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1. Introduction

Zadeh [18] introduced the concept of fuzzy sets.The topic of fuzzy differential
equations has been rapidly growing in recent years.They play a important role
both in theory and application, for example, in population models, in engineer-
ing, in chaotic systems and in modeling hydraulics.A large class of physically
important problems is described by fuzzy differential equations [8],[15],[17].

Byszewski [3] investigated the existence and uniqueness of mild, strong,
and classical solutions of a nonlocal cauchy problem for a semilinear evolu-
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tion equation.For the monographs of the theory of impulsive diffferential equa-
tions,we can refer the books of Bainov and Simenov[1],Lakshmikantham et.al
[10],Samoilenko and Perestyuk [14] and in papers [9],[11],[2] where numerous
properties of their solutions are studied.

Kaleva [7] discussed the properties of differentiable fuzzy set-valued map-
pings by means of the concept of H-differentiability.Feng [4] studied the exis-
tence and uniqueness of a solution, the continuity of the solution with respect to
the initial value and the stability of fuzzy stochastic differential equations.Tung
[16] discussed the existence and some comparison results on solutions of fuzzy
control stochastic differential systems and investigated the continuous depen-
dence of solutions.Jeong [6] studied fuzzy differential equations with nonlocal
condition.Ramesh [13] studied the fuzzy solutions for impulsive delay integrod-
ifferential equations with nonlocal condition.

Here in this paper,we prove the existence and uniqueness theorem of a
solution to the following nonlocal fuzzy impulsive differential equation

x
′

(t) = Ax(t) + f(t, x(t)), t ∈ I = [0, a],

x(0) = g(t1, t2, ..., tp, x(.)) + x0,

∆x(tk) = Ik(x(tk)), k = 1, 2...,m

where A : [0, T ] → EN is a fuzzy coeffiecient,0 < t1 < t2 < ... < tp ≤
a, f : I × L2 → L2 is mean square continuous fuzzy mapping with respect to
t which satisfies a generalized Lipschitz condition, g : Ip × L2 → L2 satisfies a
generalized Lipschitz condition, and x0 ∈ L2.Hence (from [5])

L2 = {X|X is a fuzzy random variable with E(‖X‖2) < ∞},

∆x(tk) = x(t+k ) − x(t−k ), where x(t−k ) and x(t+k ) represent the left and right
limits of x(t) at t = tk respectively.The symbol g(t1, t2, ..., tp, x(.)) is used in
the sense that in the place of ‘.’ we can substitute only elements of the set
{t1, t2, ..., tp}. For example, g(t1, t2, ..., tp, x(.))can be defined by the formula

g(t1, t2, ..., tp, x(.)) = c1x(t1) + c2x(t2) + ...+ cpx(tp)

where ci(i = 1, 2, ..., p) are given constants.

The outlay of the paper is as follows : In section 2 we give some basic
definition for our study. In Section 3 we prove the main theorem on the existence
of fuzzy solutions.



EXISTENCE OF FUZZY SOLUTIONS FOR IMPULSIVE... 299

2. Preliminaries

The symbol PC(R
n) denotes the family of all nonempty compact convex subsets

of Rn. Define the addition and scalar multiplication in PC(R
n) as usual. Denote

En = {u : Rn → [0, 1],u satisfies (i)− (iv) below } , where

(i) u is normal, i.e., there exists an x0 ∈ Rn such that u(x0) = 1;

(ii) u is fuzzy convex, i.e.,u(rx+ (1− r)y) ≥ min(u(x), u(y)),
x, y ∈ Rn, r ∈ [0, 1];

(iii) u is upper semicontinuous;

(iv) [u]0 = {x ∈ Rn|u(x) > 0} is compact.

