Results on Meshless Collocation Techniques

L. Ling! R. Opfer and R. Schaback?®
March 15, 2004

Abstract

Though the technique introduced by E. Kansa [7, 8] is very suc-
cessful in engineering applications, there were no proven results so
far on the unsymmetric meshless collocation method for solving PDE
boundary value problems in strong form. While the original method
cannot be proven to be fail-safe in general, we prove asymptotic fea-
sibility for a generalized variant using separated trial and test spaces.
Furthermore, a greedy variation of this technique is provided, allowing
a fully adaptive matrix—free and data—dependent meshless selection of
the test and trial spaces.

1 Introduction

The general idea for solving PDE problems in strong or weak form
by kernel-based meshless methods was outlined in [10]. It writes
the PDE problem as an uncountably infinite number of simultaneous
scalar equations

AMu] = fx € IR, for all A € A. (1)

The set A consists of infinitely many linear real-valued functionals A
that usually take the form of point evaluations of functions or deriva-
tives at points inside a domain or on some boundary or interface layer.

nstitut fiir Numerische und Angewandte Mathematik, Universitiat Gottingen, Lotzes-
trale 16-18, D-37083 Gottingen, Germany

2Department of Mathematics, City University of Hong Kong, Kowloon Tong, Hong
Kong, P.R. of China

If several differential or boundary operators are involved, we simply
put everything into a single set A of functionals of various types.

We call (1) a generalized interpolation problem, and we assume it
to be solvable by a function u* that generates the data via f) := A(u™)
for all A € A. Discretization just consists in replacing the infinite set
A by some finite unstructured subset A, := {A1,...,\,}. The space
spanned by these functionals can be called the test space, and A is the
infinite test set.

The trial space consists of a space of functions in which the nu-
merical solution u is constructed, and we assume it to be spanned by
a basis {u1,...,u,} as

n
u = Z ajuj € U :=span{uy,...,u,}. (2)
j=1
Then, the discretized problem reads as

Nlul = 3 aghifug] = fr, = M), 1< <n (3)
j=1

when written as linear equations for a function u of the trial space U.

Weak formulations use functionals of the form A;[g] := a;(g,u;)
with certain bilinear forms a; and test functions wuj; such that the
discretized problem takes the familiar form

Ailu] = a;(u,u;) = Zajai(uj,ui) =fn, =AW, 1<i<n
j=1

of meshless Petrov—Galerkin schemes [2]. In particular, weak formu-
lations always have a strong built—in connection of test functionals to
test functions.

For problems in strong formulation, the connection between test
functionals and test functions is to be established differently. To get a
truly meshless technique, and to allow very general problems, we use
a symmetric positive definite kernel ® : IR? x IR — IR.

The special case of symmetric collocation now takes the discretized
set A, of test functionals and defines the trial functions as u; :=
)\?q)(-, y) for 1 < j < n where the superscript of A indicates the variable
of ® on which the functional operates. Then the collocation matrix (3)
is symmetric with entries \;[u;] =)\f)\?@(a@,y) for 1 <i,5 <n. This
technique dates back to [11] and has a solid mathematical basis ([3],

[4]). Like in the standard (non—Petrov) Galerkin scheme, the trial and
test functions or functionals are closely related.

If one takes a set X, := {x1,...,7,} C IR? of scattered points,
one can use the trial space U spanned by the trial functions

uj = ®(,x5), 1<j<n (4)

associated to simple point evaluation functionals As;. Usually, these
centers are irregularly placed within (2. Since the scattered points
determine the trial functions, we can call them trial centers. This leads
to the unsymmetric collocation technique started by E. Kansa ([7],[8])
for the multiquadric kernel and used by many authors afterwards (see
an overview in [5]). The resulting unsymmetric collocation matrix has
the entries
Ailuj] = N ®(y,xj), 1<i,j<n

and can be singular in exceptional cases [6]. Consequently, there are
no mathematical results on this technique, though it gives very good
results in plenty of applications in science and engineering.

To overcome these problems partially, one has to modify the set-
ting. To get solvability and error bounds, there should at least be
a unique solution to the modified discretized system that converges
to the true solution if the discretization is refined. The first question
requires that if the n test functionals are fixed and are linearly in-
dependent, the system has rank n, if the trial functions are chosen
properly. We shall prove this fact in Theorem 1 below. Then we show
how to find proper trial functions in practice via QR factorization
once we fixed the test space. Finally, we propose an adaptive greedy
method that generates a sequence of nonsingular problems through a
search of proper test functionals and trial functions.

2 Nonsingularity

Let © C IR? be a domain and ® : IR? x IR — IR be a symmetric
positive definite kernel on IRY. The kernel has an associated native
[9] Hilbert space Ng of functions on € in which it acts as a repro-
ducing kernel [1]. Let a problem of the type (1) on a bounded do-
main Q C IR? be discretized by n linearly independent functionals
Ay i={\1,..., A\ }. A suitable kernel for a given PDE must be smooth
enough to guarantee A C Ng*. Then the functions uy := N®(-,y)
are smooth enough to be in Ng for all A € A,,. This is true for plenty

of applications, because the smoothness requirements are weaker than
those discussed in [4] for symmetric collocation.

