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1. Introduction

Zadeh [18] introduced the concept of fuzzy sets.The topic of fuzzy differential
equations has been rapidly growing in recent years.They play a important role
both in theory and application, for example, in population models, in engineer-
ing, in chaotic systems and in modeling hydraulics.A large class of physically
important problems is described by fuzzy differential equations [8],[15],[17].
Byszewski [3] investigated the existence and uniqueness of mild, strong,
and classical solutions of a nonlocal cauchy problem for a semilinear evolu-
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tion equation.For the monographs of the theory of impulsive diffferential equa-
tions,we can refer the books of Bainov and Simenov|[1],Lakshmikantham et.al
[10],Samoilenko and Perestyuk [14] and in papers [9],[11],[2] where numerous
properties of their solutions are studied.

Kaleva [7] discussed the properties of differentiable fuzzy set-valued map-
pings by means of the concept of H-differentiability.Feng [4] studied the exis-
tence and uniqueness of a solution, the continuity of the solution with respect to
the initial value and the stability of fuzzy stochastic differential equations. Tung
[16] discussed the existence and some comparison results on solutions of fuzzy
control stochastic differential systems and investigated the continuous depen-
dence of solutions.Jeong [6] studied fuzzy differential equations with nonlocal
condition.Ramesh [13] studied the fuzzy solutions for impulsive delay integrod-
ifferential equations with nonlocal condition.

Here in this paper,we prove the existence and uniqueness theorem of a
solution to the following nonlocal fuzzy impulsive differential equation

z'(t) = Az(t) + f(t,z(t)),t € I =[0,d],
z(0) = g(t1,t2, ..., tp, z(.)) + o,
A{lf(tk) = Ik(x(tk.)),k = 1,2...,'m

where A : [0,7] — Ey is a fuzzy coefliecient,0 < t; < t3 < ... < ¢, <
a, f: I x Lo — Lo is mean square continuous fuzzy mapping with respect to
t which satisfies a generalized Lipschitz condition, g : IP x Lo — Lo satisfies a
generalized Lipschitz condition, and xg € Le.Hence (from [5])

Ly = {X|X is a fuzzy random variable with E(||X||*) < oo},

Az(ty) = z(t]) — x(t; ), where z(t;) and z(t;) represent the left and right
limits of z(t) at t = tj respectively.The symbol g(t1,t2,...,t,, z(.)) is used in
the sense that in the place of ‘> we can substitute only elements of the set
{ti,t2,....t,}. For example, g(t1,t2,...,tp, z(.))can be defined by the formula

g(t1,ta, .., tp, 2() = crz(tr) + cax(ta) + ... + cpa(ty)

where ¢;(i = 1,2, ...,p) are given constants.

The outlay of the paper is as follows : In section 2 we give some basic
definition for our study. In Section 3 we prove the main theorem on the existence
of fuzzy solutions.
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2. Preliminaries

The symbol Po(R™) denotes the family of all nonempty compact convex subsets
of R™. Define the addition and scalar multiplication in Po(R"™) as usual. Denote
E" ={u: R" — [0, 1],u satisfies (i) — (iv) below } , where

(i) w is normal, i.e., there exists an zg € R™ such that u(zg) = 1;

(ii) w is fuzzy convex, i.e.,u(rx + (1 — r)y) > min(u(x),u(y)),
z,y € R", r €0,1];

(iii) w is upper semicontinuous;
(iv) [u]® = {z € R™u(z) > 0} is compact.
Let u,v € E", and set

D(u,v) = Oilrlgld([ura [v]"),

where [u]" = {z € R"|u(z) > r},0 < r <1, is the r-level set of u,d is the
hausdorff metric defined in Po(R™). i.e.,

d(A, B) = inf |a — b| ,sup inf |a — b)),
(A, B) maw(iggggB!a \ggg;gA\a )

forall A, B € Po(R™), where |.| denotes the usual Euclidean norm in R"™.(E™, D)
is a complete metric space(see [12]).

Let (€2, A, P) be a complete probability space. A fuzzy random variable is
a Borel measurable function X : (2, A) — (E™, D). Let

Ly(Q, A, P) = {X|X is a fuzzy random variable With/ D(X,0)?dP(w) < 00}.
Q

Two fuzzy random variables X and Y are called equivalent if
P(X #Y) =0. The all equivalent element in Lo are identified. Define

1

o(X,Y) = (/Q(D(X,Y))QdP>2 XY € L.

