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Preface 
 

Statistics is concerned with making inferences about the way the world is based upon 

things we observe happening. Statistical distributions are commonly applied to describe 

real world phenomena. Due to the usefulness of statistical distributions, this theory is 

widely studied, and new distributions are developed. The interest in developing more 

flexible statistical distributions remains strong in statistical profession. This edited book 

entitled “Bayesian Estimation and Reliability Estimation of Generalized Probability 

Distributions” is being published for the benefit of researchers and academicians. It 

contains ten different chapters covering wide range of topics both in Bayesian statistics 

and Probability distributions. The proofs of various theorems and examples have been 

given with minute details. Each chapter of this book contains complete theory and a fairly 

large number of solved examples.  During the preparation of the manuscript of this book, 

the editor has incorporated the fruitful academic suggestions provided by Dr. Peer Bilal 

Ahmad, Dr. Sheikh Parvaiz Ahmad, Dr. J. A. Reshi, Dr. Tanveer Ahmad Tarray, Dr. 

Kowsar Fatima, Dr. Ahmadur Rahman, Dr. Showkat Ahmad Lone, Mudasir Sofi, Uzma 

Jan, Aaliya Syed, and Dr. Humaira Sultan.  

It is expected to have a good popularity due to its usefulness among its readers and 

users. Finally, I extend my thanks and appreciation to the authors for their 

continuous support in finalization of the book. 

 

Afaq Ahmad 

(Editor)  
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Introduction 

As we know some of the family members of generalized power series distributions (GPSD) 

like binomial, negative binomial, Poisson and logarithmic series distributions are widely used 

for modelling count data. The properties of modality and divisibility of these distributions are 

known in the literature. Misra et.al (2003), Alamatsaz and Abbasi (2008), Aghababaei Jazi and 

Alamatsaz (2010), Abbasi et.al (2010) and Aghababaei Jazi et.al (2010) studied the stochastic 

ordering comparison between these distributions and their mixtures.  

For modelling count data like accumulated claims in insurance and correlated count data which 

exhibit over-dispersion has resulted in introduction of zero-inflated and non-zero inflated 

parameter counterparts of the GPS distributions. Neyman (1939) and Feller (1943) studied 

that in some discrete data, the observed frequency for 𝑋 = 0 is much higher than the expected 

frequency predicted by the assumed model. To be more specific, let us suppose that there are 

two machines. One of which is perfect and does not produce any defective item. The other 

machine produces defective items according to a Poisson distribution. We record the joint 

output of the two machines without knowing whether a specific item is produced by one or 

the other. In this case, the zero count seems to be inflated. Pandey (1964-65) studied a situation 

dealing with the number of flowers of plants of Primula veris. He has found that most of the 

plants were with eight flowers and inflated Poisson distribution (inflated at the point 8 not 

zero) proved to be the best model for fitting of such a data set.  A similar data set on premature 

ventricular contractions where the distribution turns out to be inflated binomial has been 

analyzed by Farewell and Sprott (1988). Yip (1988) while dealing with the number of insects 

per leaf came to the conclusion that inflated Poisson distribution is the best fitted model for 

such a data set.  

https://www.aijr.in/about/policies/copyright/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.aijr.in/
https://doi.org/10.21467/books.44.1
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Martine, et al. (2005) and Kuhnert, et al. (2005) discussed the applications of zero-inflated 

modeling in ecology. Kolev, et al. (2000) studied the application of inflated-parameter family 

of generalized power series distributions in analysis of overdispersed insurance data. Patil and 

Shirke (2007) and Patil and Shirke (2011a, b) also studied different aspects of the zero-inflated 

power series distributions. From the literature it appears that majority of the study is restricted 

to properties and applications of inflated generalized power series distributions and relatively 

less work has been done on the estimation part particularly the Bayesian estimation of inflated 

generalized power series distributions. We also refer the readers to Winkelmann (2000), 

Hassan and Ahmad (2006), and Aghababaei Jazi and Alamatsaz (2011).  

In this note, we studied the Bayesian analysis of zero-inflated power series distributions under 

different loss function i.e. squared error loss function and weighted squared error loss 

function. The results obtained for the zero-inflated power series distribution are then applied 

to its particular cases like zero-inflated Poisson distribution and zero-inflated negative 

binomial distribution.   

Rodrigues (2003) studied zero-inflated Poisson distribution from the Bayesian perspective 

using data augmentation algorithm. Gosh, et al. (2006) introduced a flexible class of zero-

inflated models which includes zero-inflated Poisson (ZIP) model, as special case and 

developed a Bayesian estimation method as an alternative to traditionally used maximum 

likelihood-based methods to analyze such data.  As disused above, our aim is to give Bayes 

estimators of functions of parameters under different loss functions of zero-inflated 

generalized power series distribution (ZIGPSD) represented by the following probability mass 

function 

P[X = x] = {
α + (1 − α)

a(0)

f(θ)
,        x = 0

(1 − α)
a(x)θx

f(θ)
,     x = 1,2,3, …

     (1.1) 

where 0 < α ≤ 1 is the probability of inflation,  f(θ) = ∑ a(x)θx
x  is a function of parameter 

θ  and is positive, finite and differentiable and coefficients a(x) are non-negative and free of 

. It is clear that for α = 0, the model (1.1) reduces to simple generalized power series 

distribution introduced by Patil (1961).  

The whole article is divided in to different sections. Section 2 deals with the Bayes estimators 

of functions of parameters of zero-inflated generalized power series distribution (ZIGPSD) 

under squared error loss function and weighted square error loss function. Using different 

prior distributions and the results of zero-inflated GPSD, the Bayes estimators of functions 

of parameters of zero-inflated Poisson and zero-inflated negative binomial distributions are 

obtained in Sections 3 and 4 respectively. Finally, in Section 5, a numerical example is provided 

to illustrate the results and a goodness of fit test is done using the Bayes estimators.   

https://doi.org/10.21467/books.44
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Bayesian Estimation of Zero-Inflated GPSD 

Let X1, X2, ⋯ , XN be a random sample of size N drawn from the zero-inflated GPSD (1.1), 

then the likelihood function of  X1, X2, ⋯ , XN  is given by 

L(θ, α x⁄ ) = ∑ (N0
j

)
N0
j=0 αj (1 − α)N−j(a(0))N0−j ∏ a(xi)θt[f(θ)]j−NN−N0

i=1                (1.2) 

where x = (x1, x2, ⋯ , xN ), t = ∑ xi
N−N0
i=1  and  Ni is the number of observations in the i’th 

class such that.∑ Nii≥1 = N. 

For the Bayesian set up, we assumed that, priori,  and α are independent, since in the zero-

inflated distribution, an arbitrary probability is assigned to the zero class. As the parameter α 

represents the proportion of ‘excess zeros’, we may take Beta (u, v) prior as a conjugate prior 

for α ,with prior density function  

g(α) =
αu−1(1−α)v−1

B(u,v)
, 0 < α < 1, 𝑢, 𝑣 > 0       (1.3) 

where, B(u, v) =
Γ(u)Γ(v)

Γ(u+v)
 .          

The prior distribution for  is taken to be conjugate or non-conjugate prior distribution 

denoted by h().   

The Joint posterior probability density function (p.d.f) of  θ and α corresponding to the prior 

h(θ)  and g(α) respectively is given by 

Π(θ, α x⁄ ) =
∑ (

N0
j

)
N0
j=0 αj+u−1 (1−α)N−j+v−1(a(0))N0−j θt[f(θ)]j−Nh(θ) 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
        (1.4) 

The marginal posterior probability density functions of θ  and  are respectively given by 

Π(θ x⁄ ) =
∑ (

N0
j

)
N0
j=0 αj+u−1 (1−α)N−j+v−1(a(0))N0−j θt[f(θ)]j−Nh(θ) 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
                                 (1.5) 

Π(α x⁄ ) =
∑ (

N0
j

)
N0
j=0 αj+u−1 (1−α)N−j+v−1(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ

Θ
 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
                          (1.6) 

 The Bayes estimates η̂(θ) of η(θ) and γ̂(α) of γ(α) under the squared error loss 

function (SELF), where η(θ) and γ(α) are respectively the functions of θ and α are given by 

η̂B =
∑ (

N0
j

)
N0
j=0 B(j+u,N−j+v)(a(0))N0−j  ∫ η(θ)θt[f(θ)]j−Nh(θ)dθ

Θ
 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
    (1.7) 
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γ̂B =
∑ (

N0
j

)
N0
j=0

(a(0))N0−j  ∫ ∫ γ(α)αj+u−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθ
Θ

1

0
dα 

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j  ∫ θt[f(θ)]j−Nh(θ)dθ
Θ

 
  (1.8) 

Similarly, under the weighted squared error loss function (WSELF) given by

( ) ( )2
d)()(wd),(L −=  and ( ) ( )2

d)()(zd),(L −=  ,  where )(w  is a 

function of , and )(z  is a function of  , d is a decision,  the Bayes estimate w̂ of )(  

and w̂  of )(   are given by  

𝜂̂𝑤 =
∑ (

N0
j

)
N0
j=0  B(j+u,N−j+v)(a(0))N0−j ∫ w(

Θ
θ)η(θ)θt[f(θ)]j−Nh(θ)dθ

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j ∫ w(
Θ

θ)θt[f(θ)]j−Nh(θ)dθ
                                  (1.9) 

γ̂w =
∑ (

N0
j

)
N0
j=0

(a(0))N0−j ∫ ∫ z(α)γ(α)
Θ

αj+u−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθdα
1

0

∑ (
N0

j
)

N0
j=0

(a(0))N0−j ∫ ∫ z(α)
Θ

αj+u−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθdα
1

0

                       (1.10) 

Two different forms of w(θ)and z(α) as weights has been considered and are given below: 

(i) Let w(θ) = θ−2, z(α) = α−2, The Bayes estimate η̂M of η(θ)and γ̂M of γ(α) known 

as the minimum expected loss (MEL) estimate are given by 

 𝜂̂𝑀 =
∑ (

N0
j

)
N0
j=0  B(j+u,N−j+v)(a(0))N0−j ∫ η(θ)θt−2[f(θ)]j−Nh(θ)dθ

Θ

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j ∫ θt−2[f(θ)]j−Nh(θ)dθ
Θ

                                        (1.11) 

 γ̂M =
∑ (

N0
j

)
N0
j=0

(a(0))N0−j ∫ ∫ γ(α)
Θ

α(j+u−2)−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθdα
1

0

∑ (
N0

j
)

N0
j=0 (a(0))

N0−j
B(j+u−2,N−j+v) ∫ θt[f(θ)]j−Nh(θ)dθ

Θ

               (1.12) 

(ii) Let w(θ) = θ−2e−δθ; δ > 0 and  z(α) = α−2e−λα; λ > 0.The Bayes estimate  η̂E of 

η(θ)and  γ̂E of γ(α) known as the exponentially weighted minimum expected loss (EWMEL) 

estimate are given by 

 𝜂̂𝐸 =
∑ (

N0
j

)
N0
j=0  B(j+u,N−j+v)(a(0))N0−j ∫ η(θ)θt−2e−δθ[f(θ)]j−Nh(θ)dθ

Θ

∑ (
N0

j
)

N0
j=0

 B(j+u,N−j+v)(a(0))N0−j ∫ θt−2e−δθ[f(θ)]j−Nh(θ)dθ
Θ

                        (1.13) 

 γ̂E =
∑ (

N0
j

)
N0
j=0

(a(0))N0−j ∫ ∫ γ(α)e−λα
Θ

α(j+u−2)−1(1−α)N−j+v−1θt[f(θ)]j−Nh(θ)dθdα
1

0

∑ (
N0

j
)

N0
j=0 (a(0))

N0−j
B(j+u−2,N−j+v)M(j+u−2,N+u+v−2,−λ) ∫ θt[f(θ)]j−Nh(θ)dθ

Θ

    (1.14)  

where M(a, b; z) is the confluent hypergeometric function and has a series representation 

given by 

  M(a, b; z) = ∑
(a)j zj

(b)jj!
∞
j=0  where (𝑎)0 = 1                    (1.15) 

and (a)j = a(a + 1)(a + 2) … … … (a + j − 1)                   (1.16) 

https://doi.org/10.21467/books.44
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Now, we apply the above results to zero-inflated Poisson and zero-inflated negative binomial 

distributions which are the special cases of the p.m.f. (1.1) and obtain the corresponding Bayes 

estimators of parameters in each case. 

Bayesian Estimation of Zero-Inflated Poisson Distribution 

A discrete random variable X is said to follow zero-inflated Poisson distribution (NZIPD) if 

its probability mass function is given by 

 P[X = x] = {
α + (1 − α)

e−θ

x!
 ,                                       x = 0

  (1 − α)
e−θθx

x!
 ,                                x = 1,2, 3, … 

                              (1.17) 

where 𝜃 > 0, 𝑜 < 𝛼 < 1. 

 If  𝛼 = 0, the model (1.17) reduces to classical Poisson distribution. 

 It is a special case of (1.1) with 

 

 f(θ) = eθ, a(x) =
1

x!
 

In this case, the likelihood function  L(θ, α x⁄  ) is of the form 

 

 L(θ, α x⁄ ) = ∑ (N0
j

)
N0
j=0 αj (1 − α)N−jθte−θ(N−j)                                           (1.18) 

With gamma prior for   given by 

 h(θ) =
ab

Γb
e−aθθb−1, θ, a, b > 0                                                                     (1.19) 

and beta prior for α given by (1.3), the joint Posterior probability density function of 𝜃 and 𝛼 

is given by 

Π(θ, α/x) =  
∑ (

N0
j

)
N0
j=0 α(j+u)−1 (1−α)(N−j+v)−1θ(t+b)−1e−θ(N−j+a)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
Γ(t+b)

(N−j+a)t+b

                                     (1.20) 

The marginal posterior distribution of θ and α are respectively given by 

 Π(θ/x) =  
∑ (

N0
j

)
N0
j=0 B(j+u,N−j+v)θ(t+b)−1e−θ(N−j+a)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
Γ(t+b)

(N−j+a)t+b

                                            (1.21) 
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Π(α/x) =  
∑ (

N0
j

)
N0
j=0

1

(N−j+a)t+b α(j+u)−1 (1−α)(N−j+v)−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

1

(N−j+a)t+b

                                                  (1.22) 

Under SELF, the Bayes estimate θ̂B
r  of θr  and α̂B

r  of αr are given by 

  θ̂B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v)

Γ(t+b+r)

(N−j+a)t+b+r

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
Γ(t+b)

(N−j+a)t+b

                                                        (1.23) 

  α̂B
r =  

∑ (
N0

j
)B(j+u+r,N−j+v)

N0
j=0

1

(N−j+a)t+b

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
1

(N−j+a)t+b

                                                         (1.24) 

Similarly, under WSELF, when w(θ) = θ−2, z(α) = α−2, the minimum expected loss (MEL) 

estimate of η(θ) = θr and γ(α) = αr are obtained as  

 θ̂M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v)

Γ(t+b−2+r)

(N−j+a)t+b−2+r

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 
Γ(t+b−2)

(N−j+a)t+b−2

                                                 (1.25) 

 α̂M
r =  

∑ (
N0

j
)B(j+u+r−2,N−j+v)

N0
j=0

1

(N−j+a)t+b

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

1

(N−j+a)t+b

                                                 (1.26) 

Finally, under the weighted squared error loss function, when w(θ) = θ−2e−δθ; δ > 0 and 

z(α) = α−2e−λα, λ > 0, the EWMEL estimate η(θ) and γ(α) are given by 

 θ̂E
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v)

Γ(t+b−2+r)

(N−j+a+δ)t+b−2+r

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

Γ(t+b−2)

(N−j+a+δ)t+b−2

                                                  (1.27) 

 α̂E
r =  

∑ (
N0

j
)B(j+u+r−2,N−j+v)M(

N0
j=0 J+u+r−2,N+u+v+r−2;λ)

1

(N−j+a)t+b

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

M(J+u−2,N+u+v−2 ;λ)
1

(N−j+a)t+b

               (1.28) 

Bayesian Estimation of Zero Inflated Negative Binomial Distribution 

A discrete random variable X is said to have zero-inflated negative binomial distribution 

(ZINBD) if its probability mass function is given by 

 P[X = x] = {
α + (1 − α)(1 − θ)m,                                x = 0

(1 − α)(m+x−1
x

)θx(1 − θ)m,     x = 1, 2, 3, … … .
                                (1.29) 

where 0 < θ < 1, 0 < α ≤ 1 

It is a special case of (1.1) with f(θ) = (1 − θ)−m and a(x) = (m+x−1
x

). 

             If α = 0, the model (1.29) reduces to binomial distribution. 