Let u, v ∈ En, and set

D(u, v) = sup
0≤r≤1

d([u]r , [v]r),

where [u]r = {x ∈ Rn|u(x) ≥ r}, 0 < r ≤ 1, is the r-level set of u, d is the
hausdorff metric defined in PC(R

n). i.e.,

d(A,B) = max(sup
a∈A

inf
b∈B

|a− b| , sup
b∈B

inf
a∈A

|a− b|),

for all A,B ∈ PC(R
n), where |.| denotes the usual Euclidean norm inRn.(En,D)

is a complete metric space(see [12]).
Let (Ω, A, P ) be a complete probability space. A fuzzy random variable is

a Borel measurable function X : (Ω, A) → (En,D). Let

L2(Ω, A, P ) = {X|X is a fuzzy random variable with

∫

Ω
D(X, 0̂)2dP (w) < ∞}.

Two fuzzy random variables X and Y are called equivalent if
P (X 6= Y ) = 0. The all equivalent element in L2 are identified. Define

ϕ(X,Y ) =

(
∫

Ω
(D(X,Y ))2dP

) 1

2

,X, Y ∈ L2.

The norm ‖X‖2 of an element X ∈ L2 is defined by

‖X‖2 = ϕ(X, 0̂) =

(∫

Ω
(D(X, 0̂))2dP

)
1

2

.
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Then (L2, ϕ) is a complete metric space [4] and ϕ satisfies that

ϕ(X+Z, Y +Z) = ϕ(X,Y ), ϕ(λX, λY ) = |λ|ϕ(X,Y ), ϕ(λX, kX) ≤ |λ− k| ‖X‖2

for any X,Y,Z ∈ L2 and λ, k ∈ R.

3. Fuzzy solutions

In this section,We consider the following nonlocal fuzzy impulsive differential
equation:

x
′

(t) = Ax(t) + f(t, x(t)), t ∈ I = [0, a], (1)

x(0) = g(t1, t2, ..., tp, x(.)) + x0, (2)

∆x(tk) = Ik(x(tk)), k = 1, 2...,m (3)

where A : [0, T ] → EN is a fuzzy coeffiecient, 0 < t1 < t2 < ... < tp ≤
a, f : I × L2 → L2 is mean square continuous fuzzy mapping with respect to
t which satisfies a generalized Lipschitz condition, g : Ip × L2 → L2 satisfies a
generalized Lipschitz condition and x0 ∈ L2 and ∆x(tk) = x(t+k )−x(t−k ) , where
x(t−k ) and x(t+k ) represent the left and right limits of x(t) at t = tk respectively.

Theorem 1. Assume the following

(H1) Let f : I × L2 → L2 be mean square continuous with respect to t and
there exists constants L such that

Hd(f(t, x), f(t, y)) ≤ LHd(x, y)

(H2) Let g : Ip ×L2 → L2 satisfies a generalized Lipschitz condition and there
exists a constant K such that

Hd(g(t1, ..., tp, x(.)), g(t1, ..., tp, y(.))) ≤ KHd(x, y),∀t ∈ I, x, y ∈ L2.

(H3) Let ξ = min
{

a, b−N
M

, 1−K
L

}

where M,N are defined as,

Hd(f(t, x), 0̂) ≤ M,Hd(g(t1, ..., tp, x(.)), 0̂) ≤ N

(H4) Let S(t) is a fuzzy number such that |S(t)| ≤ c , ∀t ∈ I
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(H5) There exists a constant βk and χ such that

Hd

(

Ik(x(tk)), Ik(y(tk))
)

≤ βk and

Hd





∑

0<t<tk

Ik(x(tk)), 0̂



 ≤ χ

Then the equation (1)-(3) has a unique solution on the interval [0, ξ].

Proof. Let B = {x ∈ L2|H(x, x0) ≤ b} be the space of mean square contin-
uous fuzzy mappings with

H(x, y) = sup
0≤t≤ξ

Hd(x(t), y(t))

and b a positive number. Define a mapping G : B → B by

Gx(t) = S(t)x0 + S(t)g(t1, ..., tp, x(.)) +

∫ t

0
S(t− s)f(s, x(s))ds

+
∑

0<t<tk

S(t− tk)Ik(x(tk)).