Note that conditionally positive definite kernels like the multi-
quadrics can be modified [9] to turn into positive definite kernels by
subtracting certain low—order polynomials. This modification allows
to restrict theoretical questions to the positive definite case, but in
practical implementations one will often prefer to carry the additional
polynomials along. This requires some additional linear algebra that
we omit here.

The given discretized strong collocation problem of (1) consists in
finding a function in U such that the equations (3) are satisfied for a
set A, of linearly independent continuous linear functionals on U and
prescribed real values fa, := (fy,,---, fr,)?. Usually, the functionals
are of different types. However, we keep the situation as general as
possible, allowing quite arbitrary functionals.

The standard trial space for Kansa’s unsymmetric collocation method
is the span of functions ®(-,z;) for a set X, := {z1,...,2,} C IR? of
suitably placed trial centers. The system (3) then has the (in general
unsymmetric) n X n matrix

Ap,x, = [Ny, 25)] (5)

1<i,j<n,

for \; € A, and z; € X,,. One then solves

Ap, x,0 = fa, (6)

for the unknown coefficients « := {a1,...,a,}. Numerical evidence
shows that cases of singularity are extremely rare, suggesting that
Ap,.x, is nonsingular for most choices of X,,.

Now, we consider the problem from a different perspective: sup-
pose the set of test functionals A,, is given, can one find a set of trial
centers X, such that the Kansa’s collocation matrix (5) is nonsingu-
lar? We begin with a general result:

Lemma 1 Let Q C IR? be a domain and let {g1,...,g,} for1 <i<n
be a set of n linearly independent continuous functions defined on Q.
For a sufficiently dense subset X = {x1,...,xp} of points in Q, the
matric with entries g;(x;) for 1 <i<n, and 1 < j < M has full rank
n.

Proof: Take an increasing sequence {X™M};; of data sets XM .=
{z1,...,zp} C Qsuch that the union of these sets is dense in 2. If the

4

assertion is false, there are nonzero vectors a™ := (ad!,... oll) € IR"
such that .

> allgi(e)=0,1<j<M

i=1
holds for all M. Since we can renormalize each vector in the set
{aM} s to have norm one, we can find a subsequence that converges
to a nonzero normalized vector & € IRY. If we define the functions

n
Sq = Z a5 g;
i=1
for all « € IRN , we get

sa(wi) = (Sa(ﬂci) — SaM (wz‘)) + Sqn (i),

and the right-hand side tends to zero for M — oo and all fixed points
x;. Consequently, the function ss vanishes on a dense subset of €2,
and on all of Q by continuity. But its Lo-norm defined via the Gram
matrix

n
[sall2 == Z a;0;Gyj, where Gy; == / g; g5 dx,
ij=1 ¢
is positive since & is nonzero and the {g;} are linearly independent,
yielding a contradiction. o

Lemma 2 Under the same hypothesis, there must exists n points
{z1,...,2n} € Q such that the matriz with entries g;(z;) for 1 <
1,7 < n is nonsingular.

Proof: It is a contradiction to Lemma 1 if such a set does not exist.
o

To make use of Lemma 2, we construct a set of functions using the
test functionals A, and the symmetric positive definite kernel ®. Let
gi - IR* — IR be the associated continuous functions defined as

Then, Kansa’s collocation matrix can be expressed as A, x,, = [9i(z;)]1<i j<n-

Theorem 1 Assume the kernel ® to be smooth enough to guarantee
that the functions uy := AV®(-,y) for X\ € A are continuous. Then
the set of functions {g;}I, constructed above is linearly independent,
and hence Kansa’s collocation matriz (5) is nonsingular for properly
chosen trial centers.

Proof: By assumption, all {g;} are continuous. After we prove
the independence, the second assertion follows from Theorem 2. If

n
Z Bi gi = 0, then by the reproducing property of the kernel
i=1

0= (£.3° Bigi) = 3 £y,)) = S Gl for all £ € A,
i=1 i=1 i=1

which implies that 3; = 0, and thus {g;} are linearly independent. <

The continuity assumption of Theorem 1 is not satisfied if we han-
dle weak problems by kernels with minimal regularity, e.g. solving
a Poisson problem in 2D using the kernel Ky that reproduces the
Sobolev space W4 (IR?).

In practice, one should fix the set A,, of n test functionals first and
then work on a trial space U constructed via a very large set X s of
trial centers located in a bounded domain that contains 2. If M>>n
is large enough, and if the trial centers are reasonably distributed,
the set Xj; contains a proper set of trial centers as guaranteed by
Theorem 1. The employed method should automatically pick n out of
these M centers to guarantee nonsingularity and, most importantly,
a reasonable condition of the resulting n x n collocation matrix. In
terms of linear algebra, this means to pick a subset X, of n points
out of X such that the square n x n submatrix Ay, x, of the large
non-square n x M matrix Ax, x,, is nonsingular. Clearly, this can be
done by a partial QR factorization of Ay, x,, with column pivoting.
The computational complexity grows as O(n?M), because n steps are
needed, each updating an n x M matrix by an n x n Householder
transformation. Storage grows like O(nM). But there are techniques
that gradually build up the relevant matrix “on—the—fly”, as we shall
show below.