In this case the likelihood function L(θ, α x⁄  ) is given by 

https://doi.org/10.21467/books.44
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 L(θ, α x⁄ ) ∝ ∑ (N0
j

)
N0
j=0 αj (1 − α)N−jθt(1 − θ)mN−mj                                          (1.30) 

Since 0 < 𝜃 < 1, we have taken two different prior distributions for  given below 

 h1(θ) =
θa−1(1−θ)b−1

B(a,b)
, 0 < θ < 1, a, b > 0                                                             (1.31) 

where B(a, b) =
ΓaΓb

Γ(a+b)
 and  

 h2(θ) =
e−cθθa−1(1−θ)b−1

B(a,b)M(a,a+b;−c)
, 0 < θ < 1, a, b > 0,                                                      (1.32) 

where M(a, b; z) is the confluent hypergeometric function and has a series representation 

given by (1.15) and (1.16) 

The joint posterior p.d.f of θ and α corresponding to the prior h1(θ) and g(α) is given by 

 Π1(θ, α/x) =  
∑ (

N0
j

)
N0
j=0 α(j+u)−1 (1−α)(N−j+v)−1θ(t+a)−1(1−θ)mN−mj+b−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                

(1.33)    

The marginal posterior distribution of θ and α are respectively given by 

 Π1(θ/x) =  
∑ (

N0
j

)
N0
j=0 B(j+u,N−j+v) θ(t+a)−1(1−θ)mN−mj+b−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                                 (1.34)    

 Π1(α/x) =  
∑ (

N0
j

)
N0
j=0  B(t+a ,mN−mj+b)α(j+u)−1 (1−α)(N−j+v)−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                             (1.35)    

Similarly, the joint posterior p.d.f of θ and α corresponding to the prior h2(θ) and g(α) is 

given by 

Π2(θ, α/x) =  
∑ (

N0
j

)
N0
j=0 α(j+u)−1 (1−α)(N−j+v)−1θ(t+a)−1(1−θ)mN−mj+b−1e−cθ

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                    (1.36)    

The marginal posterior distributions of θ and α are respectively given by 

 Π2(θ/x) =  
∑ (

N0
j

)
N0
j=0 B(j+u,N−j+v) θ(t+a)−1(1−θ)mN−mj+b−1e−cθ

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(j+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                    (1.37)    

 Π2(α/x) =  
∑ (

N0
j

)
N0
j=0  B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)α(j+u)−1 (1−α)(N−j+v)−1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
 (1.38)    
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Under SELF, the Bayes estimate of θr  and  αr corresponding to the posterior density (1.34) 

and (1.35) respectively, are given by 

  θ̂1B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r ,mN−mj+b)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                                              (1.39) 

  α̂1B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u+r,N−j+v) B(t+a ,mN−mj+b)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                                             (1.40) 

Under WSELF, when w(θ) = θ−2, z(α) = α−2, the minimum expected loss (MEL) estimate 

of θr and αr corresponding to the posterior density (1.34) and (1.35) respectively, are given 

by 

  θ̂1M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r−2 ,mN−mj+b)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a−2 ,mN−mj+b)
                                                            (1.41) 

  α̂1M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u−2+r,N−j+v) B(t+a ,mN−mj+b)

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)
                                                            (1.42) 

Finally under WSELF, when w(θ) = θ−2e−δθ; δ > 0, and z(α) = α−2e−λα, λ > 0, the 

EWMEL estimate of θr and αr corresponding to the posterior density ( 1.34) and (1.35) 

respectively, are given by 

  θ̂1E
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r−2 ,mN−mj+b)M1

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a−2 ,mN−mj+b)M2

                                                    (1.43) 

where M1 = M(a + t − 2 + r, a + b + t + mN − mj − 2 + r, −δ) 

 M2 = M(a + t − 2, a + b + t + mN − mj − 2, −δ) 

  α̂1E
r =  

∑ (
N0

j
)

N0
j=0 B(j+u−2+r,N−j+v) B(t+a ,mN−mj+b)M3

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M4

                                                    (1.44) 

where M3 = M(j + u − 2 + r, N + u + v − 2 + r, −λ) 

M4 = M(j + u − 2, N + u + v − 2, −λ)

  

Also, SELF, the Bayes estimate of θr  and of αr corresponding to the posterior density (1.37) 

and (1.38) respectively, are given by 

  θ̂2B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r ,mN−mj+b)M5

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                             (1.45) 

where, M5 = M(a + t + r, a + b + t + mN − mj + r, −c) 
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  α̂2B
r =  

∑ (
N0

j
)

N0
j=0 B(j+u+r,N−j+v) B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                         (1.46) 

Under WSELF, when w(θ) = θ−2, z(α) = α−2, the MEL estimate of θr and αr 

corresponding to the posterior density ( 1.37) and (1.38) respectively, are given by 

  θ̂2M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r−2 ,mN−mj+b)M6

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a−2 ,mN−mj+b)M7

                                                  (1.47) 

where,  M6 = M(a + t + r − 2, a + b + t + mN − mj + r − 2, −c), 

 M7 = M(a + t − 2, a + b + t + mN − mj − 2, −c) 

 α̂2M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u+r−2,N−j+v) B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)
                              (1.48) 

Finally under WSELF, when w(θ) = θ−2e−δθ; δ > 0, and z(α) = α−2e−λα, λ > 0, the 

EWMEL estimate θr and αr corresponding to the posterior density (1.37) and (1.38) 

respectively, are given by 

  θ̂2E
r =  

∑ (
N0

j
)

N0
j=0 B(j+u,N−j+v) B(t+a+r−2 ,mN−mj+b)M8

∑ (
N0

j
) B(j+u,N−j+v)

N0
j=0

 B(t+a−2 ,mN−mj+b)M9

                                                      (1.49) 

where M8 = M(a + t − 2 + r, a + b + t + mN − mj − 2 + r, −(c + δ)) 

 

  M9 = M(a + t − 2, a + b + t + mN − mj − 2, −(c + δ)) 

 α̂2M
r =  

∑ (
N0

j
)

N0
j=0 B(j+u+r−2,N−j+v) B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)M10

∑ (
N0

j
) B(j+u−2,N−j+v)

N0
j=0

 B(t+a ,mN−mj+b)M(t+a,a+b+mN−mj,−c)M11

                                

(1.50) 

 M10 = M(j + u + r − 2, N + u + v + r − 2, −λ)

  

 M11 = M(j + u − 2, N + u + v − 2, −λ) 

An Illustrative Example 

In order to demonstrate the practical applications of the above-mentioned results, we fitted 

the classical Poisson distribution and zero-inflated Poisson distribution to the data pertaining 

to the number of strikes in 4-weaks in Vehicle Manufacturing Industry in the United Kingdom 

during 1948-1958 (Kendall (1961)). The expected frequencies of classical Poisson distribution 

are obtained by maximum likelihood estimator, while the expected frequencies of zero-inflated 
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Poisson distribution are obtained by using Bayes estimators, obtained under square error loss 

function (SELF) and two different weighted square error loss functions. The prior values used 

for the beta distribution (2.2) will be  u = 3, v = 1 , while those used for the gamma 

distribution (3.3) will be a = 0.25 , b = 1 and for exponentially weighted minimum expected 

loss (EWMEL) estimates (3.11) and (3.12) will be δ = λ = 0.25. The values for the prior 

parameters a, b, u, v, δ, λ were chosen so that the posterior distribution would reflect the data 

as much, and the prior information as little, as possible. The observed frequencies, expected 

frequencies, the value of Pearson’s chi-square statistics is given in table-I. 

Table 1:  Number of outbreaks of Strike in Vehicle manufacturing Industry in the U.K. during 

1948-1958 

No. of  

Outbreaks 

Observed 

Frequency 

Expected Frequency 

(Poisson 

Distribution) 

Expected Frequency  

(Zero-inflated Poisson Distribution) 

SELF     WSELF 

MEL EWMEL 

0 

1 

2 

3 

4 

110 

33 

9 

3 

1 

103.5 

42.5 

8.7 

1.2 

0.1 

110.3 

30.4 

11.7 

3.0 

0.6 

107.9 

33.1 

11.7 

2.8 

0.5 

108.0 

33.1 

11.7 

2.7 

0.5 

Total 156 156 156 156 156 

2
 

 3.4317 0.5690 0.3079 0.2796 

Estimated value 

θ 

α 

  

0.4103 

 

0.7673 

0.4532 

 

0.7089 

0.3927 

 

0.7038 

0.3910 

 

Conclusion and Comments 

The values of the expected frequencies and the corresponding 
2 value clearly shows that the 

zero-inflated Poisson distribution provided a closer fit than that provided by the classical 

Poisson distribution. It is also clear from the table that the Bayes estimators obtained under 

https://doi.org/10.21467/books.44
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weighted squared error loss functions (WSELF) gives closer fits than the Bayes estimator 

obtained under squared error loss function (SELF). Also, the exponentially minimum expected 

loss (EWMEL) estimates gives better fits than the minimum expected loss (MEL) estimates. 

Keeping in view the importance of count data modeling it is recommended that whenever the 

experimental number of zeros are more than that given by the model, the model should be 

adjusted accordingly to account for the extra zeros.  
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Introduction   

Weighted distributions occur commonly in studies related to reliability, survival analysis, 

biomedicine, ecology, analysis of family data, and several other areas. There are number of 

authors worked on weighted distributions among them are Monsef and Ghoneim (2015) 

proposed weighted Kumaraswamy distribution for modeling some biological data, Sofi 

Mudasir and Ahmad (2015) study the length biased Nakagami distribution, Jan et al.  (2017) 

studied the weighted Ailamujia distribution and find its applications to real data sets, Sofi 

Mudasir and Ahmad (2017) estimate the scale parameter of weighted Erlang distribution 

through classical and Bayesian methods of estimation, Dar et al. studied the characterization 

and estimation of Weighted Maxwell distribution (2018).  

If 0V  is a random variable with density function )(vf  and 0),( vw is a weight 

function, then the weighted random variable WV has the probability density function given by   

 )(),()( vfvZwvfw =        (2.1) 

Where Z is the normalizing constant.  

When ,0,),( =  vvw then the distribution is called the weighted distribution of order

 . The probability density function of WNWP distribution is obtained by using (2.1) and is 

given by 

0,,,;0,exp

1

)( 1

1



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
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


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(2.2) 
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The corresponding cumulative distribution function is 






















+









+

=















v
vF ,1

1

1
)(

        

(2.3) 

 

Estimation Procedures 

This section is devoted to three parameter estimation procedures: method of moments 

(MOM), maximum likelihood method of estimation (MLE), and Bayesian method of 

estimation. 

Method of Moments (MOM) 

Method of moments is a popular technique for parameter estimation. The moment estimator 

for the scale parameter  can be obtained by equating the first sample moment to the 

corresponding population moment and is given by  

 

v
1

1

ˆ
+

=








 . 

Figure 2.1: Graph of Probability density 

function of Weighted Weibull Pareto distribution 

with different values of parameters                                                                                            

Figure 2.2: Graph of Cumulative distribution 

function of Weibull Pareto distribution with different 

values of parameters 

 

https://doi.org/10.21467/books.44


Chapter 2: Parameter Estimation of Weighted New Weibull Pareto Distribution 

 

 

Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions 

15 

where 







+

+
=+ 1






s
s . 

Method of Maximum Likelihood Estimation (MLE) 

Let nvvv ,...,, 21 be a random sample from the WNWP distribution with parameter vector 

( ) ,,,=  . By considering (1), the likelihood function is given by 
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In order to estimate  , differentiate eq.(4) w.r.t.  and equate to zero, we get 
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
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Bayesian Method of Estimation  

Here we try to find Bayes estimator for the scale parameter  for the pdf defined in (2.2). We 

use different priors and different loss functions. 

Posterior Distribution Under the Assumption of Extension of Jeffrey’s Prior 

The extension of Jeffrey’s prior relating scale parameter  is given as  

 
+ Rc

c 121 ,0,
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Remark 1: 

If ,01 =c we get uniform prior, i.e.,  

 q=)(11  , where q is constant of proportionality.  

Remark 2: 

If ,
2

1
1 =c we have 




1
)(12   which is Jeffrey’s prior. 

Remark 3: 

If ,
2

3
1 =c we get Hartigan’s prior, i.e.,  

 
313

1
)(


  . 

The posterior distribution of scale parameter  under extension of Jeffrey’s prior is given as 
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Posterior Distribution Under the Assumption of Quasi Prior 

The quasi prior relating to the scale parameter  is given as  

 0,0,
1

)( 12
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The posterior distribution under quasi prior is given as 
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Bayes Estimator Under Squared Error Loss Function (SELF) Using Extension of 

Jeffrey’s Prior 

The SELF relating to the parameter  is defined as 

 ( ) ( )2
ˆˆ  −=− bL  
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Where b is a constant and ̂ is the estimator of . 

Risk function under SELF using extension of Jeffrey’s prior is given by 
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Minimization of risk function w.r.t. ̂ gives us the Bayes estimator as  
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Bayes Estimator Under the Combination of Quadratic Loss Function (QLF) And 

Extension of Jeffrey’s Prior 

Risk function under QLF using extension of Jeffrey’s prior is given by 
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Now the solution of 
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Bayes Estimator Under the Combination of Al-Bayyati’s Loss Function (ALF) and 

Extension of Jeffrey’s Prior 

The risk function under the combination of ALF and extension of Jeffrey’s prior is  
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On solving 
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for ,̂ we get the Bayes estimator given as 
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Bayes Estimator Under Squared Error Loss Function (SELF) Using Quasi Prior 

Under the combination of SELF and quasi prior, the risk function is given by 
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After substituting the value of eq. (2.6) in eq. (2.7) and simplification, we get 
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Bayes Estimator Under Quadratic Loss Function (QLF) Using Quasi Prior 

The risk function under the combination of QLF and quasi prior is given by  
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Minimization of risk function w.r.t. ̂ gives us the Bayes estimator as  
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Bayes Estimator Under the Combination of Al-Bayyati’s Loss Function (ALF) and 

Quasi Prior 

The risk function under the combination of ALF and quasi prior is given by 
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The Bayes estimates using different priors under different loss functions are given below in 

table 2.1. 

Table 2.1:  Bayes estimators under different combinations of loss functions and prior distributions 
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Data Analysis  

In this subdivision we analyze two real life data sets for illustration of the proposed procedure. 

The first data set represents the exceedances of flood peaks ( /sm3
) of the Wheaton river near 

car cross in Yukon territory, Canada. The data set consists of 72 exceedances for the year 

1958-1984, rounded to one decimal place. The second data set represents the survival times 

(in days) of guinea pigs injected with different doses of tubercle bacilli. 
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Data set 2.1. Exceedances of flood peaks ( /sm3
) of the Wheaton River near Carcross in 

Yukon Territory, Canada. The data consists of 72 exceedances for the year 1958-1984, 

rounded to one decimal place as shown below.  

1.7  2.2 14.4   1.1   0.4 20.6   5.3 0.7 

1.4 18.7   8.5 25.5 11.6 14.1 22.1 1.1 

0.6   2.2 39.0   0.3 15.0 11.0   7.3   22.9 

0.9   1.7   7.0 20.1   0.4   2.8 14.1 9.9 

5.6 30.8 13.3   4.2 25.5   3.4 11.9    21.5 

1.5   2.5 27.4   1.0 27.1 20.2 16.8 5.3 

1.9 10.4 13.0 10.7 12.0 30.0   9.3 3.6 

2.5 27.6 14.4 36.4   1.7   2.7 37.6   64.0 

1.7   9.7   0.1 27.5   1.1   2.5   0.6   27.0 

 

Data set 2.2. The data set is from Kundu & Howlader (2010), the data set represents the 

survival times (in days) of guinea pigs injected with different doses of tubercle bacilli. The 

regimen number is the common logarithm of the number of bacillary units per 0.5 ml. (log 

(4.0) 6.6). Corresponding to regimen 6.6, there were 72 observations listed below:  

  12  15  22  24  24  32  32  33  34  38  38  43  44  48  

  52  53  54  54  55  56  57  58  58  59  60  60  60  60  

  61  62  63  65  65  67  68  70  70  72  73  75  76  76  

  81  83  84  85  87  91  95  96  98  99  109  110  121  127  

 129  131  143  146  146  175  175  211  233  258  258  263  297  341  

         341    376  
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Table 2.2: Estimates and (posterior risk) under extension of Jeffrey’s prior using different loss 

functions using data set 1. 

    
  B 

1c  2c  MOM MLE SELF QLF ALF 

 

 

 

 

1.0 

4.0 1.0 1.5 1.0 1.0 12.36694 169.11393 169.29035 

(30.030345) 

169.05506 

(0.0006941971) 

169.40861 

(3403.479) 

4.5 1.5 2.0 1.5 1.5 13.63276 105.17297 105.21717 

(12.467706) 

105.09922 

(0.0005599442) 

105.30611 

(6766.528) 

5.5 2.5 2.5 2.5 2.0 14.81888 49.80533 49.79078 

(2.407005) 

49.75225 

(0.0003865627) 

49.82950 

(2401.806) 

6.0 3.0 3.0 3.0 2.5 15.08626 37.15070 37.13227 

(1.365364) 

37.10784 

(0.0003286734) 

37.16296 

(3851.661) 

 

 

 

 

2.0 

4.0 1.0 1.5 1.0 1.0 11.65966 161.57869 161.71912 

(22.814399) 

161.53183 

(0.0005785327) 

161.81316 

(2468.287) 

4.5 1.5 2.0 1.5 1.5 12.98237 101.34020 101.37625 

(9.788270) 

101.28007 

(0.0004739584) 

101.44871 

(5019.687) 

5.5 2.5 2.5 2.5 2.0 14.30474 48.52619 48.51391 

(1.980545) 

48.48136 

(0.0003352443) 

48.54660 

(1874.647) 

6.0 3.0 3.0 3.0 2.5 14.63197 36.33304 36.31726 

(1.143087) 

36.29634 

(0.0002878088) 

36.34353 

(3047.827) 

 

 

 

3.0 

4.0 1.0 1.5 1.0 1.0 11.11300 155.47028 155.58608 

(18.087358) 

155.43165 

(0.0004959065) 

155.66358 

(1881.713) 

4.5 1.5 2.0 1.5 1.5 12.46849 98.16827 98.19853 

(7.956599) 

98.11778 

(0.0004108653) 

98.25934 

(3887.504) 

5.5 2.5 2.5 2.5 2.0 13.88447 47.43435 47.42376 

(1.669945) 

47.39567 

(0.0002959546) 

47.45196 

(1509.457) 

6.0 3.0 3.0 3.0 2.5 14.25562 35.62675 35.61301 

(0.977227) 

35.59476 

(0.0002559819) 

35.63591 

(2479.360) 
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Table 2.3: Estimates and (posterior risk) under Quasi prior using different loss functions using 

data set 1. 

    
  b 

2c  
1d  MOM MLE SELF QLF ALF 

 

 

 

1.0 

4.0 1.0 1.0 1.0 1.0 12.36694 169.11393 169.40861 

(30.156580) 

169.17250 

(0.0006961301) 

169.52728 

(262.2463) 

4.5 1.5 1.5 1.5 1.5 13.63276 105.17297 105.30611 

(12.536442) 

105.18761 

(0.0005620686) 

105.39546 

(662.6073) 

5.5 2.5 2.5 2.0 2.5 14.81888 49.80533 49.83921 

(2.424638) 

49.80044 

(0.0003886283) 

49.87818 

(342.8307) 

6.0 3.0 3.0 2.5 3.0 15.08626 37.15070 37.16912 

(1.376253) 

37.14453 

(0.0003306295) 

37.20003 

(637.4309) 

 

 

 

2.0 

4.0 1.0 1.0 1.0 1.0 11.65966 161.57869 161.8132 

(22.894200) 

161.62534 

(0.0005798746) 

161.90749 

(194.5057) 

4.5 1.5 1.5 1.5 1.5 12.98237 101.34020 101.4487 

(9.833878) 

101.35215 

(0.0004754796) 

101.52146 

(500.4294) 

5.5 2.5 2.5 2.0 2.5 14.30474 48.52619 48.5548 

(1.993109) 

48.52207 

(0.0003367968) 

48.58767 

(270.8228) 

6.0 3.0 3.0 2.5 3.0 14.63197 36.33304 36.3488 

(1.151059) 

36.32775 

(0.0002893075) 

36.37523 

(509.4890) 

 

 

 

3.0 

4.0 1.0 1.0 1.0 1.0 11.11300 155.47028 155.66358 

(18.1415295) 

155.50877 

(0.0004968921) 

155.74127 

(151.1310) 

4.5 1.5 1.5 1.5 1.5 12.46849 98.16827 98.25934 

(7.9887023) 

98.17831 

(0.0004120079) 

98.32035 

(393.5805) 

5.5 2.5 2.5 2.0 2.5 13.88447 47.43435 47.45903 

(1.6792879) 

47.43080 

(0.0002971639) 

47.48736 

(220.3956) 

6.0 3.0 3.0 2.5 3.0 14.25562 35.62675 35.64050 

(0.9832819) 

35.62215 

(0.0002571668) 

35.66352 

(418.1959) 
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Table 2.4: Estimates and (posterior risk) under Hartigan’s prior using different loss functions 

using data set 1. 

    
  b 

2c  
1d  MOM MLE SELF QLF ALF 

 

 

 

1.0 

4.0 1.0 1.0 1.0 1.0 12.36694 169.11393 169.17250 

(29.904988) 

168.93803 

(0.0006922748) 

169.29035 

(259.8740) 

4.5 1.5 1.5 1.5 1.5 13.63276 105.17297 105.21717 

(12.467706) 

105.09922 

(0.0005599442) 

105.30611 

(658.4081) 

5.5 2.5 2.5 2.0 2.5 14.81888 49.80533 49.82950 

(2.421093) 

49.79078 

(0.0003882134) 

49.86842 

(342.2278) 

6.0 3.0 3.0 2.5 3.0 15.08626 37.15070 37.16912 

(1.376253) 

37.14453 

(0.0003306295) 

37.20003 

(637.4309) 

 

 

 

2.0 

4.0 1.0 1.0 1.0 1.0 11.65966 161.57869 161.6253 

(22.735061) 

161.43860 

(0.0005771970) 

161.71912 

(193.0399) 

4.5 1.5 1.5 1.5 1.5 12.98237 101.34020 101.3762 

(9.788270) 

101.28007 

(0.0004739584) 

101.44871 

(497.7475) 

5.5 2.5 2.5 2.0 2.5 14.30474 48.52619 48.5466 

(1.990585) 

48.51391 

(0.0003364852) 

48.57944 

(270.4103) 

6.0 3.0 3.0 2.5 3.0 14.63197 36.33304 36.3488 

(1.151059) 

36.32775 

(0.0002893075) 

36.37523 

(509.4894) 

 

 

 

3.0 

4.0 1.0 1.0 1.0 1.0 11.11300 155.47028 155.50877 

(18.0334558) 

155.35472 

(0.0004949247) 

155.58608 

(150.1550) 

4.5 1.5 1.5 1.5 1.5 12.46849 98.16827 98.19853 

(28.1517503) 

98.11778 

(0.0004108653) 

98.25934 

(391.7533) 

5.5 2.5 2.5 2.0 2.5 13.88447 47.43435 47.45196 

(1.6774122) 

47.42376 

(0.0002969213) 

47.48027 

(220.0996) 

6.0 3.0 3.0 2.5 3.0 14.25562 35.62675 35.64050 

(0.9832819) 

35.62215 

(0.0002571668) 

35.66352 

(418.1959) 
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Table 2.5: Estimates and (posterior risk) under extension of Jeffrey’s prior using different loss 

functions using data set 2. 

