Since the model is an
exponential family model, the posterior index is of the form T I((α, yI), τ I) = (α + 1, yI + SI(τ I)),
and since SI is projective in the sense of Eq. 4, so is T I. The prior and likelihood densities above
define two families P I(X I|ΘI) and P I(ΘI|Ψ) of measures over all finite dimensions I ∈ F(E). It
is reasonably straightforward to show that both families are conditionally projective, and so is the
family of the corresponding posteriors. Each therefore has a projective limit, and the projective limit
of the posteriors is the posterior of the projective limit P E(XE|ΘE) under prior P E(ΘE).

Posterior index. The posterior index of the infinite-dimensional model can be derived by means
of Theorem 3: To get rid of the hyperparameters, we first fix a value ψE := (α, yE) of the
infinite-dimensional hyperparameter, and only consider the corresponding infinite-dimensional prior
P E

Θ(ΘE|ΨE = ψE), with its marginals P I
Θ(ΘI|ΨI = πEIψ

E). Now define a function SE on the
bijections of N as follows. For each bijection τ : N → N, and each j ∈ N, set SE

j (τ) :=∑∞
l=j+1 I{τ−1(j) > τ−1(l)}. Since τ−1(j) is a finite number for any j ∈ N, the indicator function

is non-zero only for a finite number of indices l, such that the entries of SE are always finite. Then
SE satisfies the projection condition SE,-1 ◦ π-1

EI = π-1
EIS

I,-1 for all I ∈ F(E). As candidate posterior
index, we define the function T E((α, yE), τ E) = (α + 1, yE + SE(τ E)) for yE ∈ ΩN

θ . Then T E also
satisfies the projection condition (4) for any I ∈ F(E). By Theorem 3, this makes T E a posterior
index for the projective limit model.

6 Discussion and Conclusion

We have shown how nonparametric Bayesian models can be constructed from finite-dimensional
Bayes equations, and how conjugacy properties of the finite-dimensional models carry over to
the infinite-dimensional, nonparametric case. We also have argued that conjugate nonparametric
Bayesian models arise from exponential families.

A number of interesting questions could not be addressed within the scope of this paper, including
(1) the extension to model properties other than conjugacy and (2) the generalization to uncountable
dimensions. For example, a model property which is closely related to conjugacy is sufficiency [14].
In this case, we would ask whether the existence of sufficient statistics for the finite-dimensional
marginals implies the existence of a sufficient statistic for the nonparametric Bayesian model, and
whether the infinite-dimensional sufficient statistic can be explicitly constructed. Second, the results
presented here are restricted to the case of countable dimensions. This restriction is inconvenient,
since the natural product space representations of, for example, Gaussian and Dirichlet processes
on the real line have uncountable dimensions. The GP (on continuous functions) and the DP are
within the scope of our results, as both can be derived by means of countable-dimensional surrogate
constructions: Since continuous functions on R are completely determined by their values on Q, a
GP can be constructed on the countable-dimensional product space RQ. Analogous constructions
have been proposed for the DP [7]. The drawback of this approach is that the actual random draw is
just a partial version of the object of interest, and formally has to be completed e.g. into a continuous
function or a probability measure after it is sampled. On the other hand, uncountable product space
constructions are subject to all the subtleties of stochastic process theory, many of which do not
occur in countable dimensions. The application of construction methods to conditional probabilities
also becomes more complicated (roughly speaking, the point-wise application of the Kolmogorov
theorem in the proof of Theorem 2 is not possible if the dimension is uncountable).

Product space constructions are by far not the only way to define nonparametric Bayesian models. A
Pólya tree model [7], for example, is much more intuitive to construct by means of a binary partition
argument than from marginals in product space. As far as characterization results, such as which
models can be conjugate, are concerned, our results are still applicable, since the set of Polyá trees
can be embedded into a product space. However, the marginals may then not be the marginals in
terms of which we “naturally” think about the model. Nonetheless, we have hopefully demonstrated
that the theoretical results are applicable for the construction of an interesting and practical range of
nonparametric Bayesian models.
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