The norm ||X||, of an element X € Ly is defined by

Il = w060) = ( [ 0, 0>>2dp)é |
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Then (Ls, ¢) is a complete metric space [4] and ¢ satisfies that
P(X+2,Y+2) = o(X,Y), p(AX, AY) = [A[o(X,Y), p(AX, kX)) < [X — K[| X[l

for any X,Y,Z € Ly and A\, k € R.

3. Fuzzy solutions

In this section,We consider the following nonlocal fuzzy impulsive differential
equation:

2 (t) = Ax(t) + f(t,z(t),t € I =[0,d], (1)
z(0) = g(t1,t2, ..., tp, x(.)) + o, (2)
Ax(ty) = I(z(ty)), k =1,2....,m (3)

where A : [0,7] — Ey is a fuzzy coeffiecient, 0 < t; < £t < ... < t, <
a,f : I x Lo — Lo is mean square continuous fuzzy mapping with respect to
t which satisfies a generalized Lipschitz condition, g : I” x Lo — Lo satisfies a
generalized Lipschitz condition and zg € Ly and Az(ty) = z(t]) —z(t; ) , where
z(t;) and z(t]) represent the left and right limits of z(¢) at t = t respectively.

Theorem 1. Assume the following

(H1) Let f : I x Ly — Ly be mean square continuous with respect to t and
there exists constants L such that

Hy(f(t,x), f(t,y)) < LHa(z,y)

(H2) Let g : IP x Ly — Lo satisfies a generalized Lipschitz condition and there
exists a constant K such that

Hd(g(tla "'7tp7x('))7g(t17 7tp7y())) S KHd(xay)7Vt € Iaxay € LQ'

(H3) Let & = min {a, 5, =5} where M, N are defined as,

(@)}

Hy(f(t,x),0) < M, Hy(g(t1, ..., tp,2(.)),0) < N

(H4) Let S(t) is a fuzzy number such that |S(t)| <c,Vte I
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(H5) There exists a constant (), and x such that

Ha(Ii(x(t)), In(y(tk))) < B and

Hd< > Ik(x(tk)),f)} <X

0<t<ty

Then the equation (1)-(3) has a unique solution on the interval [0, ¢].

Proof. Let B ={x € Lo|H(x,x0) < b} be the space of mean square contin-
uous fuzzy mappings with

H(z,y) = os<121<)§ Hg(z(1),y(t))

and b a positive number. Define a mapping G : B — B by

G (t) = S(t)ao + S()g(t1, oo tpy @ / S(t— 8)f(s,2(s))ds
+ > St - te)Ie(a(ty).
0<t<ty

First of all,we show that GG is mean square continuous and
H(Gz,x0) < b. Since f is mean square continuous, we have

Hy(Gx(t + h),Gz(t))
t+h
:Hd<S(t+h)x0+S(t+h)g(t1,...,tp,:c(.))—|—/0+ S(t+h — s)f(s,2(s))ds

+ Y S+ h—te)I(x(tk)), S()wo + S(E)g(tr, sy, ()

0<t<ty

/St—s)f(s x(s))ds + Z St —tp) I (x (t’c)))

0<t<ty

< Hy (S(t + R, S(t):c(]) + Hy (S(t Rt oty 2 (), SB)g(te, o b, x(.)))
t+h t
+Hd(/0 S(t+h— s)f(s,:c(s))ds,/ S(t — s)f(s,:c(s)ds))

+Hd( Z S(t+h—ty)k(z Z S(t — tp) I (x(t )))
0<t<ty 0<t<tk
t+h

< c( t Hd(f(s,:c(s)),f)>d5
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<chM —0 (as h—0).

That is, the map G is mean square continuous on I. Furthermore,

Hy(Ga(t), zo) < Hy (S(t)g(tl, ...,tp,x(.)),o) n Hd</0t St — s)f(s,z(s))ds, 0)
+ Ha( Y2 St = to)(a(t)).0)

0<t<ty
< ¢(N + Mt + x),

and so

H(Gz,x0) = sup Hy(Gx(t),zo)
0<t<e

<c¢(N+ ME+x)

<b.