      
  B 

1c  
2c  MOM MLE SELF QLF ALF 

 

 

 

 

1.0 

4.0 1.0 1.0 1.0 1.0 102.0919 2473.4000 2475.9802 

(6423.77429) 

2472.5390 

(0.0006941971) 

2477.7098 

(10647998) 

4.5 1.5 1.5 1.5 1.5 112.5415 1141.7260 1142.2058 

(1469.27156) 

1140.9254 

(0.0005599442) 

1143.1713 

(28521214) 

5.5 2.5 2.5 2.5 2.0 122.3332 350.4549 350.3525 

(119.17625) 

350.0814 

(0.0003865627) 

350.6250 

(5887940) 

6.0 3.0 3.0 3.0 2.5 124.5405 222.1827 222.0725 

(48.83544) 

221.9264 

(0.0003286734) 

222.2561 

(12050165) 

 

 

 

 

2.0 

4.0 1.0 1.0 1.0 1.0 96.25317 2363.1922 2365.2461 

(4880.21539) 

2362.5070 

(0.0005785327) 

2366.6216 

(7722190) 

4.5 1.5 1.5 1.5 1.5 107.17238 1100.1187 1100.5099 

(1153.51019) 

1099.4659 

(0.0004739584) 

1101.2966 

(21158203) 

5.5 2.5 2.5 2.5 2.0 118.08883 341.4543 341.3678 

(98.06123) 

341.1388 

(0.0003352443) 

341.5979 

(4595628) 

6.0 3.0 3.0 3.0 2.5 120.79026 

 

217.2926 

 

217.1983 

(40.88520) 

217.0732 

(0.0002878088) 

217.3554 

(9535319) 

 

 

 

3.0 

4.0 1.0 1.0 1.0 1.0 91.74031 2273.8528 2275.5464 

(3869.05665) 

2273.2878 

(0.0004959065) 

2276.6800 

(26855836) 

4.5 1.5 1.5 1.5 1.5 102.93017 1065.6851 1066.0136 

(937.65483) 

1065.1370 

(0.0004108653) 

1066.6737 

(64929980) 

5.5 2.5 2.5 2.5 2.0 114.61948 333.7715 333.6970 

(82.68276) 

333.4994 

(0.0002959546) 

333.8955 

(11511443) 

6.0 3.0 3.0 3.0 2.5 117.68336 213.0687 212.9864 

(34.95281) 

212.8773 

(0.0002559819) 

213.1234 

(21993921) 
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Table 2.6: Estimates and (posterior risk) under Quasi prior using different loss functions using 

data set 2. 

    
  b 

2c  
1d  MOM MLE SELF QLF ALF 

 

 

 

1.0 

4.0 1.0 1.0 1.0 1.0 102.0919 2473.4000 2477.7098 

(6450.77712) 

2474.2566 

(0.0006961301) 

2479.4455 

(214534.4) 

4.5 1.5 1.5 1.5 1.5 112.5415 1141.7260   1143.1713 

(1477.37186) 

1141.8850 

(0.0005620686) 

1144.1413 

(847675.2) 

5.5 2.5 2.5 2.0 2.5 122.3332 350.4549   350.6933 

(120.04928) 

350.4205 

(0.0003886283) 

350.9675 

(316830.4) 

6.0 3.0 3.0 2.5 3.0 124.5405 222.1827 

 

222.2929 

(49.22489) 

222.1458 

(0.0003306295) 

222.4778 

(815467.2) 

 

 

 

2.0 

4.0 1.0 1.0 1.0 1.0 96.25317 2363.1922 2366.6216 

(4897.28552) 

2363.8745 

(0.0005798746) 

2368.0012 

(159118.2) 

4.5 1.5 1.5 1.5 1.5 107.17238 1100.1187   1101.2966 

(1158.88497) 

1100.2484 

(0.0004754796) 

1102.0863 

(640200.6) 

5.5 2.5 2.5 2.0 2.5 118.08883 341.4543   341.6556 

(98.68333) 

341.4253 

(0.0003367968) 

341.8869 

(250283.6) 

6.0 3.0 3.0 2.5 3.0 120.79026 217.2926 217.3869 

(41.17032) 

217.2611 

(0.0002893075) 

217.5450 

(651791.2) 

 

 

 

3.0 

4.0 1.0 1.0 1.0 1.0 91.74031 2273.8528 2276.6800 

(3880.64442) 

2274.4157 

(0.0004968921) 

2277.8163 

(123634.9) 

4.5 1.5 1.5 1.5 1.5 102.93017 1065.6851 1066.6737 

(941.43805) 

1065.7941 

(0.0004120079) 

1067.3360 

(503508.5) 

5.5 2.5 2.5 2.0 2.5 114.61948 333.7715 333.9452 

(83.14533) 

333.7466 

(0.0002971639) 

334.1446 

(203680.8) 

6.0 3.0 3.0 2.5 3.0 117.68336 213.0687 213.1509 

(35.16938) 

213.0411 

(0.0002571668) 

213.2885 

(534999.0) 
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Table 2.7: Estimates and (posterior risk) under Hartigan’s prior using different loss functions 

using data set 2. 

    
  b 

2c  
1d  MOM MLE SELF QLF ALF 

 

 

 

1.0 

4.0 1.0 1.0 1.0 1.0 102.0919 2473.4000 2474.2566 

(6396.95932) 

2470.8273 

(0.0006922748) 

2475.9802 

(212593.6) 

4.5 1.5 1.5 1.5 1.5 112.5415 1141.7260 1142.2058 

(1469.27156) 

1140.9254 

(0.0005599442) 

1143.1713 

(842303.2) 

5.5 2.5 2.5 2.0 2.5 122.3332 350.4549 350.6250 

(119.87379) 

350.3525 

(0.0003882134) 

350.8989 

(316273.3) 

6.0 3.0 3.0 2.5 3.0 124.5405 222.1827 222.2929 

(49.22489) 

222.1458 

(0.0003306295) 

222.4778 

(815467.2) 

 

 

 

2.0 

4.0 1.0 1.0 1.0 1.0 96.25317 2363.1922 2363.8745 

(4863.24419) 

2361.1433 

(0.0005771970) 

2365.246 

(157919.1) 

4.5 1.5 1.5 1.5 1.5 107.17238 1100.1187 1100.5099 

(1153.51019) 

1099.4659 

(0.0004739584) 

1101.297 

(636769.9) 

5.5 2.5 2.5 2.0 2.5 118.08883 341.4543 341.5979 

(98.55836) 

341.3678 

(0.0003364852) 

341.829 

(249902.5) 

6.0 3.0 3.0 2.5 3.0 120.79026 217.2926 217.3869 

(41.17032) 

217.2611 

(0.0002893075) 

217.5450 

(651791.2) 

 

 

 

3.0 

4.0 1.0 1.0 1.0 1.0 91.74031 2273.8528 2274.4157 

(3857.52644) 

2272.1627 

(0.0004949247) 

2275.5464 

(122836.5) 

4.5 1.5 1.5 1.5 1.5 102.93017 1065.6851 1066.0136 

(937.65483) 

1065.1370 

(0.0004108653) 

1066.6737 

(501170.9) 

5.5 2.5 2.5 2.0 2.5 114.61948 333.7715 333.8955 

(83.05246) 

333.6970 

(0.0002969213) 

334.0946 

(203407.2) 

6.0 3.0 3.0 2.5 3.0 117.68336 213.0687 213.1509 

(35.16938) 

213.0411 

(0.0002571668) 

213.2885 

(534999.0) 
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Conclusion 

In this chapter, method of moments, maximum likelihood and Bayesian methods of 

estimation were studied for estimating the scale parameter of the WNWP distribution. Bayes 

estimators are obtained using different loss functions under different types of priors. For 

comparison of different loss functions and different types of priors, two real life data sets are 

used, and the outcomes are obtained through R-software. On equating the posterior risk 

obtained under different loss functions, it is clear from the above tables that QLF has 

minimum value of posterior risk and is thus preferable as compared to other loss functions 

used in this paper. It is also observed that as we increase the value of weighted parameter , 

the posterior risk decreases. Also, from tables 2.2 to 2.7, it is clear that in order to estimate the 

said parameter combination of quadratic loss function and extension of Jeffrey’s prior can be 

preferred.   
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Introduction 

In ALT analysis, the life-stress relationship is generally used to estimate the parameters of 

failure time distribution at use condition which is just a re-parameterization of original 

parameters but from statistical point of view, it is easy and reasonable to deal with original 

parameters directly instead of developing inferences for the parameters of the life stress 

relationship. It can be seen that the original parameter of the distribution can be directly 

handled by the assumption that the lifetime of the items formd GP at increasing level of stress. 

The concept of geometric process in accelerated life testing was first introduced by Lam (1988) 

in repair replacement problem.  Since then many authors have studied maintenance problem 

and system reliability by using GP model. Lam (2007) used geometric model to study a 

multistate system and inferred a policy for replacement that minimizes the average cost per 

unit time for long run. After that a lot of works have been done and the available literature 

shows that the GP model is one of the simplest among the available models for the study of 

data with a single or multiple trend, e.g., Lam and Zhang (1996), Lam (2005). Zhang (2008) 

studied repairable system with delayed repair by using the GP repair model.  Huang (2011) 

analyzed the complete and censored data for exponential distribution applying the model of 

GP. Zhou et al. (2012) extended the GP model for Rayleigh distribution for the progressive 

type I hybrid censored data in ALT. Kamal et al. (2013) analyzed the complete samples for 

Pareto distribution with constant stress accelerated life testing plan by using geometric process 

model. Anwar et al. (2013) used the process to analyze the model of ALT for Marshal-Olkin 

extended exponential distribution, then extended her work for type I censored data (Anwar et 

al., 2014). 

https://www.aijr.in/about/policies/copyright/
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This chapter deals with constant stress accelerated life testing for generalized exponential 

distribution using geometric process with complete data. Estimates of parameters are obtained 

by maximum likelihood estimation technique and confidence intervals for parameters are 

obtained by using the asymptotic properties. Lastly, statistical properties of estimates and 

confidence intervals are examined through a simulation study. 

The Model 

The Geometric Process
 

A stochastic process ,...2,1, =nX n  is said to be a geometric process if there is a real valued 

)0(  in such a way that  ,...2,1,1 =− nX n

n  forms a renewal process. It can be shown 

that if  ,...2,1, =nX n  is a GP and )(xf  is the probability density function with mean  

and variance 
2  then )( 11 xf nn −−   will be the probability density function of nX

 
with 

mean ( )
1−

=
nnXE




and ( )

( )12

2

var
−

=
nnX




. Thus, the important parameters of GP are  ,

  and 
2 are to be estimated. 

Generalized Exponential Life Distribution  

The probability density function (pdf) of a generalized exponential distribution is given by 

0,,,1),,(
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   )1.3(  

where 0,   and are the shape and scale parameter of the life distribution respectively. 

The above discussed life distribution can be abbreviated as ),( GE
 with the shape  and 

the scale parameter  . If 1= , then it is written as ),1( GE  and shows the exponential 

distribution with scale parameter  . The generalized exponential distribution with two 

parameters may be used for analyzing lifetime data, particularly, in places of Gamma and 

Weibull distributions with two parameters. Its shape parameter depicts the behavior of failure 

rate: which may be increasing or decreasing depending on the values of shape parameters. The 

distribution function of life distribution of the items is given as follows 
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The survival function of the items takes the following form 

 




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
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−
x
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The hazard rate function is given as follows 
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
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  The shape of the failure rate function depends only on the values of parameter . For 1

, the GE distribution has a log concave density and for 1 it has log-convex. Therefore, 

when 1  and   is constant, then it has an increasing failure rate and when 1  with 

constant   , then it has decreasing failure rate. The failure rate function of GE distribution 

and Gamma distribution, with two parameters behaves in same way, while the failure rate 

function of Weibull distribution behaves in totally different way.  

Assumptions and Method of Test 

1. The failure time of items follows generalized exponential distribution ),( GE  at all 

the stresses. 

2. Suppose a life test with different S stress level (i.e. increasing stress level) is conducted. 

Under each stress level, n items from a random sample have been put on test at the 

same time. Let ,kix ni ...,3,2,1=
 

sk ,...,2,1= be the failure time of ith item under kth 

stress level. We will remove the failed the items from thetest and it would run till the 

whole random sample exhausted (complete sample). 

3. There is a linear relationship between the log of shape parameter and stress i.e.,

kk qSp +=)(log   , where p and q are unknown, and their values depends on the 

nature of products and method. 

4. The lifetimes of items under each stress level is denoted by the random variables

SXXXX ,...,,, 210  , where 0X  is the lifetime of the items under normal stress (or 

design stress) at which the items will run normally and sequence },...2,1,{ skX k =  

forms a GP with parameter .0  

The assumptions discussed above are very common in ALT literature except the last one, i.e. 

assumption 4. It is the assumption of geometric process which is simply better among the 
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available usual methods without increasing the level of difficulty in calculations. By assuming 

the linear relationship between the log of life and stress (i.e. assumption 3), the assumption 

can be shown by the following theorem. 

Theorem 3.1: If the level of stress in an ALT is increasing with a constant difference then 

under each stress level the lifetimes of items forms a GP, i.e. if kk SS −+1 is constant for

1,...,2,1 −= sk , then  skX k ,...,2,1, =  forms a GP. 

Proof:  We get the following equation from assumption (3) 

                     

( ) SqSSq kk

k
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1

1log
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
   )5.3(

 

From the above equation we can see that the increased stress levels form a sequence with a 

difference S , this sequence is called arithmetic sequence that is formed with constant 

difference S .  

Here, we can write the equation (3.5) as follows 

( )saye Sb

k
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It is obvious from equation (3.6) that 
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Therefore, the probability density function of the lifetimes at the kthstress level is given as                        
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and the cdf is 
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Eq. (3.7) implies that 

 ( ) ( )xfxf k

X

k

X k


0
=      )9.3(  

Now, by the definition of geometric process and the equation (3.6) we can see that if 

probability density function of the lifetime of the products at usual stress level i.e. 0X  , is

( )xf X 0
, then the probability density function of the lifetimes at the kth stress level i.e. kX

 
is 

given by ( )xf k

X

k 
0

, sk ,...,2,1= . Hence, it is obvious that failure times of the products 

form a geometric process with parameter under a sequence of arithmetically increasing stress 

levels. 

Expression (3.7) shows that if the lifetimes of products under a sequence of increasing stress 

level form a geometric process with ratio and if the lifetime of the items at normal stress 

level follows generalized exponential distribution with characteristic  , then the lifetime 

distribution of the test items at thk stress level will also be generalized exponential with 

characteristic life .
k



 

Estimation Process 

Maximum likelihood estimation (MLE) is one of the extensively used methods among all 

estimation methods. It can be applied to any probability distribution while other methods are 

somewhat restricted. The use of MLE in ALT is difficult and mathematically very complex 

and, even most of the times the closed form estimates of parameters do not exist. Therefore, 

Newton Raphson method is used to estimate the numerical values of them. The likelihood 

function for constant stress ALT for complete case generalized exponential failure data using 

GP for s stress levels is given by: 
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Now take the log of the above function and rewrite as follows; 
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The MLEs of the parameters  , and can be obtained by solving the following normal 

equations 0,0 =



=







ll
and 0=







l
. 
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where 


 ki
k x

eZ
−

=  

We use above equations namely (3.12), (3.13) and (3.14) to find the estimate of α, β and λ. 

Fisher Information Matrix and Asymptotic Confidence Interval 

The asymptotic Fisher Information matrix is given by:  
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The elements of Fisher Information matrix can be obtained by putting a negative sign before 

double and partial derivatives of the parameters, which are given as follows; 
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The confidence interval for parameters  , and are given as follows: 
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Simulation Study 

Simulation is used for observing the statistical properties of parameters. It is an attempt to 

model an assumed condition to study the behaviour of function. 

To perform the study, we first generate a random sample from Uniform distribution by using 

optim() function in R software.  

Now we use inverse cdf method to transform equation (3.8) in terms of u and get the 

expression of kix , k=1,2,3,...,s and i=1,2,3,...,n. 

  nisk
u

x
kki ,,2,1,,2,1,

)1( /1

 ==
−

−=





 

• Now take the random samples of size 20,40,60,80 and 100 from the generalized 

exponential distribution and replicate them 1000 times. 

• The values of parameters and numbers of the stress levels are chosen to be 

64,1.1,8.2,2.1 ors ====  . 

• optim() function is used to obtain the ML estimates, relative absolute bias(RAB), the 

mean squared error(MSE), relative error(RE) and lower and upper bound of 95% and 

99% confidence intervals for different sample sizes. 