First of all,we show that G is mean square continuous and
H(Gx, x0) ≤ b. Since f is mean square continuous, we have

Hd(Gx(t+ h), Gx(t))

= Hd

(

S(t+ h)x0 + S(t+ h)g(t1, ..., tp, x(.)) +

∫ t+h

0
S(t+ h− s)f(s, x(s))ds

+
∑

0<t<tk

S(t+ h− tk)Ik(x(tk)), S(t)x0 + S(t)g(t1, ..., tp, x(.))

+

∫ t

0
S(t− s)f(s, x(s))ds+

∑

0<t<tk

S(t− tk)Ik(x(tk))
)

≤ Hd

(

S(t+ h)x0, S(t)x0

)

+Hd

(

S(t+ h)g(t1, ..., tp, x(.)), S(t)g(t1 , ..., tp, x(.))
)

+Hd

(

∫ t+h

0
S(t+ h− s)f(s, x(s))ds,

∫ t

0
S(t− s)f(s, x(s)ds)

)

+Hd

(

∑

0<t<tk

S(t+ h− tk)Ik(x(tk)),
∑

0<t<tk

S(t− tk)Ik(x(tk))
)

≤ c
(

∫ t+h

t

Hd(f(s, x(s)), 0̂
)

ds
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≤ chM → 0 (as h → 0).

That is, the map G is mean square continuous on I. Furthermore,

Hd(Gx(t), x0) ≤ Hd

(

S(t)g(t1, ..., tp, x(.)), 0̂
)

+Hd

(

∫ t

0
S(t− s)f(s, x(s))ds, 0̂

)

+Hd

(

∑

0<t<tk

S(t− tk)Ik(x(tk)), 0̂
)

≤ c(N +Mt+ χ),

and so

H(Gx, x0) = sup
0≤t≤ξ

Hd(Gx(t), x0)

≤ c(N +Mξ + χ)

≤ b.

Since (L2,Hd) is a complete metric space, a standard proof applies to show that

C([0, ξ], L2) = {x : [0, ξ] → L2|x(t) is mean square continuous}

is complete. Now we show that B is a closed subset of C([0, ξ], L2). Let {xn}
be a sequence in B such that xn → x ∈ C([0, ξ], L2) as n → ∞.

Then

Hd(x(t), x0) ≤ Hd(x(t), xn(t)) +Hd(xn(t), x0).

H(x, x0) = sup
0≤t≤ξ

Hd(x(t), x0)

≤ H(x, xn) +H(xn, x0)

≤ ε+ b

for sufficiently large n and arbitrary ε > 0. So x ∈ B. This implies that B is a
closed subset of C([0, ξ], L2). Therefore B is a complete metric space. Next,we
will show that G is a contraction mapping. For x, y ∈ B,

Hd(Gx(t), Gy(t)) ≤ Hd

(

S(t)x0, S(t)y0

)

+Hd

(

S(t)g(t1, ..., tp, x(.)), S(t)g(t1 , ..., tp, y(.))
)

+Hd

(

∫ t

0
S(t− s)f(s, x(s))ds,

∫ t

0
S(t− s)f(s, y(s))ds

)
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+Hd

(

∑

0<t<tk

S(t− tk)Ik(x(tk)),
∑

0<t<tk

S(t− tk)Ik(y(tk))
)

≤ cKHd(x, y)

+ c

∫ t

0
LHd(x(s), y(s))ds + cHd(Ik(x(tk)), Ik(y(tk))).

Thus, we obtain

H(Gx,Gy) ≤ sup
0≤t≤ξ

{

cKHd(x, y)

+ cL

∫ t

0
Hd(x(s), y(s))ds + cHd(Ik(x(tk)), Ik(y(tk))

}

.

≤ c(K + ξL+ βk)H(x, y).

since c(K + ξL + βk) < 1, G is a contraction map. Therefore G has a unique
fixed point Gx = x ∈ C([0, ξ], En), that is

x(t) = S(t)x0 + S(t)g(t1, ..., tp, x(.)) +

∫ t

0
S(t− s)f(s, x(s))ds

+
∑

0<t<tk

S(t− tk)Ik(x(tk)).