Since (Lg, Hy) is a complete metric space, a standard proof applies to show that
C([0,¢], L) = {x : [0,£] — La|x(t) is mean square continuous}

is complete. Now we show that B is a closed subset of C([0,&], L2). Let {z,}
be a sequence in B such that x,, — z € C([0,€], L2) as n — oc.
Then

Hy(x(t), z0) < Hg(x(t), zpn(t)) + Ha(xn(t), z0).
H(xz,x9) = os<lil<)§ Hy(z(t),x0)

< H(z,x,) + H(zp,x0)
<e+b

for sufficiently large n and arbitrary € > 0. So x € B. This implies that B is a
closed subset of C([0,¢], La2). Therefore B is a complete metric space. Next,we
will show that G is a contraction mapping. For z,y € B,

Hy(Ga(t), Gy(t)) < Ha(S(t)x0, S(t)yo
+ Ha(S(0)g(t1, sty (), S(O)g(t1, sty () )

—l—Hd(/tS t—s)f(s x(s))ds,/ot S(t — s)f(s,y(s))ds)

0
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( > St In(x(tr), Y S(t—ti)Ik(y(t )))

0<t<ty 0<t<tk
< CKHd(«T, y)

+ C/o LHg(x(s),y(s))ds + cHy(Ix(z(tr)), I (y(tx)))-

Thus, we obtain

H(Gz,Gy) < sup {cKHd(SU,y)
0<t<¢

el / Ha(a(s), y(s))ds + cHa(Tu(a(te), Te(y (1)}
< oK+ EL+ By H(z, )

since ¢(K + (L + Bx) < 1, G is a contraction map. Therefore G has a unique
fixed point Gz = x € C([0,&], E™), that is

x(t) = S(t)xo + S(t)g(t1, ... tp, / S(t—s)f(s,z(s))ds
+ Z St — te)p(z(ty)). O

0<t<ty

Theorem 2. Suppose that f, g are the same as in
theorem 1. Let z(t,x0),y(t,yo0) be the solutions of Eq.(1)-(3) to o, yo respec-
tively. Then there exist constants c; and co such that

(i) H(x(.,z0),y(-,y0) < c1(Ha(xo,y0) + Br) for any xo,yo € Lo,
(i) H(z(.,x0),0) < co(Hg(x0,0) + N + M + x), where
t
Hd(g(tl,...,tp,:c(.),f)) < N,/O Hd(f(s,f)),f))ds <M,

Hy ( > Ik(ﬂﬂ(tk))aﬁj <X Ha(I(2 (1), I (y(t1))) < B

0<t<ty

Proof. (i) For any t € [0,¢], we have
Hd(x(tuxO)uy(tayO))

< Hy (S(t)xo +S@t)g(ti, ..., tp, z(.,x0)) + /0 St —s)f(s,z(s,z0))ds
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+ Y St t)Ik(a(tk), S(t)yo + S)g(tr, -ty y (-, 90)

0<t<ty

/ S(t—s)f(s,y(s,y0))ds + Z St —tp) I (y (tk))>

0<t<ty

< cHy(zo,y0) + K Ha(e(,20),y(30)) + cL / Ha(a(s, 70), y(s, yo) )ds

+Hd< > St le(x(tr), > S —te)k(y ))).

0<t<ty 0<t<tk

From Gronwall’s inequality,we get

Hg(x(t, 20),y(t, v0)) < c[Ha(zo,yo) + K Ha(x(.,20),y(-;y0)) + BrlexpL§.

Thus we have

H(z(.,20),y(-,y0)) < c[Ha(wo,y0) + KH(z(.,20),y(-,y0)) + BrlexpLE.

ie.,
(1 = cKexpL&)H (x(.,20),y(.,y0)) < c(Hq(zo,y0) + Br)expL

Consequently,we obtain

c.expL&
H(z(.,20),y(-,%0)) < W(Hd(%,yo) + Br)
Taking ¢; = %, we obtain

H(z(.,20),y(- 90)) < c1(Ha(wo, yo) + Br)-
(74) For any ¢ € [0,¢],
Hy(x(t,70),0) < Ha(S(t)x0,0) + Ha(S()g(t1, .., tp, x(., 70)),0)

/ Hy(S(t — s)f(s,z(s,20)), f(5,0))ds
/ Hy(S(t —s)(f(s,0),0)ds

+ Hy ( > s _tk)Ik(x(tk))aoj

0<t<ty
< CHd({L‘(), 6) + cHd(g(t1, Hx) tpv {L‘(., xO))a 6)
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t t
—|—CL/ Hd(:c(s,:co),f))ds—i—c/ Hy(f(s,0),0)ds
0 0

ey Ti(a(t),0).