The outcome obtained in the above study are summarized in Table3.1 and Table 3.2. 
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Table 3.1: Simulation results of Generalised exponential using GP at ,8.2,2.1 == 

4,1.1 == s  

Sample Estimate

s 

 

Mean SE √MSE RABias RE Lower 

BOund 

Upper 

Bound 

 

 

20 

  1.0772 0.1990 0.1923 0.1022 0.1602 0.6870 

0.5636 

1.4674 

1.5908 

  3.0781 0.3191 0.0950 0.0993 0.0339 2.4526 

2.2547 

3.7036 

3.9015 

  1.0500 0.1034 0.0999 0.0908 0.0864 0.7971 

0.7329 

1.2028 

1.2670 

 

 

40 

  1.1675 0.1200 0.1159 0.02707 0.0966 0.9322 

0.8578 

1.4027 

1.4771 

  3.0397 0.2565 0.0614 0.0856 0.0219 2.5369 

2.3779 

3.5424 

3.7015 

  0.9952 0.1035 0.1000 0.0909 0.0558 0.7970 

0.7329 

1.2028 

1.2670 

 

 

60 

  1.2113 0.1201 0.1160 0.0094 0.0967 0.9758 

0.9014 

1.4467 

1.5212 

  3.0038 0.2417 0.0545 0.0728 0.0194 2.5299 

2.3800 

3.4777 

3.6276 

  1.0000 0.1034 0.0999 0.0908 0.0495 0.7971 

0.7330 

1.2028 

1.2670 

 

 

80 

  1.1826 0.0805 0.0777 0.0144 0.0648 1.0248 

0.9749 

1.3404 

1.3904 

  3.0491 0.2645 0.0653 0.0889 0.0233 2.5306 

2.3666 

3.5676 

3.7316 

  0.9924 0.1035 0.1000 0.0909 0.0593 0.7970 

0.7328 

1.2029 

1.2671 

 

100 

  1.1579 0.0867 0.0838 0.0350 0.0698 0.9878 

0.9340 

1.3280 

1.3818 

  3.0515 0.2661 0.0661 0.0898 0.0236 2.5299 

2.3649 

3.5731 

3.7381 

  1.0041 0.1035 0.0999 0.0909 0.0600 0.7971 

0.7329 

1.2028 

1.2670 



Chapter 3: Mathematical Model of Accelerated Life Testing Plan Using Geometric Process 

 

 

38 ISBN: 978-81-936820-7-4 

 

 

 

Book DOI: 10.21467/books.44 

 

Table 3.2: Simulation results of Generalised exponential using GP at ,8.2,2.1 == 

6,1.1 == s . 

Sample Estimates 

 

Mean SE √MSE RABias RE Lower 

BOund 

Upper 

Bound 

 

 

20 

  1.2838 0.1409 0.1361 0.0698 0.1134 1.0076 

0.9202 

1.5601 

1.6474 

  2.9798 0.2183 0.0444 0.0642 0.0158 2.5518 

2.4165 

3.4077 

3.5431 

  0.9950 0.1035 0.1000 0.0909 0.0404 0.7970 

0.7328 

1.2029 

1.2671 

 

 

40 

  1.1598 0.1451 0.1402 0.0334 0.1168 0.8753 

0.7853 

1.4442 

1.5342 

  3.0598 0.2899 0.0784 0.0928 0.0280 2.4916 

2.3118 

3.6281 

3.8079 

  1.0489 0.1035 0.1000 0.0909 0.0713 0.7971 

0.7329 

1.2028 

1.2670 

 

 

60 

  1.2019 0.0968 0.0935 0.0015 0.0779 1.0120 

0.9519 

1.3917 

1.4517 

  3.0650 0.2777 0.0719 0.0946 0.0257 2.5207 

2.3485 

3.6092 

3.7814 

  0.9923 0.1035 0.1000 0.0909 0.0654 0.7970 

0.7329 

1.2028 

1.2670 

 

 

80 

  1.1868 0.0892 0.0861 0.0110 0.0718 1.0119 

0.9566 

1.3616 

1.4169 

  3.0600 0.2708 0.0684 0.0928 0.0244 2.5291 

2.3612 

3.5909 

3.7588 

  0.9973 0.1035 0.1000 0.0909 0.0622 0.7970 

0.7328 

1.2029 

1.2671 

 

 

100 

  1.1977 0.0812 0.0785 0.0019 0.0654 1.0384 

0.9880 

1.3570 

1.4073 

  3.0587 0.2718 0.0689 0.0923 0.0246 2.5260 

2.3574 

3.5914 

3.7600 

  1.0500 0.1035 0.1 0.0909 0.0626 0.7971 

0.7329 

1.2028 

1.2670 
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Conclusion 

In this study, geometric process is introduced for the study of accelerated life testing plan 

under constant stress when the failure time data are from a generalized exponential model. It 

is better choice for life testing because of its simplicity in nature. The mean, SE, MSE, RAB 

and RE of the parameters are obtained and based on the asymptotic normality, the 95% and 

99% confidence intervals of the parameters are also obtained. The outcome in Table 3.1 and 

Table 3.2 show that the estimated values of ,  and are very close to true (or initial) values 

with very small SE and MSE. As sample size increases, the value of SE and MSE decreases 

and the confidence interval become narrower. For the Table 3.2, the maximum likelihood 

estimators have good statistical properties than the Table 3.1 for all sample size. The future 

research should extend the GP model into ALTg for different life distribution. Introducing 

the GP model into ALT with other test plans or censoring techniques is another object of the 

future research. 
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Introduction 

Ailmujia distribution is proposed by Lv et al. (2002). Pan et al. (2009) studied the interval 

estimation and hypothesis test of Ailamujia distribution based on small sample. Uzma et al. 

(2017) studied the weighted version Ailamujia distribution. The cumulative distribution 

function of Ailamujia distribution is given by 

              0,0,)21(1),;( 2 +−= −   xexxF x
                                                   (4.1) 

and the probability density function (pdf) corresponding to (4.1) is 

          0,0,4),;( 22 = −   xexxf x
                                            (4.2)  

Our objective in this study is to find the Bayes estimators of the parameter of Ailamujia 

distribution using non-informative Jeffery’s prior and informative Gamma prior under squared 

error loss function, Entropy loss function and LINEX loss function. Finally, an application is 

considered to equate the performance of these estimates under different loss functions by 

manipulative posteriors risk using R Software.  

Material and Methods 

Recently Bayesian estimation technique has established great contemplation by most 

researchers. Bayesian analysis is a significant approach to statistics, which properly seeks use 

of prior information and Bayes Theorem provides the formal basis for using this information. 

https://www.aijr.in/about/policies/copyright/
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In this paper we consider the Jeffrey’s prior proposed by Al-Kutubi (2005) as: 

             
( ) ( ) Ig 

                                                                                                 (4.3) 
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nEI  is the Fisher’s information matrix. For the model 
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The second prior which we have used is gamma prior i.e 

1)( −−


 







 eg                                                                                           (4.4) 

with the above priors, we use three different loss functions for the model (4.2), viz squared 

error loss function which is symmetric, and Entropy and LINEX loss function which are 

asymmetric loss functions. 

Maximum Likelihood Estimation 

Let x1, x2,…, xn be a random sample of size n from Ailamujia distribution, then the log 

likelihood function can be written as  
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the ML estimator of  is obtained by solving the equation    
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Bayesian estimation of Ailamujia distribution under Assumption of Jeffrey’s prior  

Consider n recorded values, ),...,,( 21 nxxxx = having probability density function as

    

                         

xexxf  224),;( −=

 

we consider the prior distribution of   to be Jeffrey’s prior i.e 
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The posterior distribution of   under the assumption of Jeffrey’s prior is given by 
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Estimator Under Squared Error Loss Function 

By using squared error loss function 
2
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Estimator Under Entropy Loss Function 

Using entropy loss function
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Estimator Under LINEX Loss Function 

Using LINEX loss function ( )  ( ) 1ˆˆexp)ˆ,( 1 −−−−=  bbl  for some constant b the 

risk function is given by 
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Bayesian Estimation of Ailamujia Distribution Under Assumption of Gamma Prior  

Consider n recorded values, ),...,,( 21 nxxxx = having probability density function as
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The posterior distribution of   under the assumption of Gamma prior is given by 
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Estimator Under Squared Error Loss Function 

By using squared error loss function 
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Estimator Under Entropy Loss Function 

Using entropy loss function

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Estimator Under LINEX Loss Function 

Using LINEX loss function ( )  ( ) 1ˆˆexp)ˆ,( 1 −−−−=  bbl  for some constant b the 

risk function is given by 
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Application 

The data set was initially stated by Badar Priest (1982) on failure stresses (inGpa) of 65 single 

carbon fibers of length 50mm respectively. The data set is given as follows: 

1.339,1.434,1.549,1.574,1.589,1.613,1.746,1.753,1.764,1.807,1.812,1.84,1.852,1.852,1.862,1.86

4,1.931,1.952,1.974,2.019,2.051,2.055,2.058,2.088,2.125,2.162,2.171,2.172,2.18,2.194,2.211,2.

27,2.272,2.28,2.299,2.308,2.335,2.349,2.356,2.386,2.39,2.41,2.43,2.458,2.471,2.497,2.514,2.55

8,2.577,2.593,2.601,2.604,2.62,2.633,2.67,2.682,2.699,2.705,2.735,2.785,3.02,3.042,3.116,3.17

4. This data set had used by Al-Mutairi (2013) and Uzma et al. (2017). 

The posterior estimates and posterior risks are calculated, and result is presented in table 4.1 

and table 4.2. 
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Table 4.1: Posterior estimates and Posterior variances using Jeffery’s Prior 

 
      S



                     L



  E



  

b = 0.5 b =1.0 

Posterior Estimates 0.2231 0.0003 0.0007 0.4427 

Posterior Risks 0.0513 7.4402 2.1083 5.6629 

             Table 4.2: Posterior estimates and Posterior variances using Gamma Prior 

 
      S



                     L



  E



  

b = 0.5 b =1.0 

Posterior Estimates 0.5266 0.05432 0.0574 0.6434 

Posterior Risks 0.1430 7.4023 2.0032 5.9721 

 

It is clear from Table 4.1and Table 4.2, on equating the Bayes posterior risk of dissimilar loss 

functions, it is observed that the squared error loss function has less Bayes posterior risk in 

both non informative and informative priors than other loss functions. According to the 

decision rule of less Bayes posterior risk we accomplish that squared error loss function is 

more preferable loss function.  

Conclusion  

We have predominantly considered the Bayes estimator of the parameter of Ailamujia 

distribution using Jeffrey’s prior and gamma prior supposing three different loss functions. 

The Jeffrey’s prior gives the prospect of covering wide continuum of priors to get Bayes 

estimates of the parameter. From the results, we observe that in most cases, Bayesian 

Estimator under Squared error Loss function has the smallest posterior risk values for both 

prior’s i.e, Jeffrey’s and gamma prior information.  
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Introduction 

Ailamujia distribution (also known as ЭРланга distribution) was proposed by Lv et al [1] for 

applicability in various engineering fields. He studied various descriptive measures of the newly 

developed lifetime model which include mean, variance, median and maximum likelihood 

estimate. Pan et al [2] considered this distribution for estimating intervals and testing of 

hypothesis. Long [3] obtained the Bayes’ estimates of ЭРланга Distribution under Type II 

censoring for missing data with three different priors. Li [4] estimated the parameters of 

Ailamujia model considering the three loss functions under a non informative prior. Uzma et 

al. [5] proposed the weighted Ailamujia Distribution and applied in reliability analysis. 

Assume X denotes the life span of a product following the Weighted Ailamujia distribution, 

its probability density function and cumulative density function is given respectively as follows: 

 ( )
( )
( )

0,0;
2

2
, 21

2


+

= −+

+



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where the shape parameter and c are the weight parameter 
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The likelihood function and the corresponding log likelihood of (5.1) are given in the equations 

(5.3) and (5.4) respectively as: 

( ) ( ) .| 1

2
2


 =

−
+

n

i

ix
cn exL



                                                                                        (5.3) 

https://www.aijr.in/about/policies/copyright/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.aijr.in/
https://doi.org/10.21467/books.44.5
https://doi.org/10.21467/books.44.5


Chapter 5: Estimating the Parameter of Weighted Ailamujia Distribution using Bayesian Approximation Techniques 

 

 

Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions 

51 

( ) ( ) 
=

−+=
n

i

ixcnxL
1

.2log2|log                                                                   (5.4) 

The major focus of the current manuscript is to examine the performance of unknown shape 

parameter   of Weighted Ailamujia distribution under a variety of priors using the two 

Bayesian approximation techniques. 

Bayesian Approximation Techniques of Posterior Modes 

Bayesian paradigm gives a comprehensive model for updating the prior information in view 

of the current knowledge. Those who like the elegance of Bayesian outlook study important 

properties of the posterior and predictive distributions. If the resulting distribution is in closed 

form and difficult to characterize it, analytical or numerical approximation methods are often 

used for accuracy with less computational complicacy. Many authors have reviewed the 

approximation methods including Sultan and Ahmad [6, 7] for Kumaraswamy distribution and 

generalized Power function distribution, Kawsar and Ahmad [8] for Inverse Exponential and 

Uzma and Ahmad [9,10] for Inverse Lomax and Dagum distributions. 

Normal Approximation 

In Bayesian approach, approximation techniques for large samples usually consider the normal 

approximation to the posterior distribution. If the posterior distribution is less skewed with 

sharp peak, the most convenient way is to approximate it by normal distribution. This 

posterior distribution is usually localized near the posterior mode and behaves normal under 

different conditions when the sample size is increased. The Normal approximation for the 

posterior distribution ( )xP | centered at mode is given as 

 ( ) ( ) 

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 −1
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where ( ) ( )xPI |logˆ
2
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

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


−=                                                                                            (5.6) 

 Under Jeffery’s Prior ( ) ,
1

1


 g  the posterior distribution is given by 

( ) ( ) ( ) || 11 xLgxP                                                                                             (5.7) 
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As such ( )
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Similarly, under Gamma Prior ( ) ,
1
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the posterior distribution is given by 
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Also, under the Erlang prior ( ) ,22

3

ba
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 −
  the posterior distribution is 
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+−++    (5.10) and can be approximated as 
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 T-K Approximation   

Laplace’s method proves to be an efficient procedure for solving the difficult integrals which 

arise in mathematics.  For approximating the average values of functions of parameters and 

marginal densities, Laplace’s method is generally used. It is widely applicable method in 

statistics for its simpler computations than the MCMC methods etc. Moreover, Laplace 

method provides better view of the problem. The different manuscripts in literature which 

describe the method include Lindley [11], Tierney and Kadane [12] and Leonard, Huss and 

Tsui [13]. Tierney and Kadane presented the Laplace method for computing ( ) xhE | as 

 ( ) 
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where ( ) ( )xPnh |logˆ  =− ; ( ) ( ) ( ) hxPnh log|logˆ* * +=− . 

( )  1
2 ˆˆ

−

−−=  hn ; ( )  1
**2* ˆ

−

−−=  hn . 

Thus, for Weighted Ailamujia distribution, T-K approximation for shape parameter  under 

different priors is obtained as: 

Under Jeffery’s Prior ( ) ,
1

1


 g  the posterior distribution is given by the equation (6) 
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Also, under Gamma Prior, the posterior distribution is given by the equation (5.9) and the 

estimates are given by 
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Similarly, under Erlang Prior ( ) 22

4
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eg
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 , the posterior distribution is given by the 

equation (5.10) and we have 

( )
( )
( )

( )
( )
( )

( ).1exp
2

12

2

12
|

2

2
2

1
2

2

2

2

−








+

+++









++

+++
=

+++

bT

acn

acn

acn
xE

acn

                             (5.17) 

( ) ( )
( )

( )
( )

( ).2exp
2

22

2

22
|

2

2

2
2

1
2

2

22

2

−








+

+++









++

+++
=

+++

bT

acn

acn

acn
xE

acn



 

( )
( )
( )

( )
( )

( )

( )
( )

( )
( )
( )

( ) 2

2

2
2

1
2

2

2

2

2

2
2

1
2

2

2

.1exp
2

12

2

12

2exp
2

22

2

22
|

2

2

















−








+

+++









++

+++

−−








+

+++









++

+++
=

+++

+++

bT

acn

acn

acn

bT

acn

acn

acn
xVar

acn

acn



     

                                                                                                                                      (5.18) 

 

 

https://doi.org/10.21467/books.44


Chapter 5: Estimating the Parameter of Weighted Ailamujia Distribution using Bayesian Approximation Techniques 

 

 

Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions 

55 

Applications 

For comparing the efficacy of different priors and the two approximation techniques for the 

weighted Ailamujia distribution, we have considered the three real life data sets related to 

engineering field. 

Data Set 5. 1: The first data set is provided in Murthy et al. [14] about time between failures 

for 30 repairable items. The data are listed as the following:  

1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 

0.45,0.70,1.06,1.46, 0.30,1.82, 2.37, 0.63, 1.23, 1.24, 1.97, 1.86, 1.17 

DataSet 5.2: The second data represent the strength data measured in GPA, for single carbon 

fibres and impregnated 1000 carbon fiber tows reported by Badar and Priest [15]. We will be 

considering the single fibres of 10 mm in gauge length with sample sizes 63. 

0.101,0.322,0.403,0.428,0.457,0.550,0.561,0.596,0.597,0.645,0.654,0.674,0.718,0.722,0.725,0.72

3,0.775,0.814,0.816,0.818,0.824,0.859,0.875,0.938,0.940,1.056,1.117,1.128,1.137,1.137,1.177,1.1

96,1.230,1.325,1.339,1.345,1.420,1.423,1.435,1.443,1.464,1.472,1.494,1.532,1.546,1.577,1.608,1.

635,1.693,1.701,1.737,1.754,1.762,1.828,2.052,2.071,2.086,2.171,2.224,2.227,2.425,2.595,2.220 

Data set 5.3:  The third data set is on the strengths of 1.5 cm glass fibres. The data was 

originally obtained by workers at the UK National Physical Laboratory and it has been used 

by Bourguignon et al. [16].  