Theorem 2. Suppose that f , g are the same as in
theorem 1. Let x(t, x0), y(t, y0) be the solutions of Eq.(1)-(3) to x0, y0 respec-
tively.Then there exist constants c1 and c2 such that

(i) H(x(., x0), y(., y0) ≤ c1(Hd(x0, y0) + βk) for any x0, y0 ∈ L2,

(ii) H(x(., x0), 0̂) ≤ c2(Hd(x0, 0̂) +N +M + χ), where

Hd(g(t1, ..., tp, x(.), 0̂) ≤ N,

∫ t

0
Hd(f(s, 0̂), 0̂)ds ≤ M ,

Hd





∑

0<t<tk

Ik(x(tk)), 0̂



 ≤ χ ,Hd

(

Ik(x(tk)), Ik(y(tk))
)

≤ βk.

Proof. (i) For any t ∈ [0, ξ], we have

Hd(x(t, x0), y(t, y0))

≤ Hd

(

S(t)x0 + S(t)g(t1, ..., tp, x(., x0)) +

∫ t

0
S(t− s)f(s, x(s, x0))ds
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+
∑

0<t<tk

S(t− tk)Ik(x(tk)), S(t)y0 + S(t)g(t1, ..., tp, y(., y0))

+

∫ t

0
S(t− s)f(s, y(s, y0))ds +

∑

0<t<tk

S(t− tk)Ik(y(tk))
)

≤ cHd(x0, y0) + cKHd(x(., x0), y(., y0)) + cL

∫ t

0
Hd(x(s, x0), y(s, y0))ds

+Hd

(

∑

0<t<tk

S(t− tk)Ik(x(tk)),
∑

0<t<tk

S(t− tk)Ik(y(tk))
)

.

From Gronwall’s inequality,we get

Hd(x(t, x0), y(t, y0)) ≤ c[Hd(x0, y0) +KHd(x(., x0), y(., y0)) + βk]expLξ.

Thus we have

H(x(., x0), y(., y0)) ≤ c[Hd(x0, y0) +KH(x(., x0), y(., y0)) + βk]expLξ.

i.e.,
(1− cKexpLξ)H(x(., x0), y(., y0)) ≤ c(Hd(x0, y0) + βk)expLξ

Consequently,we obtain

H(x(., x0), y(., y0)) ≤
c.expLξ

1− cKexpLξ
(Hd(x0, y0) + βk)

Taking c1 =
c.expLξ

1−cKexpLξ , we obtain

H(x(., x0), y(., y0)) ≤ c1(Hd(x0, y0) + βk).

(ii) For any t ∈ [0, ξ],

Hd(x(t, x0), 0̂) ≤ Hd(S(t)x0, 0̂) +Hd(S(t)g(t1, ..., tp, x(., x0)), 0̂)

+

∫ t

0
Hd(S(t− s)f(s, x(s, x0)), f(s, 0̂))ds

+

∫ t

0
Hd(S(t− s)(f(s, 0̂), 0̂)ds

+Hd





∑

0<t<tk

S(t− tk)Ik(x(tk)), 0̂





≤ cHd(x0, 0̂) + cHd(g(t1, ..., tp, x(., x0)), 0̂)
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+ cL

∫ t

0
Hd(x(s, x0), 0̂)ds + c

∫ t

0
Hd(f(s, 0̂), 0̂)ds

+ cHd

(

∑

0<t<tk

Ik(x(tk)), 0̂
)

.

From Gronwall’s inequality,we get

Hd(x(t, x0), 0̂) ≤ c
[

Hd(x0, 0̂) +Hd(g(t1, ..., tp, x(., x0)), 0̂)

+

∫ t

0
Hd(f(s, 0̂), 0̂)ds+Hd

(

∑

0<t<tk

Ik(x(tk)), 0̂
)]

expLt

≤ c(Hd(x0, 0̂) +N +M + χ)expLξ.

Taking c2 = expLξ,we get

H(x(., x0), 0̂) = sup
0≤t≤ξ

Hd(x(t, x0), 0̂)

≤ cc2(Hd(x0, 0̂) +N +M + χ).