0<t<ty

From Gronwall’s inequality,we get
Hoy(x(t, 20),0) < C[Hd(:co, 0) + Ha(g(t1, ... tp, (., 20)), 0)

/Hd sﬁ ds—l—Hd( Z Ik(:r(tk)),@)}expl;t

0<t<ty
< ¢(Hg(zo, 0) + N + M + x)expL&.
Taking co = expL&,we get
H(z(.,z9), f)) = sup Hy(z(t, zo), f))
0<t<¢
< CCQ(Hd(xo, 0) + N+ M + X).
O

We consider the following semilinear fuzzy impulsive differential equations
with nonlocal conditions:

x(t) = S(t)xo + S(t)g(t1, ... tp, x / S(t—s)f(s,z(s))ds
+ Y St ) Ie(x(ty)),
0<t<ty

xn(t) = S{t)xno + SE)gn(t1, ..., tp, zn(.) / S(t—s)fn(s,zn(s))ds

+ Z S(t — tr) Ik (n(tr)),

0<t<ty

where n > 1.If the above mentioned equations satisfies the conditions of Theo-
rem 1,then they have unique solutions z(t) and z,(t),
t € [0,&] respectively.

Theorem 3. Suppose that f, g are the same as mentioned in Theorem 1.
IfHd(xmo,xo) — 0,

Ha(gn(t1, .., tp,z(.), g(t1, ..., tp, z(.))) = 0
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and

sup Hy(fn(t,y), f(t,y)) — 0 asn — oo
0<t<¢

for each y € Ly then

sup Hg(zn(t),z(t)) — 0 as n — oo.
0<t<¢

Proof. For any 0 <t < ¢, we have

Hd(xn(t)7 x(t))
< CHd(.’/Umo, .’/U()) + CHd(gn(tl, ey tp, xn(.)),g(tl, ey tp, x()))

+géﬂﬁuuaxAﬁxﬂaxw»Ms

+ cHy(Ik(zn(tr)), I (x(tk)))
< CHd(.’/Umo, .’/U()) + CHd(gn(tl, ey tp, xn(.)),gn(tl, ey tp, x()))
+ cHa(gn(t1, .. tp, x(.)), g(t1, .., tp, 2(.)))

+ /Ot cHa(fn(s,2n(5)), fn(s,x(s)))ds

4 [ eHuFuls,2(6)), S (s,0(5))ds +
0

< cHy(zpo,x0) + cKHy(zy(.),2(.))
+ cHg(gn(t1, ... tp, x(.), g(t1, ... tp, x(.)))

+cL /Ot Hy(zn(s),z(s))ds + /Ot cHy(fn(s,z(s)), f(s,x(s)))ds + cBk.
From Gronwall’s inequality,we get
Hy(x,(t),z(t)) < C|:Hd($n0 x0) + KHgi(zn(.),z(.))
+ Hi(gn(t1, .., tp, z(.)), g(t1, ... tp, x(.)))
/ Hy(fn(s,z( ,x(s)))ds —|—5k] expLit.
That is,

(1 — cKexpL§) sup Hg(wn(t),z(t))
0<t<e



EXISTENCE OF FUZZY SOLUTIONS FOR IMPULSIVE... 307

And

< C[Hd(xmo,xo) + Ha(gn(t1, st 2())s gt oot 2()))

+ sup / Hd(fn(s,:):(s)),f(s,x(s)))ds—l—ﬁk]eXpL&. (4)

o<t<¢ Jo

Ha(fn(s,2(s)), f(s,2(s)))
< Ha(fu(s,2(5)), fa(s,0)) + Ha(fu(s,0), f(5,0))
+ Hy(f(5,0), f(s,2(5)))

< QLHd( ( ) )+Oqu§Hd(fn(5 O) f(S,O))

< 2Leo(Hg(wo,0) + N 4+ M +x) +1

as soon as n is large enough,where we used (ii) of the Theorem (2). Since Iy,
is a bounded function,we know that the hypothesis (H5) holds.Hence,by using
the dominated convergence theorem in Eq.(4),we obtain the conclusion of the
theorem. O
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