 

Table 5.1: Posterior estimates for Normal Approximation 

 

 

 

c  

Jeffery’s 

Prior 
Gamma Prior Erlang Prior 

 a1=b1=0.5 a1=b1=1.0 a1=b1=2.0 a2=b2=0.5 a2=b2=1.0 a2=b2=2.0 

Data 

Set I 0.5 
0.79948 

(0.00863) 

0.80055 

(0.00860) 

0.80162 

(0.00856) 

0.80372 

(0.00849) 

0.81130 

(0.00871) 

0.81231 

(0.00868) 

0.81429 

(0.00861) 

1 
0.96153 

(0.01038) 

0.96174 

(0.01033) 

0.96194 

(0.01028) 

0.96235 

(0.01017) 

0.97249 

(0.01045) 

0.97263 

(0.01039) 

0.97292 

(0.01028) 

2 
1.28565 

(0.01388) 

1.28411 

(0.01379) 

1.28259 

(0.01370) 

1.27961 

(0.01353) 

1.29486 

(0.01391) 

1.29328 

(0.01382) 

1.29018 

(0.01364) 
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Data 

Set 

II 

0.5 
0.99914 

(0.00637) 

0.99914 

(0.00635) 

0.99914 

(0.00633) 

0.99915 

(0.00629) 

1.00551 

(0.00639) 

1.00549 

(0.00637) 

1.00545 

(0.00633) 

1 
1.20025 

(0.00766) 

1.19961 

(0.00763) 

1.19898 

(0.00760) 

1.19772 

(0.00755) 

1.20597 

(0.00767) 

1.20532 

(0.00764) 

1.20402 

(0.00758) 

2 
1.60246 

(0.01023) 

1.60054 

(0.01018) 

1.59864 

(0.01014) 

1.59486 

(0.01005) 

1.60690 

(0.01022) 

1.60498 

0.01018) 

1.60117 

0.01009 

 

Data 

Set 

III 

0.5 
0.82429 

(0.00434) 

0.82475 

(0.00433) 

0.82521 

(0.00432) 

0.82612 

(0.00430) 

0.83000 

(0.00436) 

0.83045 

(0.00435) 

0.83133 

(0.00433) 

1 
0.99020 

(0.00521) 

0.99022 

(0.00520) 

     0.99025 

(0.00518) 

    0.99030 

(0.00516) 

0.99548 

(0.00522) 

0.99549 

(0.00521) 

0.99551 

(0.00518) 

2 
1.32202 

(0.00696) 

1.32118 

(0.00694) 

1.32034 

(0.00691) 

1.31867 

(0.00687) 

1.32643 

(0.00696) 

1.32557 

(0.00694) 

1.32388 

(0.00690) 

Table 5.2: Posterior estimates for TK approximation 

 
 
 c  

Jeffery’s 
Prior Gamma Prior Erlang Prior 

 a1=b1=0.5 a1=b1=1.0 a1=b1=2.0 a2=b2=0.5 a2=b2=1.0 a2=b2=2.0 

Data 

Set I 0.5 
0.81029 

(0.00875) 

0.81131 

(0.00871) 

0.81232 

(0.00868) 

0.81430 

(0.00861) 

0.81667 

(0.01766) 

0.81765 

(0.01759) 

0.81957 

(0.01744) 

1 
0.97235 

(0.01050) 

0.97250 

(0.01045) 

0.97264 

(0.01039) 

0.97293 

(0.01028) 

0.97785 

(0.02113) 

0.97797 

(0.02102) 

0.97821 

(0.02080) 

2 
1.29646 

(0.01400) 

1.29487 

(0.01391) 

1.29329 

(0.01382) 

1.29019 

(0.01364) 

1.30023 

(0.02805) 

1.29862 

(0.02787) 

1.29547 

(0.02751) 

Data 

Set II 0.5 
1.005532 

(0.00641) 

1.00551 

(0.00639) 

1.00549 

(0.00637) 

1.00546 

(0.00633) 

1.00869 

(0.01287) 

1.00866 

(0.01283) 

1.00860 

(0.01275) 

1 
1.20663 

(0.00770) 

1.20598 

(0.00767) 

1.20532 

(0.00764) 

1.20403 

(0.00758) 

1.20915 

(0.01543) 

1.20849 

(0.01537) 

1.20718 

(0.01525) 

2 
1.60884 

(0.01027) 

1.60691 

(0.01022) 

1.60498 

(0.01018) 

1.60117 

(0.01009) 

1.61009 

(0.02053) 

1.60815 

(0.020443) 

1.60432 

(0.020266) 
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Data 

Set III 

0.5 
0.82956 

(0.00436) 

0.83000 

(0.00436) 

0.83045 

(0.00435) 

0.83133 

(0.00433) 

0.83263 

(0.00877) 

0.83307 

(0.00875) 

0.83394 

(0.00872) 

1 
0.99547 

(0.00524) 

0.99548 

(0.00522) 

0.99549 

   (0.00521) 

0.99551 

(0.00518) 

0.99810 

(0.01051) 

0.99811 

(0.01048) 

0.99812 

(0.01043) 

2 
1.32729 

(0.00699) 

1.32643 

(0.00696) 

1.32558 

(0.00694) 

1.32388 

(0.00690) 

1.32906 

(0.01399) 

1.32819 

(0.01394) 

1.32648 

(0.01385) 

Conclusion 

From table 5.1 and 5.2, it is clearly evident that the posterior variance of gamma prior is less 

than the other priors under both the approximation techniques especially when the value of 

both the hyper parameters a1 and b1 is taken as 2. Further, it is also noted that the values of 

normal approximation are less than the T-K approximation for all the three data sets. 

 

Author’s Detail 

Uzma Jan* and S. P. Ahmad 

Department of Statistics, University of Kashmir, Srinagar, India 

*Corresponding author email: peeruzma1@gmail.com  

How to Cite this Chapter: 

Jan, Uzma, and S. P. Ahmad. “Estimating the Parameter of Weighted Ailamujia Distribution Using Bayesian Approximation 

Techniques.” Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions, edited by Afaq Ahmad, 

AIJR Publisher, 2019, pp. 50–58., ISBN: 978-81-936820-7-4, DOI: 10.21467/books.44.5. 

References 

[1] Lv H. Q., Gao L. H. and Chen C. L. (2002). Эрланга distribution and its application in supportability data analysis. 

Journal of Academy of Armored Force Engineering, 16(3): 48-52. 

[2] Pan G. T., Wang B. H., Chen C. L., Huang Y. B. and Dang M. T. (2009). The research of interval estimation and 

hypothetical test of small sample of Эрланга distribution. Application of Statistics and Management, 28(3): 468-

472. 

[3] Long B. (2015). Bayesian estimation of parameter on Эрлангa distribution under different prior distribution. 

Mathematics in Practice & Theory, (4): 186-192. 

[4] Li L.P. (2016). Minimax estimation of the parameter of ЭРланга distribution under different loss functions, Science 

Journal of Applied Mathematics and Statistics. 4(5): 229-235. 

[5] Jan U., Fatima, K and Ahmad S.P. (2017). On Weighted Ailamujia Distribution and its Applications to Lifetime 

Data.  Journal of Statistics Applications and Probability, 6(3), 619-633. 

[6] Sultan. H and Ahmad S.P. (2015). Bayesian Approximations for Shape Parameter of Generalized Power Function 

Distribution, Journal of Reliability and Statistical Studies. 10 (1), 149-159. 

mailto:peeruzma1@gmail.com
mailto:peeruzma1@gmail.com
https://doi.org/10.21467/books.44.5
https://doi.org/10.21467/books.44.5


Chapter 5: Estimating the Parameter of Weighted Ailamujia Distribution using Bayesian Approximation Techniques 

 

58 ISBN: 978-81-936820-7-4 

 

 

 

Book DOI: 10.21467/books.44 

 

[7] Sultan. H and Ahmad. S.P. (2015). Bayesian Approximations Techniques for Kumaraswamy Distribution, 

Mathematical theory and Modelling.,5, 2224-5804. 

[8]  Fatima, K. and Ahmad S P (2018). Bayesian Approximation Techniques of Inverse Exponential Distribution with 

Applications in Engineering, International Journal of Mathematical Sciences and Computing 4(2),49-62 

[9] Jan, U. & Ahmad S. P. (2017). Bayesian Analysis of Inverse Lomax Distribution Using Approximation Techniques 

Mathematical theory and Modelling 7(7), 1-12. 

[10] Sultan, H., Jan, U. and Ahmad S. P. (2018). Bayesian Normal and T K Approximations for the shape Parameter of 

Type 1 Dagum Distribution, International Journal of Mathematical Sciences and Computing, 3, 13-22  

[11] Lindley, D. V. (1980). “Approximate Bayesian Methods” in Bayesian Statistics eds. J. M. Bernado, M. H. Degroot, 

D.V. Lindley and A. M. F. Smith Valencia, Spain: University Press. 

[12] Tierney L. & Kadane J. (1986). Accurate approximations for posterior moments and marginal densities. Journal of 

the American Statistical Association, 81: 82-86. 

[13] Leonard, T., Hsu, J. S. J. and Tsui, K. (1989) Bayesian Marginal Inference. Journal of American Statistical 

Association, 84, 1051-1058. 

[14] Murthy, D.N.P., Xie M. and Jiang, R. (2004). Weibull Models, Series in Probability and Statistics, John Wiley, New 

Jersey. 

[15] Badar, M. G. and Priest, A. M. (1982). Statistical aspects of fiber and bundle strength in hybrid composites. In T. 

Hayashi, K. Kawata, and S. Umekawa (Eds.), Progress in Science and Engineering Composites, ICCM-IV, Tokyo, 

1129-1136. 

[16] Bourguignon, M., Silva, R. B. and Cordeiro, G.M. (2014). The Weibull-G family of Probability Distributions, 

Journal of Data Science 12, 53-68.  

https://doi.org/10.21467/books.44


 

© 2019 Copyright held by the author(s). Published by AIJR Publisher in Bayesian Analysis and Reliability Estimation of 

Generalized Probability Distributions. ISBN: 978-81-936820-7-4 

This is an open access chapter under Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) 

license, which permits any non-commercial use, distribution, adaptation, and reproduction in any medium, as long as the original 

work is properly cited. 

Chapter 6: 

Bayesian Inference for Exponential Rayleigh 

Distribution Using R Software 

Kawsar Fatima and S. P. Ahmad 

DOI: https://doi.org/10.21467/books.44.6  

Additional information is available at the end of the chapter 

 

Introduction 

Exponential-Rayleigh (ER) distribution is a newly proposed lifetime model introduced and 

discussed by Kawsar and Ahmad (2017). It is a versatile distribution and can take a variety of 

shapes such as positively skewed, reversed-J and tends to be symmetric. Exponential-Rayleigh 

distribution is a continuous distribution with wide range of applications in reliability fields and 

is used for modelling lifetime phenomena. The cdf and pdf of the ERD are given as 
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The main purpose of this chapter is to study the Bayesian approach for the parameter of ER 

distribution. There are numerous good sources which provide the detailed explanation of 

Bayesian approach while then, a number of authors have studied and obtained various 

probability distributions based on the Estimation of the Bayesian approach.  Ahmed et al. 

(2007) discussed the exponential distribution (ED) from a Bayesian point of view. James Dow 

(2015) obtained the Bayesian Inference for the parameter of Weibull-Pareto distribution. 

Naqash et al. (2016) studied Bayesian Analysis of Generalized Exponential Distribution while 

as Kawsar and Ahmad (2017) considered the estimation for the parameter of Weibull- Rayleigh 

(WR) distribution. They obtained Baye’s estimators for the parameter of WR distribution by 

using different Informative and Non-Informative priors under different symmetric and 

asymmetric loss functions. They also compared the classical method with Bayesian method by 

using mean square error through simulation study with varying sample sizes. 

https://www.aijr.in/about/policies/copyright/
https://creativecommons.org/licenses/by-nc/4.0/
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https://doi.org/10.21467/books.44.6
https://doi.org/10.21467/books.44.6


Chapter 6: Bayesian Inference for Exponential Rayleigh Distribution Using R Software 

 

60 ISBN: 978-81-936820-7-4 

 

 

 

Book DOI: 10.21467/books.44 

 

Parameter Estimation 

Consider a random sample nxxxx ,....,, 321  having density function of (6.1) and then the 

likelihood function of the given distribution is as follows: 
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The corresponding log likelihood function of the equation (6.3) is given as under: 
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Differentiating (6.4) with respect to , when the parameter  is assumed to be known, then 

the MLE is obtained as 
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Posterior Distribution and Baye’s Estimators under Non-Informative Prior Using 

Different Loss Functions: 

The extended Jeffrey’s prior suggested by Al-Kutubi (2005) is given as 

               += Rcg
c 1
1

21 ;
1
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)6.6(  

Combining the likelihood function (6.3) and the above prior distribution, then the posterior 

density of   is derived as follows: 
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Hence the posterior density of )),12((~)|( 111 TcnGxg +− , where  
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With the above prior, we use three different loss functions namely Al-Bayyati’s loss function 

(ABLF), Entropy loss function (ELF) and LINEX loss function (LLF) to find Bayes estimates 

for the parameter of model (6.1).   
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Under ABLF the risk function is given by 
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On solving (6.8), we get
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Minimization of the risk with respect to ̂  gives us the Bayes estimator: 
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Remark 6.1:  

Replacing 02 =c  and 2/11 =c  in (6.9) we get the same Bayes estimator as obtained under 

SELF using the Jeffrey’s prior, replace 02 =c and 2/31 =c  we get the same Bayes estimator 

as obtained under SELF using Hartigan’s prior and replace 02 =c and 01 =c  we get the we 

get the same Bayes estimator as obtained under SELF using Uniform prior. Under ELF the 

risk function is given by 
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On solving (6.10), we get 
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Remark 6.2:  

Replacing 2/11 =c  in (6.11) we get the same Bayes estimator as obtained under the Jeffrey’s 

prior, replace 2/31 =c  we get the Hartigan’s prior and replace 01 =c  we get the Uniform 

prior. 

Under LLF the risk function is given by 
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On solving (6.12), we get 
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Minimization of the risk with respect to ̂  gives us the Bayes estimator: 
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Remark 6.3:  

If we put 2/11 =c  in (6.13) we get the same Bayes estimator as obtained under the Jeffrey’s 

prior, If 2/31 =c  we get the Hartigan’s prior and If 01 =c  we get the Uniform prior. 

Posterior Distribution and Baye’s Estimators under Informative Prior Using 

Different Loss Functions: 

The gamma distribution is used as an informative prior with hyper parameters banda , having 

the following p.d.f as: 
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Combining the likelihood function (6.3) and the prior distribution (6.14), then the posterior 

density of   is derived as follows: 
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Hence the posterior density of )),((~)|( 22 TanGxg + ; where  












−+=

=

n

i

ix

ebT
1

2

2
2 .1



 

Remark 6.4:  

For 0== ba  in (6.15), the posterior distribution under the gamma prior reduces to 

posterior distribution under the Jeffrey’s prior. 

For 0,1 == ba  in (6.15), the posterior distribution under the gamma prior reduces to 

posterior distribution under the Uniform prior. 

Under ABLF the risk function is given by 
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On solving (3.16), we get
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Minimization of the risk with respect to ̂  gives us the Bayes estimator: 
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Remark 6.5:  

Replacing 02 =c  in (3.17), we get the same Bayes estimator as obtained under the SELF. 

Under ELF the risk function is given by 
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On solving (6.18), we get 
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Under LLF the risk function is given by 
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Minimization of the risk with respect to ̂  gives us the Bayes estimator: 

an

LLF
T

Tb

b

+








 +
=

2

22

2

log
1

̂ ; where  












−+=

=

n

i

ix

ebT
1

2

2
2 1



.                                )21.6(       

Simulation Study  

In the simulation study, three samples of sizes 25, 50 and 100 to signify small, medium, and 

large data sets have been generated from R software to examine the performance of Classical 

and Bayesian estimates for the parameter of Exponential-Rayleigh (ER) distribution under 

different priors using different loss functions. The data sets are obtained by using the inverse 

cdf method and the value of the parameters  &  are chosen as 5.0=  and 

5.1&0.1,5.0= . The values of Jeffrey’s extension were )4.1,4.0(1 =c  and the values of 

hyper parameters were a= (0.4, 1.4) and b= (0.4, 1.4). The results are replicated 1000 times 

and the average results are presented in table 6.1 and table 6.2. 
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Table 6.1: Baye’s estimators and MSE (in parenthesis) under Extension of Jeffery’s prior 

 

 

n 
 

  1c
 

ML̂  
ABLF̂

 
ELF̂

 

LLF̂
 

c2=0.3
 

c2=-0.3
 

b2=0.4
 

b2=-0.4 

25 
0.5 

 

0.5 

0.4 
0.44148 

(0.0887) 

0.45031 

(0.01033) 

0.43972 

(0.0114) 

0.42736 

(0.0131) 

0.44346 

(0.0111) 

0.44659 

(0.01072) 

1.4 
0.44148 

(0.0887) 

0.41499 

(0.01445) 

0.40439 

(0.0163) 

0.39204 

(0.0188) 

0.40826 

(0.0156) 

0.41115 

(0.01513) 

1.0 

0.4 
0.88297 

(0.4342) 

0.90063 

(0.04131) 

0.87944 

(0.0459) 

0.85471 

(0.0525) 

0.88380 

(0.0449) 

0.89638 

(0.04217) 

1.4 
0.88297 

(0.4342) 

0.82999 

(0.05784) 

0.80879 

(0.0654) 

0.78408 

(0.0755) 

0.81366 

(0.0636) 

0.82524 

(0.06366) 

1.5 

0.4 
1.32445 

(1.1814) 

1.35094 

(0.09295) 

1.31916 

(0.1034) 

1.28207 

(0.1182) 

1.32110 

(0.1027) 

1.34939 

(0.09341) 

1.4 
1.32445 

(1.1810) 

1.24498 

(0.13015) 

1.21319 

(0.1473) 

1.176115 

(0.1700) 

1.21625 

(0.1456) 

1.24230 

(0.13152) 

50 
0.5 

 

0.5 

0.4 
0.4887 

(0.0168) 

0.49356 

(0.00484) 

0.48769 

(0.0049) 

0.48085 

(0.0051) 

0.48967 

(0.0049) 

0.49159 

(0.00487) 

1.4 
0.4887 

(0.0168) 

0.47401 

(0.00528) 

0.46815 

(0.0056) 

0.46131 

(0.0061) 

0.47016 

(0.0054) 

0.47200 

(0.00539) 

1.0 

0.4 
0.97735 

(0.0605) 

0.98712 

(0.01935) 

0.97539 

(0.0197) 

0.96171 

(0.0206) 

0.97744 

(0.0196) 

0.98511 

(0.01940) 

1.4 
0.97735 

(0.0605) 

0.94803 

(0.02112) 

0.93629 

(0.0224) 

0.92262 

(0.0244) 

0.93849 

(0.0221) 

0.94587 

(0.02135) 

1.5 

0.4 
1.4662 

(0.1519) 

1.48068 

(0.04353) 

1.46309 

(0.0445) 

1.44256 

(0.0464) 

1.46332 

(0.0445) 

1.48058 

(0.04353) 

1.4 
1.46602 

(0.1519) 

1.42204 

(0.04751) 

1.40445 

(0.0505) 

1.38392 

(0.0549) 

1.40502 

(0.0504) 

1.42159 

(0.04758) 

100 
0.5 

 

0.5 

0.4 
0.51758 

(0.0083) 

0.51344 

(0.00286) 

0.51706 

(0.0029) 

0.52016 

(0.0030) 

0.518075 

(0.0030) 

0.51915 

(0.00305) 

1.4 
0.51758 

(0.0083) 

0.50308 

(0.00264) 

0.50671 

(0.0026) 

0.50981 

(0.0027) 

0.50773 

(0.0026) 

0.50879 

(0.00271) 

1.0 

0.4 
1.03515 

(0.0329) 

1.02687 

(0.01146) 

1.03412 

0.01190 

1.04033 

(0.0123) 

1.03508 

0.01197 

1.039375 

(0.01229) 

1.4 
1.03515 

(0.0329) 

1.00617 

(0.01056) 

1.01341 

(0.0107) 

1.01962 

(0.0109) 

1.01442 

(0.0107) 

1.01863 

(0.01087) 

1.5 

 

0.4 
1.55273 

(0.0730) 

0.51344 

(0.00286) 

1.55117 

0.0267 

1.56049 

(0.0278) 

1.55102 

(0.0267) 

1.56068 

(0.02784) 

1.4 
1.55273 

(0.0730) 

0.50308 

(0.00264) 

1.52012 

(0.0240) 

1.52944 

(0.0245) 

1.52006 

(0.0240) 

1.52953 

(0.02455) 
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Table 6.2: Baye’s estimators and MSE (in parenthesis) under Gamma prior 

 

n 
   ba =

 
ML̂  

ABLF̂
 

ELF̂
 

LLF̂
 

c2=0.3
 

c2=-0.3
 

b2=0.4
 

b2=-0.4 

25 
0.5 

 

0.5 

0.4 
0.44148 

(0.08879) 

0.45066 

(0.0102) 

0.44014 

(0.01139) 

0.42786 

(0.01301) 

0.44384 

(0.01096) 

0.44697 

(0.0106) 

1.4 
0.44148 

(0.08879) 

0.46013 

(0.0094) 

0.44979 

(0.01036) 

0.43773 

(0.01173) 

0.45339 

(0.01001) 

0.45654 

(0.0097) 

1.0 

0.4 
0.88297 

(0.43422) 

0.89505 

(0.0418) 

0.874151 

(0.04665) 

0.84977 

(0.05338) 

0.87849 

(0.04557) 