We consider the following semilinear fuzzy impulsive differential equations
with nonlocal conditions:

x(t) = S(t)x0 + S(t)g(t1, ..., tp, x(.)) +

∫ t

0
S(t− s)f(s, x(s))ds

+
∑

0<t<tk

S(t− tk)Ik(x(tk)),

xn(t) = S(t)xn,0 + S(t)gn(t1, ..., tp, xn(.)) +

∫ t

0
S(t− s)fn(s, xn(s))ds

+
∑

0<t<tk

S(t− tk)Ik(xn(tk)),

where n ≥ 1.If the above mentioned equations satisfies the conditions of Theo-
rem 1,then they have unique solutions x(t) and xn(t),
t ∈ [0, ξ] respectively.

Theorem 3. Suppose that f , g are the same as mentioned in Theorem 1.
If Hd(xn,0, x0) → 0,

Hd(gn(t1, ..., tp, x(.)), g(t1, ..., tp, x(.))) → 0



306 S. Vengataasalam, R. Ramesh

and
sup

0≤t≤ξ

Hd(fn(t, y), f(t, y)) → 0 as n → ∞

for each y ∈ L2 then

sup
0≤t≤ξ

Hd(xn(t), x(t)) → 0 as n → ∞.

Proof. For any 0 ≤ t ≤ ξ, we have

Hd(xn(t), x(t))

≤ cHd(xn,0, x0) + cHd(gn(t1, ..., tp, xn(.)), g(t1, ..., tp, x(.)))

+ c

∫ t

0
Hd(fn(s, xn(s)), f(s, x(s)))ds

+ cHd(Ik(xn(tk)), Ik(x(tk)))

≤ cHd(xn,0, x0) + cHd(gn(t1, ..., tp, xn(.)), gn(t1, ..., tp, x(.)))

+ cHd(gn(t1, ..., tp, x(.)), g(t1 , ..., tp, x(.)))

+

∫ t

0
cHd(fn(s, xn(s)), fn(s, x(s)))ds

+

∫ t

0
cHd(fn(s, x(s)), f(s, x(s)))ds + cβk

≤ cHd(xn,0, x0) + cKHd(xn(.), x(.))

+ cHd(gn(t1, ..., tp, x(.)), g(t1, ..., tp, x(.)))

+ cL

∫ t

0
Hd(xn(s), x(s))ds +

∫ t

0
cHd(fn(s, x(s)), f(s, x(s)))ds + cβk.

From Gronwall’s inequality,we get

Hd(xn(t), x(t)) ≤ c
[

Hd(xn,0, x0) +KHd(xn(.), x(.))

+Hd(gn(t1, ..., tp, x(.)), g(t1 , ..., tp, x(.)))

+

∫ t

0
Hd(fn(s, x(s)), f(s, x(s)))ds + βk

]

expLt.

That is,

(1− cKexpLξ) sup
0≤t≤ξ

Hd(xn(t), x(t))
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≤ c
[

Hd(xn,0, x0) +Hd(gn(t1, ..., tp, x(.)), g(t1 , ..., tp, x(.)))

+ sup
0≤t≤ξ

∫ t

0
Hd(fn(s, x(s)), f(s, x(s)))ds + βk

]

expLξ. (4)

And

Hd(fn(s, x(s)), f(s, x(s)))

≤ Hd(fn(s, x(s)), fn(s, 0̂)) +Hd(fn(s, 0̂), f(s, 0̂))

+Hd(f(s, 0̂), f(s, x(s)))

≤ 2LHd(x(s), 0̂) + sup
0≤s≤ξ

Hd(fn(s, 0̂), f(s, 0̂))

≤ 2Lc2(Hd(x0, 0̂) +N +M + χ) + 1

as soon as n is large enough,where we used (ii) of the Theorem (2). Since Ik
is a bounded function,we know that the hypothesis (H5) holds.Hence,by using
the dominated convergence theorem in Eq.(4),we obtain the conclusion of the
theorem.
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