0.89082 

(0.0427) 

1.4 
0.88297 

(0.43422) 

0.89858 

(0.0401) 

0.87839 

(0.04469) 

0.85483 

(0.05098) 

0.88256 

(0.04369) 

0.89452 

(0.0410) 

1.5 

0.4 
1.32445 

(1.18140) 

1.33328 

(0.0961) 

1.30215 

(0.10750) 

1.26584 

(0.12319) 

1.30423 

(0.10669) 

1.33158 

(0.0967) 

1.4 
1.32445 

(1.18140) 

1.31685 

(0.0977) 

1.28725 

(0.10948) 

1.25273 

(0.12536) 

1.28937 

(0.10858) 

1.31506 

(0.0984) 

50 
0.5 

 

0.5 

0.4 
0.48867 

(0.01628) 

0.49358 

(0.0048) 

0.48774 

(0.00493) 

0.48093 

(0.00514) 

0.48971 

(0.00489) 

0.49162 

(0.0048) 

1.4 
0.48867 

(0.01628) 

0.49847 

(0.0047) 

0.49268 

(0.00483) 

0.48593 

(0.00498) 

0.49462 

(0.00481) 

0.49653 

(0.0047) 

1.0 

0.4 
0.97735 

(0.06605) 

0.98334 

(0.0192) 

0.97170 

(0.01976) 

0.95813 

(0.02073) 

0.97375 

(0.01965) 

0.98133 

(0.0193) 

1.4 
0.97735 

(0.06605) 

0.98366 

(0.0188) 

0.97224 

(0.01937) 

0.95892 

(0.02029) 

0.97425 

(0.01927) 

0.98169 

(0.0189) 

1.5 

0.4 
1.46602 

(0.15194) 

1.46931 

(0.0432) 

1.45193 

(0.04464) 

1.43164 

(0.04700) 

1.45225 

(0.04461) 

1.46915 

(0.0432) 

1.4 
1.46602 

(0.15194) 

1.45609 

(0.0426) 

1.43919 

(0.04447) 

1.41948 

(0.04725) 

1.43955 

(0.04443) 

1.45586 

(0.0427) 

100 
0.5 

 

0.5 

0.4 
0.51758 

(0.00838) 

0.51341 

(0.0028) 

0.51702 

(0.00297) 

0.52012 

(0.00308) 

0.51804 

(0.00300) 

0.51911 

(0.0030) 

1.4 
0.51758 

(0.00838) 

0.51591 

(0.0029) 

0.51950 

(0.00306) 

0.52259 

(0.00319) 

0.52051 

(0.00309) 

0.52158 

(0.0031) 

1.0 

0.4 
1.03515 

(0.03295) 

1.02469 

(0.0112) 

1.03191 

(0.01169) 

1.03809 

(0.01212) 

1.03288 

(0.01175) 

1.03715 

(0.0120) 

1.4 
1.03515 

(0.03295) 

1.02447 

(0.0111) 

1.03158 

(0.01155) 

1.03771 

(0.01198) 

1.03254 

(0.01161) 

1.03677 

(0.0119) 

1.5 

 

0.4 
1.55273 

(0.07305) 

1.53388 

(0.0250) 

1.54468 

(0.02591) 

1.55394 

(0.02682) 

1.54455 

(0.02589) 

1.55412 

(0.0268) 

1.4 
1.55273 

(0.07305) 

1.52577 

(0.0240) 

1.53641 

(0.02475) 

1.54553 

(0.02549) 

1.53630 

(0.02474) 

1.54567 

(0.0255) 
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From table 6.1 and table 6.2 we conclude that Al-Bayyati’s loss function gives the minimum 

MSE as compared to the other loss functions and among the priors Gamma prior gives the 

less MSE than other assumed priors.  

Conclusion  

In this chapter, we have paralleled the Baye’s estimates of the parameter of the Exponential-

Rayleigh (ER) distribution under extension of Jeffrey’s prior and gamma prior using different 

loss functions with that of maximum likelihood estimate. From the results, Al-Bayyati’s loss 

function gives the minimum MSE as compared to the other loss functions and among the 

priors Gamma prior gives the less MSE than other assumed priors.  
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 Introduction 

In the current era, every manufacturer producing goods want to increase their sales by 

providing some incentives to customers in the form of warranty and guaranty. It is a written 

statement presented by Manufacturers to the customers, promising them to repair or replace 

the product they purchased, if necessary, within a specified period of time. It is additionally a 

way of advertising the standard of the merchandise and thereby boosting sales. A detailed 

review of assorted problems associated with product warranties will be found in Blischke and 

Murthy (1992a, 1992b, 1994) and Chien (2010). 

One of the types of warranty policies is rebate warranty. Under this scheme, a customer (buyer) 

is refunded by some percent of money (sales price) if the product meets the defect during the 

warranty time spam. Batteries and tires are the items sold under this warranty scheme. 

Common forms include: lump sun, and pro-rata rebates. Other issues and discussions related 

to warranty policies can be found in Mitra and Patankar (1993), Murthy (1990), Murthy and 

Blischke (1992).  

The manufacturers shall only provide these incentives when they have the faith on the 

products that their product has the ability to serve at least for the time period warranty is given. 

Therefore, it is essential for manufacturers to test the reliability and performance of the 

products before letting them serve in the market. This can be done by using accelerated life 

testing (ALT) on products, where products are put at higher stresses than normal to induce 

failure and predict their life under normal use conditions. ALT also helps Manufacturers to 

predict the various costs associated with the product under warranty policy. The main aim of 

ALT is to find the failure data of such products and systems by subjecting them to the higher 

levels of stresses. Hence accelerated life testing is needed to quickly provide the information 

about the life distribution of products.   

https://www.aijr.in/about/policies/copyright/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.aijr.in/
https://doi.org/10.21467/books.44.7
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For analysing ALT efficiently and to obtain performance data, the experimenter needs to 

determine the testing method, statistical model, form of the life data and a suitable statistical 

method. Analysing these measures properly, provides the best estimates of the product’s life 

and performance under usual conditions.   

There are researchers who combined accelerating life testing and warranty models.  

GuangbinYang, (2010), provided a method for describing the warranty cost, and its confidence 

interval. El-Dessoukey (2015) used accelerated life tests along with Exponentiated Pareto 

distribution to describe age replacement policy under warranty policy. 

The article describes how to use accelerated life testing procedures for predicting the cost of 

age replacement of units or products under warranty policy. Under constant stress, the 

generalized exponential distribution is assumed to cover the lifetimes of the products. The 

chapter also describes the age replacement policy in the combination of pro-rata rebate 

warranty for non-repairable units. 

Model Description and Test Method 

ALT is a best used method for reliability and life prediction of systems or components. 

Designing the ALT plan, needs to determine the following: 

i. The statistical distribution of failure times of products. 

ii. Type of data used, complete or censored.  

iii. Type of censoring scheme. 

iv. The type of stress to be used. 

v. The stress level selected. 

vi. The percentage of test units allocated for each stress level. 

vii. The mathematical model describing the relation between life and stress (life-

stress relationship). 

This study is dealt with constant stress and type-I censored data under the assumption that 

the lifetimes of the units follows generalized exponential distribution. There are k levels of 

high stresses KjV j ,...,2,1, = and assume that uV is the normal use condition satisfying

ku VVVV  ....21 . At each stress level, there are jn units put on test and the 

experiment terminates once the number of failures jr  among these jn units are observed. 

For the detailed review of constant stress ALT one may refer to Abdel-Ghaly et al. (1998), El-

Dessouky (2001), Attia et al. (2011), and Attia et al. (2013). The studies have shown that the 

two-parameter Generalised Exponential distribution can selectively used in place of two-

parameter gamma and two-parameter Weibull distributions for analysing many lifetime data 
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(see, Gupta and Kundu 1999). The probability density function (pdf) of a generalised 

Exponential distribution is given by 
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where, the shape papameter ,0j  and the scale parameter ,0  hence denoted by

),( GE . The CDF of generalised Exponential distribution is 
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The survival function is given by
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The failure rate or hazard rate is given by 
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The studies have shown that GE distribution very well represents the life of modern products. 

The hazard function behaves like as of gamma distribution, see Ahmad (2010). 

It is also assumed that the stress kjV j ,...,2,1, =
 
only affects the shape parameter of the 

Generalised exponential model, j  through a life stress model called power rule model given 

by: 

( ); 0 , 0 , 1,2,..., 7.4p

j jCV C p j k −=   =   

where C  is the proportionality constant, and p  is the power of the applied stress, are the 

two model parameters. 
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The Estimation Procedure 

The likelihood function of an observation t (failure time of an item) is developed at stress 

level jV . Since at each stress level jV , there are jn units put under test. Here, the total 

population experimental units are N=
=

k

i

jn
1

. Applying type-I censoring at each stress level, it 

can be seen that the once the censoring time "" 0t is reached the experiment automatically 

terminates. Assume that ( )
jj nr   failures are observed at the jth  stress level prior to the 

termination of the test and ( )
jj rn −  units still survived. Therefore, likelihood function 

becomes: 

( )
( )

( ) ( ) ( )0

1 1

, , ; , , 1 7.5
!

j

j j

rk
n rj

j ij j

j ij j

n
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 
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Where 0t is the time of cessation of the test. 

Using InL  to denote the natural logarithm of ( ) ,,CL j , then we have 
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where K is a constant, ( ) 

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



 −
−=



ij

ij

t
tW exp1 & ( ) 







 −
−=


0

0 exp1
t
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The first derivative of the logarithm of the likelihood function in equation (7.6) with respect 

to pC &, are obtained as: 
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2 2
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1 0
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p

jCV
tWt

−

−= 00 1  

The ML estimates of C, and p are obtained by equating the above equations to zero. Also, 

the variance-covariance matrix is obtained using the fisher information matrix of the form: 
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Thus, the approximate ( ) 0
01001 −  confidence intervals for pC &,  are given by: 

 
( ),ˆvarˆ

2/  Z
          

( ),ˆvarˆ
2/ CZC 

           
( ),ˆvarˆ

2/ pZp 
   

Where 2/Z
is the ( )2/1100 −  percentile of a standard normal variate. 

Simulation Procedure 

Numerical studies are carried out to check the performances of the ML estimates. The 

invariance property of MLE is used to estimate the MLEs of shape Parameter j  through; 

 
kjpCCV p

jj ,...,2,1,0,0; == −  

The detailed steps are given below 

1) The total of thousand random samples of sizes 50, 100, 150 and 200 are generated 

from Generalised Exponential distribution.  

2) Three different levels of stress, k=3, are chosen as below.

( ) jjj nr
n

nVVV %60&
3

,2,5.1,1 321 ===== . 

3) For sample sizes, type-I censored samples are used to estimate the parameters using 

Newton-Raphson method. 

4) The RABs and MSE are tabulated for all sets of ( )000 ,, pC . 

5) Using the invariance property of MLEs, we calculate the MLEs of the shape 

parameter u at usual stress level 5.0=uV .We also calculate the reliability function 

for different values of 0&,, tpC , 
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Also, at each at mission time ( )2.2&8.1,5.10 =t , the MLEs of the reliability function are 

predicted for all sets of parameters. 

Simulation results are summarised in Tables (7.1), (7.2) and (7.3). Tables (7.1) and (7.2) give 

the estimators, RABs and MSEs. Tables (7.3) give the estimated shape parameter under

5.0=uV . And the reliability function is predicted under 5.0=uV . 

Table 7.1: The Estimates, Relative Bias and MSE of the parameters ( )321 ,,,,,  PC

under type-II censoring 

 

      n 

 

Parameter

s 

( )1,5.1,25.0 000 === pC   ( )1,5.1,1 000 === pC  

Estimator RABs MSEs Estimator RABs MSEs 

 

 

 

  50 

       

     C  

     P  

     
1  

     
2  

     3  

0.229 

1.411 

0.930 

1.411 

0.967 

0.740 

0.084 

0.059 

0.070 

0.059 

0.057 

0.056 

0.078 

0.044 

0.062 

0.044 

0.042 

0.042 

0.930 

1.421 

0.925 

1.421 

0.976 

0.748 

0.070 

0.052 

0.075 

0.052 

0.050 

0.049 

0.076 

0.063 

0.071 

0.063 

0.062 

0.059 

 

 

 

 100 

       

     C  

     P  

     
1  

     
2  

     3  

0.234 

1.429 

0.933 

1.429 

0.955 

0.748 

0.064 

0.047 

0.067 

0.047 

0.045 

0.044 

0.064 

0.035 

0.071 

0.035 

0.034 

0.033 

0.947 

1.436 

1.098 

1.436 

0.920 

0.670 

0.053 

0.042 

0.098 

0.042 

0.040 

0.039 

0.056 

0.048 

0.077 

0.048 

0.046 

0.045 

  

 

 

 150 

       

     C  

     P  

     
1  

     
2  

     3  

0.239 

1.449 

0.946 

1.449 

0.987 

0.752 

0.044 

0.034 

0.054 

0.034 

0.033 

0.032 

0.042 

0.034 

0.046 

0.034 

0.033 

0.032 

0.951 

1.561 

1.052 

1.561 

1.018 

0.752 

0.049 

0.040 

0.052 

0.040 

0.039 

0.038 

0.051 

0.041 

0.046 

0.041 

0.040 

0.039 
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  200 

       

     C  

     P  

     
1  

     
2  

     3  

0.252 

1.480 

1.113 

1.480 

0.942 

0.684 

0.008 

0.013 

0.113 

0.013 

0.012 

0.012 

0.010 

0.003 

0.010 

0.003 

0.002 

0.003 

0.976 

1.467 

0.955 

1.467 

0.996 

0.756 

0.024 

0.022 

0.045 

0.022 

0.021 

0.021 

0.030 

0.023 

0.031 

0.023 

0.023 

0.022 

Table 7.2: The Estimates, Relative Bias and MSE of the parameters ( )321 ,,,,,  PC

under type-II censoring 

    

      N 

 

parameters 
 ( )1,1,25.0 000 === pC   ( )5.1,1,1 000 === pC  

Estimator RABs MSEs Estimator RABs MSEs 

 

 

 

  50 

       

     C  

     P  

     
1  

     
2  

     3  

0.231 

1.103 

0.929 

1.103 

0.756 

0.579 

0.076 

0.103 

0.071 

0.103 

0.074 

0.072 

0.081 

0.047 

0.058 

0.047 

0.046 

0.045 

0.928 

1.071 

1.421 

1.071 

0.601 

0.400 

0.072 

0.071 

0.052 

0.071 

0.069 

0.068 

0.067 

0.067 

0.063 

0.067 

0.065 

0.064 

 

 

 

 100 

       

     C  

     P  

     
1  

     
2  

     3  

0.237 

1.098 

0.937 

1.098 

0.750 

0.573 

0.052 

0.098 

0.063 

0.098 

0.095 

0.093 

0.057 

0.042 

0.075 

0.042 

0.040 

0.039 

0.939 

1.056 

1.436 

1.056 

0.590 

0.390 

0.061 

0.044 

0.042 

0.044 

0.043 

0.043 

0.055 

0.050 

0.065 

0.050 

0.049 

0.048 

  

 

 

 150 

       

     C  

     P  

     
1  

     
2  

     3  

0.239 

1.049 

0.958 

1.049 

0.711 

0.539 

0.044 

0.049 

0.042 

0.049 

0.048 

0.047 

0.045 

0.033 

0.040 

0.033 

0.032 

0.032 

0.948 

1.041 

1.561 

1.041 

0.552 

0.352 

0.052 

0.041 

0.040 

0.041 

0.040 

0.039 

0.042 

0.036 

0.056 

0.036 

0.035 

0.034 
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 200 

       

     C  

     P  

     
1  

     
2  

     3  

0.252 

1.060 

1.013 

1.060 

0.702 

0.525 

0.008 

0.060 

0.013 

0.060 

0.060 

0.059 

0.017 

0.023 

0.021 

0.023 

0.022 

0.022 

0.981 

1.035 

1.467 

1.035 

0.570 

0.374 

0.019 

0.025 

0.022 

0.025 

0.024 

0.024 

0.036 

0.031 

0.025 

0.031 

0.030 

0.030 

 

Table 7.3: The estimated shape parameter and Reliability function at normal stress level 

taking n=200. 

 0  0C  0P             0    0t  ( )0tRu  

  

0.25 

 

 1.5 

 

  1 

        

      3.201165 

 0.2 

 0.4 

 0.6 

0.8518 

0.5141 

0.2624 

 

   1 

 

 1.5 

 

  1 

       

      2.843896 

 0.2 

 0.4 

 0.6 

0.9922 

0.9573 

0.8959 

 

0.25 

 

  1 

 

  1 

 

      2.139189 

 0.2 

 0.4 

 0.6 

0.7208 

0.3826 

0.1840 

  

   1 

 

  1 

 

1.5 

 

      2.861221 

 0.2 

 0.4 

 0.6 

0.9924 

0.9581 

0.8974 

 

The Replacement Policy with the prospective of Pro-Rata Rebate Warranty Scheme 

This warranty policy is applicable on the non-repairable products. The product is replaced 

upon failure or at a certain time age (τ), which among the two occurs first. Upon failure at

t , a failure replacement is performed with 0Cd  (downtime cost) and 0Cp

(purchasing cost). The customer is refunded a proportion of sales priceCp  if the 

defect/failure occurs in the warranty period (w). The rebate function is given by: 

    ( ) ( )
1 0

7.17

0

t
Cp t w

R t w

t w

  
−    

=  
 

There is some literature available on age-replacement policy, e.g. Chien and Chen (2007a), 

Chien and Chen (2007b), Huang et al. (2008), Chien (2010), Chien at al. (2014),  Na and Sheng 
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(2014), have used the different warranty policies and observed their effects under both 

producer and consumer perspective. The current study dealt with estimating the expected total 

cost and expected cost rate for age replacement of units under warranty policy. The pro-rata 

rebate warranty policy has also been taken into consideration. It is assumed that there is no 

salvage value for the preventively replaced product. The preventive replacement is carried out 

with cost Cp at the product age τ.  

Therefore, the total cost incurred in a renewal cycle is: 

( )
( )

( )18.7

0











+

−+

=





tCp

twCpCd

wttRCpCd

dC  

According to Chein (2010) and Chein et.al (2014), the expected total cost function under this 

policy is: 

( )( ) ( )

( )

( )19.70

w

duuF

CpCdFtCE

w


+=   

And, the expected cost rate is  

( )( )
( )( )

( )

( )20.7

0



=


duuF

tCE
tCRE  

Where ( )


0

duuF is the expected cycle time which is denoted by ( )( )TE . 

Under Generalised Exponential distribution: 

We have

( )( ) 1 ; 0, , 0 7.21

u

F u e u



  
− 

= −   
 
 

 

Therefore z

 

 

Also, 

( ) ( )
0

0

1 7.23

u

F u du e du







− 
= − − 

 
 

   
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Substituting equations (7.22) and (7.23) into equations (7.19) and (7.20), respectively, we obtain 

the expected total cost and expected cost rate for the non-repairable product. It can be seen 

that the function defined in the above equations does not have the elementary integral. 

Therefore, a numerical approximation can be obtained by substituting the values of all the 

parameters involved, except for the variable of integration.  

Now for an application example, if the item is replaced with downtime cost 50=Cd and 

purchasing cost 1000=Cp . The expected total cost, expected cost rate, and expected cycle 

time are estimated. Also, the estimated values of the parameters of generalised exponential 

distribution α and β are obtained under normal conditions as shown in table 7.4. 

Table 7.4: The expected total cost, the expected cycle time and the expected cost rate for 

age-replacement under warranty policy on Generalised Exponential distribution. 

       Β    Α   w   τ    E(C(τ)) E(T(τ))   CR(τ) 

  2 0.2   5   7 930.1232 5.7921 230.885 

  3 0.2   5   7 944.1763 6.4909 215.4057 

  4 0.2   5   7 955.8282 6.9264 199.7983 

  5 0.2   5   7 973.2882 7.3589 174.5714 

  5 0.3   5   7 882.6932 6.0825 183.0282 

  5 0.4   5   7 830.1848 5.2488 204.6751 

  5 0.4   6   7 903.7913 6.2867 208.0381 

  5 0.4   7   7 947.5114 7.5112 218.3333 

  5 0.4   8   8 988.8976 8.0751 203.3333 

  5 0.4   8   9 1012.512 8.4758 200.4356 

  5 0.4   8   10 1050.812 8.8752 216.6667 

 

 Results and Conclusion 

In the table (7.1) and (7.2), it can observe that the modules of the difference between the true 

value of the parameter and its estimator converges to zero, hence consistent.  From table (7.3), 

it can be noticed that the reliability function decreases as the mission time 0t increases. It is 
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obvious that whenever a product is tested for a long period of time, its reliability decreases 

because of the wear out in the product. The studies show that the preventive replacement will 

be strongly affected under PRRW. Particularly, when the product is proven to failures, and 

adding the PRRW will extend the optimal replacement age closer to the warranty period. 
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Introduction 

In recent years generating new distributions to analyse different life time data has received 

considerable attention. A number of methods are available in literature that can be used to 

generalise the existing models to make them more flexible. Among various diverse generalizing 

methods available, the generalization of our interest is T-X family of distribution by Alzetreeh  

et al (2012). . Let r (t) be the PDF of a non-negative continuous random variable T defined on 

[0, ∞), and let F(x) denote the CDF of a random variable X. Then the CDF for the T-X family 

of distributions for random variable X is 

                                                    
−−

=

))(1log(

0

)()(

xF

dttrxG   .                                                    (8.1) 

And the corresponding PDF is given by 
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Let T follow gamma distribution with PDF 
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Using (8.3) in (8.1) we obtain the   CDF of Gamma-X family of distribution given as 
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1,  is the incomplete gamma function. 
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The corresponding PDF of Gamma-X family is given by 

( )  ( ) 1
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xFxFxfxG                                                   (8.5) 

A number of distributions have been developed using gamma-X generalization. A few among 

them are: Gamma-Pareto Distribution and Its Applications by Alzaatreh et al. (2014), the 

gamma-normal distribution: Properties and applications by Alzaatreh et al. (2012) etc. 

In this context we propose an extension of Rayleigh distribution known as Gamma- Rayleigh 

distribution (GRD for short) using gamma-X family of distribution in order to make the 

distribution more flexible to real life data. The outline of this paper is as follows: in section 

8.2, the PDF and CDF of proposed distribution i.e., GRD is derived. Various statistical 

properties of the distribution such as moments, moment generating function, mode etc. are 

discussed in section 8.3. The reliability measures of the distribution are discussed in section 

8.4. The expressions for different information measures of the distribution is obtained in 

section 8.5. In section 8.6, expressions for mean deviation and median are derived. The 

parameter estimation of the parameters of the distribution is discussed in section 8.7. In 

section 8.8 the application of the proposed model is debated using real life examples and finally 

some conclusions and discussions are given at the end.   

Derivation of GRD 

The cumulative distribution function (CDF) of Rayleigh distribution is given by 

                         
2
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x

exF
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−=                                                                                    (8.6) 

The probability density function (PDF) of Rayleigh distribution is given by 
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Using (8.6) in (8.4) we get, the CDF of GRD given by  
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and the corresponding PDF of GRD is given by 
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If we put  1=  and 1=  in (8.9) we get the PDF of Rayleigh distribution.  
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Statistical Properties and Reliability Measures 

In this section, the basic statistical properties of the proposed distribution are investigated. 

Moments  

The thr  moment about origin can be obtained as 
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1 dzez z is the gamma function. 

Putting r=1, 2, 3, 4 in (8.10) we can obtain first four moments about origin. 

Mean and Variance of GRD 

The mean and variance of the GRD is given as 
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 Moment Generating function 

 The moment generating function of the GRD can be derived as 
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Using (10) in above equation, we get 
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Mode  

The mode of the GRD can be obtained as 
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Harmonic mean 

The harmonic mean of the GRD can be obtained as 




=
0

)(
1

.. dxxg
x

MH  

          
( )

 −
−











=

0

1

2

2
2

2 2

1 2

2

dx
x

e
x

x

x




 
 

          

( ) 2

1
;

)2(

2

1

2
1

2












−

= 




 

https://doi.org/10.21467/books.44


Chapter 8: Gamma Rayleigh Distribution: Properties and Application 

 

 

Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions 

85 

Reliability analysis of GRD 

Survival and Failure Rate Functions 

The survival function, hazard rate function and reverse hazard rate function associated with 

the GRD is given by Eqn. (8.11), (8.12) and (8.13) respectively 
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Mean Residual Time and Mean Waiting Time 

The mean residual time is given by 
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The mean residual time of GRD is given as 
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Also, the mean waiting time which is the waiting time elapsed since the failure of an item given 

that that this failure has happened in the interval [0, t] is given by  
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The mean waiting time of GRD is given as 
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The graphs of PDF, CDF and hazard function for different value of the parameter are given 

below 

Figure 8.1: Graph of density function 

Fig 8.1 represents Graphs of Probability density function of Gamma Rayleigh distribution for 

different values of parameter   when  and are fixed. Fig 8.2 represents Graphs of 

Probability density function of Gamma Rayleigh distribution for different values of parameter 

  when  and are fixed. Fig 8.3 represents Graphs of Probability density function of 

Gamma Rayleigh distribution for different values of parameter   when  and are fixed. 

Fig 8.4 represents Graphs of Probability density function of Gamma Rayleigh distribution for 

different values of parameter ,  and . Fig 8.5 represents Graphs of hazard function of 

Gamma Rayleigh distribution for different values of parameter  ,  and . 
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Figure 8.2: Graph of density function 

Figure 8.3: Graph of density function 
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Figure 8.4: Graph of density function 

 

Figure 8.5: Graph of density function 
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Information Measures 

Renyi Entropy 

The Renyi entropy  is denoted by ( )RI  and is defined as: 

                                        ( ) ( ) 1,0;log
1

1










−
= 



−







dxxfIR
 

Therefore, the Renyi entropy for GRD is given as 
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Shannon Entropy 

The Shannon entropy is defined as  

        )(log xfEX −=  

The Shannon entropy for gamma –x family is given as 
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Where  the digamma function and T the gamma random variable with parameters  and 

 (see Alzaatreh, et al. [3] for proof details). 

We have 
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Using (8.15) in (8.14) we get the Shannon entropy of GRD as given below 

              ( ) ( ) )
2

1
(

2

1
logloglog

2

1
−+−+++=X  

Mean Deviation About Mean and Median 

The mean deviation about mean of the GRD can be obtained as 
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The mean deviation about median of the GRD can be obtained as 
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Parameter Estimation 

Let nXXX ,, 21 be a random sample of size n from the GRD then the log likelihood 

function is given by 
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(8.16) 

Taking the derivative of the natural logarithm of the likelihood function (8.16) w.r.t α, β and 

θ respectively and equation to zero we get the following three equations: 
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The MLE’s of the parameters α, β and θ can be obtained by solving system of equations (8.17), 

(8.18) and (8.19). Methods such as Newton –Raphson technique can be used to solve these 

non-linear equations.  

Application  

In this section, three real life data sets are used to demonstrate the usefulness of GRD. The 

analysis is performed by using R Software. The distribution that are being used for comparison 

purpose with the proposed model are  

1. Rayleigh distribution (RD) given by Rayleigh (1980) with PDF 

                                  0,0;),(
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2. Weibull- Rayleigh distribution (WRD) given by Ahmad et al. (2017).  with PDF  
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Data set 8.1: This data set were used by Birnbaum and Saunders (1969) and correspond to 

the fatigue time of 101 6061-T6 aluminium coupons cut parallel to the direction of rolling and 

oscillated at 18 cycles per second (cps).  

Table 8.1: MLE’s estimates, AIC, BIC, AICC for the fitted models to the Data set  

Distribution MLE -Log L      AIC    BIC AICC 

̂  ̂  
̂  

GRD 11.652   8.459 9.7927 423.75 853.51 861.21 853.71 

RD   97.2239 504.21 1010.4 1012.9 1010.6 

WRD 3.2083      20.602      22.575 433.88 873.77 881.46 873.97 
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Data set 8.2: The data are the exceedances of flood peaks (in m3/s) of the Wheaton River 

near Car cross in Yukon Territory, Canada. The data consist of 72 exceedances for the years 

1958–1984, rounded to one decimal place. This data were analysed by Choulakian and 

Stephens (2001) and are given below 

1.7, 2.2 ,14.4 ,1.1 ,0.4, 20.6, 5.3 ,0.7, 13.0, 12.0, 9.3 ,1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1, 1.1 ,2.5, 

14.4, 1.7 37.6 0.6 2.2, 39.0 ,0.3 ,15.0 ,11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0, 20.1, 0.4, 14.1, 

9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4, 2.7, 64.0, 1.5, 2.5, 

27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5 ,2.5, 27.0, 1.9, 2.8. 

Table 8.2: MLE’s estimates, AIC, BIC, AICC for the fitted models to the Data set  

Distribution MLE -Log L      AIC    BIC AICC 

̂  ̂  ̂  

GRD 0.324 6.408 8.4712 251.276 508.553 515.383 508.75 

RD   12.207 607.675 609.952 609.952 607.87 

WRD 0.450 4.091 4.066 251.498 508.997 515.827 509.19 

 

Data set 8.3: The data set represents the lifetime data relating to relief times (in minutes) of 

20 patients receiving an analgesic and reported by Gross and Clark (1975). 

1.1,1.4,1.3,1.7,1.9,1.8,1.6,2.2,1.7,2.7,4.1,1.8,1.5,1.2,1.4,3,1.7,2.3,1.6,2. 

Table 8.3: MLE’s estimates, AIC, BIC, AICC for the fitted models to the Data set 

Distribution MLE -Log L      AIC    BIC AICC 

̂  ̂  ̂  

GRD    2.3428   0.0528 4.0596 19.170 44.340 47.327 44.540 

RD   1.4284 22.478 46.957 47.953 47.157 

WRD   1.3935 0.2219   3.1969 20.586 47.172 50.160 47.372 
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Discussion 

Since the model with the least value of AIC, AICC, BIC are considered to be best fit, it can 

be seen from Table 8.1, Table 8.2 and Table 8.3 that GRD has the least value of AIC, AICC 

and BIC for all the data sets. Hence GRD fits the given data sets quite well as compared other 

models used for comparison. The histograms of the three data sets and the estimated PDF’s 

of the proposed and competitive models are displayed in Figure 6(a), Figure 6(b) and Figure 

6(c). 

Conclusion 

In this paper we have successfully defined a three parameter Gamma Rayleigh distribution 

based on T-X family of distribution introduced by Alzetreeh et al (2012). Some of the structural 

Figure 6: (a) Plots of the estimated PDF of 

GRD and other competitive models for Data 

set 1.  

(b) Plots of the estimated PDF of GRD and 

other competitive models for Data set 2.  

(c) Plots of the estimated PDF of GRD and 

other competitive models for Data set 3. 

 



Chapter 8: Gamma Rayleigh Distribution: Properties and Application 

 

94 ISBN: 978-81-936820-7-4 

 

 

 

Book DOI: 10.21467/books.44 

 

properties including moments, mgf, and harmonic mean are studied. Also the entropy 

estimation of proposed Distribution is carried out. The parameters involved in the distribution 

are estimated by maximum likelihood method. The flexibility of this model is illustrated by 

means of three real life data sets and it is evident that the Gamma Rayleigh distribution 

provides better fit than Inverse Rayleigh distribution. 
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Introduction 

The Randomized response (RR) technique was first presented by Warner (1965) mainly to cut 

down the probability of (i) reduced response rate and (ii) inflated response bias experienced in 

direct or open survey relating to sensitive issues. Some recent involvement to randomized 

response sampling is given by Fox and Tracy (1986), Singh and Mathur (2004, 2005), 

Gjestvang and Singh (2006), Singh and Tarray (2013, 2014, 2015, 2016) and Tarray and Singh 

(2016, 2017, 2018) . We below give the description of the model due to Singh (2010): 

Singh (2010) Additive Model 

Let  there be k scrambling variables denoted by Sj , j = 1,2,…,k whose mean θj  (i.e. E(Sj) =θj) 

and variance 2
j  (i.e. V(Sj) = 2

j ) are known. In Singh’s (2010) proposed optimal new 

orthogonal additive model named as (POONAM), each respondent selected in the sample is 

requested to rotate a spinner, as shown in Fig. 9.1,  in which the proportion of the k shaded 

areas, say P1, P2, … Pk are orthogonal to the means of the k scrambling variables, say 

k21 ,...,,  such that: 

    0P j

k

1j
j =

=

                                                                                                           (9.1) 

and 1P
k

1j
j =

=

                                                                                                               (9.2) 

https://www.aijr.in/about/policies/copyright/
https://creativecommons.org/licenses/by-nc/4.0/
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Figure 9.1: Spinner for POONAM (Singh (2010)) 

Now if the pointer stops in the jth shaded area, then the ith respondent with real value of the 

sensitive variable, say Yi, is requested report the scrambled response Zi as: 

      jii SYZ +=                                                                                                              (9.3) 

Assuming that the sample of size n is drawn from the population using simple random 

sampling with replacement (SRSWR). Singh (2010) suggested an unbiased estimator of the 

population mean Y as   

   =
=

n

1j
jY Z

n

1
ˆ                                                                                                                (9.4) 

The variance of Y̂  is given by  

         







++=

=

)(P
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1
)ˆ(V 2
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2
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1j
j

2
yY                                                                            (9.5) 

The proposed procedure 

It is to be noted that the mean θj and variance 2
j  

of the jth scrambling variable Sj (j=1,2,…,k) 

are known. Author has to propose a new additive model based on standardized scrambling 

variable 














+
=

)C1(

S
S

2
jj
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j , j = 1,2,…,k .  
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As demonstrated in Fig. 9.2, in which the proportion of the k shaded areas, say P1, P2, … Pk 

are orthogonal to the means of the k scrambling variables ( ),k,...,2,1j,S j =
say 

k21 ,...,,  such that: 

    0P j

k

1j
j =

=

                                                                                                             (9.6) 

and 1P
k

1j
j =

=

                                                                                                                (9.7) 

Now if the pointer stops in the jth shaded area, then the ith respondent with real value of the 

sensitive variable, say Yi, is requested report the scrambled response 

iZ as: 

   
 += jii SYZ                                                                                                            

(9.8) 

we prove the following theorems. 

 

Figure 9.2: Spinner for proposed procedure. 
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Theorem 9.1  
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Proof 

Let E1 and E2 denote the expectations, then we have 
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which proves the theorem. 

Theorem 9.2  
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Efficiency Comparison 

From (9.5) and (9.4), we have 
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In case the scrambling variable Sj follows a normal distribution  

(i.e. Sj ~N(j , j
2) ,  k,...,2,1j = ) , then Aj reduces to: 
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jj ++=                                                                                       (9.12) 

Thus the condition (9.1) reduces to: 
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The condition (9.3) clearly indicates that












=
+

++
 k,...,2,1j,

)C1(

)C3C61(

32
j

4
j

2
j2
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proposed model is always better.  

Further , suppose Sj ~N(j , j
2) ,  k,...,2,1j =  ,  =0 and j  = 0 k,...,2,1j = , then the 

variance expression in (9.5) and (9.4) respectively reduce to: 
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and 

    3
n

1
)ˆ(V 2

yST +=                                                                                                     (9.15) 

From (9.4) and (9.5) we have 

   







−=−

=

3P
n

1
)ˆ(V)ˆ(V 2

j

k

1j
jYST  

                              

( )3P
n

1 2
j

k

1j
j −=

=

                                                                               (9.16) 

which is always positive if 

          ( ) 032
j −        k,...,2,1j =  

i.e. if  32
j 

               

k,...,2,1j =
                                                                                             (9.17) 

Thus when Sj ~N(0 , j
2) ,  k,...,2,1j =  , ST̂

 
is more efficient  as long as the condition 

(9.7) is satisfied.  
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In case Sj follows a normal distribution (i.e. Sj ~N(j , j
2) ,  k,...,2,1j = ) , PRE  of ST̂

with Y̂ by using the formula: 

   

 
100

)C1(

AP

)(P

)ˆ,ˆ(PRE
k

1j
22

j

jj2
y

k

1j

2
j

2
jj

2
y

YST 
















+
+









 ++

=

=



=
                                                         (9.18) 

where 

jA  is given in (9.2). 

Suppose γ=40, 1= 30,    2= 40, 3 = 20, 4= 10, P1=0.02, P2=0.05, P3=0.06, P4=0.87 with k 

= 4 . 4321
2
y and,,,   as listed in Table 9.1.  

Table 9.1: ( )YST
ˆ,ˆPRE   

2
Y  1  2  3  4  PRE  

25 

300 200 100 -25.20 18523.16 

800 700 600 -100.00 242264.29 

1300 1200 1100 -174.70 732808.85 

1800 1700 1600 -249.40 1490172.55 

125 

300 200 100 -25.20 4130.07 

800 700 600 -100.00 53073.44 

1300 1200 1100 -174.70 160380.06 

1800 1700 1600 -249.40 326053.37 

225 

300 200 100 -25.20 2362.49 

800 700 600 -100.00 29839.47 

1300 1200 1100 -174.70 90081.79 

1800 1700 1600 -249.40 183091.37 

325 

300 200 100 -25.20 1672.71 

800 700 600 -100.00 20772.56 
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1300 1200 1100 -174.70 62648.32 

1800 1700 1600 -249.40 127301.32 

425 

300 200 100 -25.20 1305.25 

800 700 600 -100.00 15942.52 

1300 1200 1100 -174.70 48034.22 

1800 1700 1600 -249.40 97581.38 

525 

300 200 100 -25.20 1076.99 

800 700 600 -100.00 12942.05 

1300 1200 1100 -174.70 38955.77 

1800 1700 1600 -249.40 79119.00 

625 

300 200 100 -25.20 921.41 

800 700 600 -100.00 10897.13 

1300 1200 1100 -174.70 32768.55 

1800 1700 1600 -249.40 66536.36 

725 

300 200 100 -25.20 808.58 

800 700 600 -100.00 9414.01 

1300 1200 1100 -174.70 28281.11 

1800 1700 1600 -249.40 57410.48 

825 

300 200 100 -25.20 723.01 

800 700 600 -100.00 8289.13 

1300 1200 1100 -174.70 24877.59 

1800 1700 1600 -249.40 50488.93 
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 From Table 9.1 ( )YST
ˆ,ˆPRE   are greater than 100. It shows ST̂ is more efficient 

than  
Y̂   with substantial gain. Thus, the estimator ST̂  over  

Y̂  is recommended. 

Table 9.2: PRE of  ST̂ ove Y̂ . 

2
y  

25 125 225 325 425 525 625 725 825 

PRE 835.71 260.94 190.35 162.80 148.13 139.02 132.80 128.30 124.88 

The minimum values from 9.2 is observed as 124.88 and maximum 835.71 with a median of 

148.13. 

Table 9.2 PRE remains higher if the value of 
2
y  is small. In that case the value of 

2
y  will be 

around 0.5 to 5.0 (see Singh (2010), p. 67). It is observed that the PRE value decreases from 

5985.71 to 2675.00 as the value of 
2
y  increases from 0.5 to 5.0 .  

Case k = 2 and the )ˆ,ˆ(PRE YST  for different parameters. Results are shown in Table 9.3. 

Thus, the estimator ST̂ over the estimator Y̂ is recommended.  

Table 9.3:   PRE of the estimator ST̂ over the estimator Y̂  with k =2. 

P1 1 2 
2
Y  PRE  

0.2 1300 -325.0 

25 1514232.14 

125 331316.41 

225 186046.05 

325 129355.18 

425 99155.37 

525 80394.89 

625 67609.08 

725 58335.85 

825 51302.54 

0.4 300 -200.0 

25 219089.29 

125 48003.91 

225 26993.42 

325 18794.21 

425 14426.40 

https://doi.org/10.21467/books.44


Chapter 9: A New Optimal Orthogonal Additive Randomized Response Model Based on Moments Ratios of Scrambling Variable 

 

 

Bayesian Analysis and Reliability Estimation of Generalized Probability Distributions 

105 

 

Conclusion  

This paper elucidates amelioration over the Singh’s (2010) randomized response model. We 

have advocated the optimal orthogonal additive randomized response model. The proposed 

model is found to be more resourceful both theoretically as well as numerically than the 

additive randomized response model studied by Singh (2010).  Thus, the suggested RR 

procedure is therefore indorsed for its use in practice as an alternative to Singh’s (2010) model.  

 

Author’s Detail 

Tanveer A. Tarray 

525 11713.07 

625 9863.85 

725 8522.66 

825 7505.43 

0.4 800 -533.3 

25 1528536.91 

125 334445.57 

225 187802.78 

325 130576.32 

425 100091.20 

525 81153.47 

625 68246.87 

725 58886.03 

825 51786.27 

0.8 300 -1200.0 

25 1289517.86 

125 282160.16 

225 158449.56 

325 110172.26 

425 84454.44 

525 68478.22 

625 57589.97 

725 49692.99 

825 43703.50 
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Introduction: 

The Gompertz distribution plays an important role in modeling survival times, human 

mortality and actuarial tables. Gompertz probability distribution has many useful applications 

in areas of technology, medical, biological, and natural sciences. The Gompertz distribution 

was introduced by Gompertz (1825), and many authors have contributed to the statistical 

methodology and characterization of this distribution. Ismail (2010) discussed Bayes 

estimation for unknown parameters of Gompertz distribution and acceleration factors under 

partially accelerated life tests with Type-I censoring. Based on progressive first-failure 

censoring plans. Soliman et al. (2012) studied Bayes and frequentist estimators for two-

parameter Gompertz distribution. Feroze and Aslam (2013) obtained point and interval 

estimates for the parameters of the two-component mixture of the Gompertz model based on 

Bayes Method along with posterior predictions for the future value from model. Sarabia et al. 

(2014) exploded several properties of the Gompertz distribution when lifetime or other kinds 

of data available fully observed. Prakash (2016) discussed about the Bayes prediction bound 

length under different censoring plans and statistical inference based on a random scheme 

under progressive Type-II censored data for Gompertz model. Reyad et al. (2016) introduced 

a comparative study for the E-Bayesian criteria with three various Bayesian approaches; 

Bayesian, hierarchical Bayesian and empirical Bayesian. 

The probability density function of Gompertz distribution is given by 

 0;0;)( )1( = −−   xeexf
xex                                                                                   (10.1) 

https://www.aijr.in/about/policies/copyright/
https://creativecommons.org/licenses/by-nc/4.0/
https://www.aijr.in/
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The likelihood function for (10.1) is given by 

)1(

1
)( −−

==
xexn

i

n eexL 
 

Figure 10.1: represents probability density function of Gompertz distribution under different 

values of parameters. 

The Bayesian analysis is theoretically simple and probabilistically elegant. When posterior 

distribution is expressible in terms of complex analytical function and requires thorough 

calculation because of its numerical implementations, an approximate and large sample 

behavior of posterior distribution is studied. This is significant for two reasons: (a) asymptotic 

results provide valuable first order approximations when actual samples are relatively large, 

and (b) objective Bayesian methods obviously depend on the asymptotic properties of the 

assumed model. Thus, our current reading focuses to obtain the estimates of shape parameter 

of Gompertz distribution using two Bayesian approximation techniques i.e. normal 

approximation, T-K approximation. 

Bayes Estimate of Shape Parameter of Gompertz Distribution using Normal 

Approximation: 
 

If the posterior distribution ( )x|  is unimodal and roughly symmetric, it is convenient to 

approximate it by a normal distribution centered at the mode, yielding the approximation 

( ) ( )  






 −1ˆ,ˆˆ~|  INx  
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where   ( ) ( )
2

2 |logˆ









−=

yP
I                                                                                                    (10.2) 

If the mode, 
̂  is in the interior parameter space, then ( )I  is positive; if ̂  is a vector 

parameter, then  ( )I   is a matrix. Some good sources on the topic is provided by Sultan et 

al. (2015). 

In our study the normal approximations of Gompertz distribution under different priors is 

obtained as under: 

Under extension of Jeffrey’s prior +







 Rm

m

;
1

)(


 , the posterior distribution for  is as 

)1(
11)|(

−−−  ==
ixn

ii
n

i
exmn eex


                                                                             (10.3)                                                       

from which the posterior mode is obtained as 
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Thus, the posterior distribution can be approximated as 
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Under the Inverse Levy prior 0;0;)( 22/1 
−
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ce

c

 , where c is the known hyper 

parameter, the posterior distribution for  is as  
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Thus, the posterior distribution can be approximated as 


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Under gamma prior 0;0,;)( 1  −−   bae ba

 where a, b are the known hyper 

parameters, the posterior distribution for  is approximated as 
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Bayes Estimate of Shape Parameter of Gompertz Distribution using T-K (Laplace) 

Approximation: 

Tierney and Kadane (1986) gave Laplace method to evaluate )|)(( xhE  as 

 )ˆ()ˆ(exp)|)(( *
*





 hnhnxhE −                                                                               (10.4) 

where )|(ln)ˆ( xhn  = ; )(ln)|(ln)ˆ( **  hxhn +=  ; 

    12 )ˆ(ˆ
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+Rm  the posterior distribution 
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)1(ln)()(
1

−−−=  =

ixn

i
emnhn 

  

which implies 

)1(

ˆ

1
−

−
=

 =

ixn

i
e

mn
  that maximizes )(hn  since 0)(

2


−
−=




mn
hn   

Similarly )(ln)()( **  hhnhn += = )1(ln)1(
1

−−+−  =

ixn

i
emn   



Chapter 10: Bayesian Approximation Techniques for Gompertz Distribution 

 

112 ISBN: 978-81-936820-7-4 

 

 

 

Book DOI: 10.21467/books.44 

 

From which 
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respectively. 

The estimates of variances are given by 
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Note that the relative error to exact the posterior mean
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To determine the second moment, assume 2)(  =h  
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Real life example 10.1 

To examine the applicability of the results, real life data sets are analyzed. The data represents 

the survival times of 121 patients with breast cancer obtained from a large hospital which is 

widely reported in some literatures like Ramos et al. (2013)). 

0.3,0.3,4.0,5.0,5.6,6.2,6.3,6.6,6.8,7.4,7.5,8.4,8.4,10.3,11.0,11.8,12.2,12.3,13.5,14.4,14.4,14.8,15.5,

15.7,16.2,16.3,16.5,16.8,17.2,17.3,17.5,17.9,19.8,20.4,20.9,21.0,21.0,21.1,23.0,23.4,23.6,24.0,24.

0,27.9,28.2,29.1,30.0,31.0,31.0,32.0,35.0,35.0,37.0,37.0,37.0,38.0,38.0,38.0,39.0,39.0,40.0,40.0,4

0.0,41.0,41.0,41.0,42.0,43.0,43.0,43.0,44.0,45.0,45.0,46.0,46.0,47.0,48.0,49.0,51.0,51.0,51.0,52.0,

54.0,55.0,56.0,57.0,58.0,59.0,60.0,60.0,60.0,61.0,62.0,65.0,65.0,67.0,67.0,68.0,69.0,78.0,80.0,83.

0,88.0,89.0,90.0,93.0,96.0,103.0,105.0,109.0,109.0,111.0,115.0,117.0,125.0,126.0,127.0,129.0,12

9.0,139.0,154.0. 
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Real life example 10.2 

Consider the data of survival times of 45 gastric cancer patients given chemotherapy and 

radiation treatment (Bekker et al. 2000).  

0.047, 0.115, 0.121, 0.132, 0.164, 0.197, 0.203, 0.260, 0.282, 0.296, 0.334, 0.395, 0.458, 0.466, 

0.501, 0.507, 0.529, 0.534, 0.540, 0.570, 0.641, 0.644, 0.696, 0.841, 0.863, 1.099, 1.219, 1.271, 

1.326, 1.447, 1.485, 1.553, 1.581, 1.586, 2.178, 2.343, 2.416, 2.444, 2.825, 2.830, 3.578, 3.658, 

3.743, 3.978, 4.033 

The Bayes estimates and posterior standard error (given in parenthesis) for both the examples 

under normal and T-K (Laplace) approximation based on non- informative and informative 

priors have been presented in table 10.1, 10.2 

Table 10.1: Posterior estimates and posterior standard error (in parenthesis) under normal and 

T-K (Laplace) approximations 

 Jeffrey’s prior Gamma prior Inverse levy prior 

m=0.5 m=1 m=1.5 a=b=1 a=b=2 a=b=3 c=1 c=2 c=3 

NA̂  
0.0925 

(0.0172) 

0.0909 

(0.0171) 

0.0893 

(0.0167) 

0.0937 

(0.0171) 

0.0966 

(0.0173) 

0.0994 

(0.0175) 

0.09221 

(0.0170) 

0.0919 

(0.0167) 

0.0916 

(0.0166) 

LA̂  
0.0956 

(0.0173) 

0.0941 

(0.0172) 

0.0925 

(0.0170) 

0.0969 

(0.0185) 

0.0997 

(0.0182) 

0.1025 

(0.0180) 

0.0954 

(0.0171) 

0.0953 

(0.0169) 

0.0951 

(0.0168) 

 

Table 10.2: Posterior estimates and posterior standard error (in parenthesis) under normal and 

T-K (Laplace) approximations: 

 Jeffrey’s prior Gamma prior Inverse levy prior 

m=0.5 m=1 m=1.5 a=b=1 a=b=2 a=b=3 c=1 c=2 c=3 

NA̂  0.1336 

(0.0309) 

0.1321 

(0.0299) 

0.1306 

(0.0198) 

0.1347 

(0.02008) 

0.1372 

(0.0202) 

0.1398 

(0.0204) 

0.1332 

(0.0200) 

0.1328 

(0.0199) 

0.1324 

(0.0188) 

LA̂  
0.1366 

(0.02025) 

0.1351 

(0.02014) 

0.1336 

(0.02002) 

0.1377 

(0.02031) 

0.1402 

(0.02046) 

0.1428 

(0.02061) 

0.1364 

(0.02022) 

0.1362 

(0.02019) 

0.1360 

(0.02016) 



Chapter 10: Bayesian Approximation Techniques for Gompertz Distribution 

 

116 ISBN: 978-81-936820-7-4 

 

 

 

Book DOI: 10.21467/books.44 

 

Simulation study 

In our simulation study we have generated a sample of sizes n=20, 50, 75 to see the result of 

small, medium, and large samples on the estimators. The results are simulated 5000 times and 

the average of the results has been presented in the tables 10.3, 10.4. To inspect the 

performance of Bayesian estimates for shape parameter of Gompertz distribution under 

different approximation techniques, estimates are obtainable along with posterior standard 

error given in parenthesis in the below tables. 

Table10.3: Posterior estimates and posterior standard deviation (in parenthesis) under normal 

approximation
 

n   

Jeffrey’s prior Gamma prior Inverse levy prior 

m=0.5 m=1.0 m=1.5 a=b=1 a=b=2 a=b=3 c=1 c=2 c=3 

20 

0.9 
0.9271  

(0.2099) 

0.9032  

(0.2072) 

0.8795  

(0.2044) 

0.9076  

(0.2029) 

0.9116  

(0.1989) 

0.9153  

(0.1951) 

0.8849  

(0.2004) 

0.8465  

(0.1917) 

0.8113  

(0.1837) 

1.5 
1.3021  

(0.2948) 

1.2687 

(0.2910) 

1.2353  

(0.2872) 

1.2518  

(0.2799) 

1.2370  

(0.2699) 

1.2238  

(0.2609) 

1.2205  

(0.2764) 

1.1486  

(0.2601) 

1.0847  

(0.2456) 

2.5 
1.8949  

(0.4291) 

1.8463  

(0.4235) 

1.7977  

(0.4179) 

1.7713  

(0.3961) 

1.7086  

(0.3728) 

1.6553  

(0.3529) 

1.7271  

(0.3911) 

1.5865  

(0.3592) 

1.4672  

(0.3322) 

50
 

0.9 
1.1378  

(0.1617) 

1.1263  

(0.1609) 

1.1148  

(0.1601) 

1.1234  

(0.1588) 

1.1207  

(0.1569) 

1.1181  

(0.1551) 

1.1122  

(0.1581) 

1.0878  

(0.1546) 

1.0644  

(0.1512) 

1.5 
1.1956  

(0.1699) 

1.1835  

(0.1690) 

1.1541  

(0.1682) 

1.1792  

(0.1667) 

1.1751  

(0.1645) 

1.1711  

(0.1624) 

1.1674  

(0.1659) 

1.1405  

(0.1621) 

1.1148  

(0.1584) 

2.5 
1.5784  

(0.2243) 

1.5625  

(0.2232) 

1.5466  

(0.2221) 

1.5451  

(0.2185) 

1.5288  

(0.2141) 

1.5134  

(0.2098) 

1.5297  

(0.2174) 

1.4838  

(0.2109) 

1.4406  

(0.2047) 

75
 

0.9 
0.8118  

(0.0941) 

0.8009  

(0.0934) 

0.8009  

(0.0934) 

0.8084  

(0.0933) 

0.8104  

(0.0929) 

0.8124  

(0.0925) 

0.8030  

(0.0930) 

0.7944  

(0.0920) 

0.7861  

(0.0911) 

1.5 
1.1887  

(0.1377) 

1.1807  

(0.1372) 

1.1727  

(0.1367) 

1.1779  

(0.1360) 

1.1751  

(0.1347) 

1.1724  

(0.1336) 

1.1701  

(0.1355) 

1.1519  

(0.1334) 

1.1344 

(0.1314) 

2.5 
1.5473 

(0.1792) 

1.5369  

(0.1786) 

1.5265  

(0.1781) 

1.5259  

(0.1762) 

1.5155  

(0.1738) 

1.5054  

(0.1715) 

1.5158  

(0.1756) 

1.4855  

(0.1721) 

1.4565  

(0.1687) 
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Table10.4: Posterior estimates and posterior standard error (in parenthesis) under T-K 

approximation 

n   

Jeffrey’s prior Gamma prior Inverse levy prior 

m=0.5 m=1 m=1.5 a=b=1 a=b=2 a=b=3 c=1 c=2 c=3 

20 

0.9 
0.9748 

(0.2152) 

0.9510 

(0.2126) 

0.9272 

(0.2099) 

0.9532 

(0.2079) 

0.9552 

(0.2036) 

0.9571 

(0.1995) 

0.9521 

(0.2102) 

0.9305 

(0.2054) 

0.9099 

(0.2009) 

1.5 
1.3691 

(0.3023) 

1.3357 

(0.2986) 

1.3024 

(0.2948) 

1.3147 

(0.2868) 

1.2961 

(0.2763) 

1.2797 

(0.2667) 

1.3249 

(0.2925) 

1.2834 

(0.2834) 

1.2445 

(0.2748) 

2.5 
1.9925 

(0.4399) 

1.9439 

(0.4345) 

1.8953 

(0.4291) 

1.8603 

(0.4058) 

1.7903  

(0.3816) 

1.7308 

(0.3608) 

1.9002 

(0.4195) 

1.8160 

(0.4010) 

1.7390 

(0.3840) 

50
 

0.9 
1.1608 

(0.1633) 

1.1493 

(0.1625) 

1.1378 

(0.1617) 

1.1427 

(0.1786) 

1.1427 

(0.1584) 

1.1397 

(0.1565) 

1.1476 

(0.1614) 

1.1347 

(0.1596) 

1.1221 

(0.1579) 

1.5 
1.2198 

(0.1716) 

1.2077 

(0.1707) 

1.1956 

(0.1699) 

1.2028 

(0.1684) 

1.1981 

(0.1661) 

1.1937 

(0.1639) 

1.2052 

(0.1696) 

1.1911 

(0.1676) 

1.1771 

(0.1656) 

2.5 
1.6104 

(0.2266) 

1.5944  

(0.2254) 

1.5785 

(0.2243) 

1.5761 

(0.2206) 

1.5588 

(0.2161) 

1.5425 

(0.2118) 

1.5851 

(0.2230) 

1.5606 

(0.2196) 

1.5369 

(0.2162) 

75
 

0.9 
0.8227 

(0.0946) 

0.8172 

(0.0943) 

0.8118 

(0.0941) 

0.8192 

(0.0939) 

0.8211 

(0.0935) 

0.8230 

(0.0931) 

0.8182 

(0.0941) 

0.8138 

(0.0936) 

0.8094 

(0.0931) 

1.5 
1.2046 

(0.1386) 

1.1967 

(0.1381) 

1.1887 

(0.1377) 

1.1936 

(0.1369) 

1.1906 

(0.1356) 

1.1877 

(0.1344) 

1.1951 

(0.1375) 

1.1857 

(0.1364) 

1.1765 

(0.1354) 

2.5 
1.5680 

(0.1804) 

1.5577 

(0.1798) 

1.5473 

(0.1792) 

1.5463 

(0.1773) 

1.5354 

(0.1749) 

1.5250 

(0.1726) 

1.5519 

(0.1786) 

1.5361 

(0.1767) 

1.5207 

(0.1750) 
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Conclusion 

We presented approximate to Bayesian integrals of Gompertz distribution depending upon 

numerical integration and simulation study and showed how to study posterior distribution by 

means of simulation study. From the findings of above tables (1, 2, 3, 4) it has been found that 

the large sample distribution could be improved when prior is taken into account. In all cases 

(simulated data as well as real life data) normal approximation, T-K approximation, Bayesian 

estimates under informative priors are better than those under non-informative priors 

especially the Inverse levy distribution proves to be efficient with minimum posterior standard 

deviation. Further we accomplish that the posterior standard deviation based on different 

priors tends to decrease with the increase in sample size. It indicates that the estimators 

attained are consistent. It can also be detected that the performance of Bayes estimates under 

informative priors (inverse levy) is better than non-informative prior. 
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