3 Greedy Method

The previous section showed how to deal with a fixed set of test func-
tionals by picking suitable subsets of trial centers in a meshless and
data—dependent way. But choosing a set A, that best approximates
the original infinite test set A is also essential. In view of the infinite
problem (1) one should also pick suitable test functionals in a mesh-
less and data—dependent way from a large set of test functionals. The
choice of trial centers is left to a later stage. In this section, we provide

an adaptive greedy algorithm that automatically searches for a suit-
able test/trial pair at each iteration. coinsisting of a test functional
An+1 and a trial center z,41. It will work on n X n systems, allowing
n to grow, and doing update steps of complexity O(n?) after having
found the pair (Ap+1,2n+1). This even allows to work on infinite sets
of test functionals and trial centers to choose from.

Given an infinite set A C Ng* of functionals. We want to recon-
struct a function u € Ny from its data A. At iteration k, assume
that a solution to Kansa’s method for functionals Ay := {A1,..., \x}
and suitably placed trial centers Xy := {z1,..., 2} C IR is already
known such that the corresponding matrix is nonsingular. We write
this as the n X n matrix system

Ap x, 08 = fag, (7)

k
and denote the solution function by s := Z oaFd (-, z).
1=1

Now we pick from A a functional Ax;; such that the residual
Ak+1(sp — u) is large in absolute value, possibly maximal among all
other such functionals. It suffices to assume

|Aer1(sk — u)| > 0| A(sk — u)| for all A € A, (8)

for some 6 € (0,1], e.g., by taking the actual maximum. If we find
none with a nonzero value, we stop. Otherwise we conclude that A\g 1
must be linearly independent from the other functionals. Now add
Ak+1 to the functionals considered so far,

Apa1 = Ap U {)\k+1}.

The technique is therefore called greedy.

For a moment, we consider the new trial center x,,1 as a free
variable z € IR?. The determinant of Ap, +1, X4, 18 then a function
vg+1(x), in fact up to a sign

ve1(@) = det (AAk+17XIc U{l‘})
k+1 ‘
- Z(—l)jgi(x) det (AAIc-H\{)\i}vXk)’

i=1

where g; := A/ ®(y,-). If we define 8; = (—1)7 det (Arp ()X), We
have

Upe1(x) = (=1 det (Ap, x,) ges (+Zﬁlg@ 9)

Now we pick a point 2* € IR? such that vy 1(2*) # 0, call it 3,1 and
add it to the previously chosen set of trial centers,

X1 =X U {karl}-

Now repeat the iteration for k+1 instead of k. In the step that selects
the functional Ag1; we have something similar to the well-known a-
posteriori error estimators in finite elements. But, in addition, our
subsequent choice of the trial center z;1 adaptively changes the trial
space in a data—dependent and meshless way.

Theorem 2 The adaptive greedy algorithm above generates a sequence
of uniquely solvable unsymmetric collocation problems. It can be car-
ried out efficiently, since the factors [(; in (9) are constant multiples
of the solution of

AL x v = (e (@), - grpr () (10)

Proof: For the functional A\ € Ay, it is clear that there must exist
a point ; € IR? such that g;(z1) # 0. Suppose det (Aa, x,) #0. We
assume that vy, 1(z) = 0 for all 2 € IR?. Since the functions g; for
1 <4 < n are linearly independent, all 5; for 1 < i < k+ 1 in (9),
including By := det (Aa,, x,), are identically zero.

We apply Cramer’s rule to the system (10) and get

det (AAk+1\{/\ }Xk)

i 1)F
= () det AAIka

L 1<i<k

for the solution, and formally also yx+1 = —1. Thus, up to the ir-
relevant nonzero common factor o = *det Ay, x,, we have 3; =

ok, for 1 <i<k+1. . o
+

In practice, we use the scaled function vgiq(z)/ok11 = Z ~igi(x) in-

stead.

4 Implementation and Cost

The adaptive greedy method, if applied to a huge but finite linear
system, can be reformulated in linear algebra terms. Then, it is dif-
ferent from standard elimination techniques with pivoting, because it
takes the right—hand side into account. It also has an “on—the—fly”
formulation which we describe now.

Within each iteration, instead of solving (7) and (10) from scratch,
we can update the inverse matrices through a well-known matrix in-
version formula. Let Bj denote the inverse of the k-th stage matrix
Ap, x,- For k> 1, we have

-1
_ Appy Xy U
B, = l il ~ (10)
_ E+96 (Bk,ﬂ?) (ﬁTkal) -6 (Bk,ﬂ?)
—6 (" By_1)) ’

where the vectors and scalars above are given by 4@ = gi(z;), ¥ =
gi(zy) for 1 <i,j <k—1,~v = gr(xs), and § := (y — @’ B7)~'. More-
over, E and 0 are the identity matrix and the zero vector, respectively.
The inverse update algorithm requires at most O(k?) operations, and
it can be viewed as the recursive form of Gaussian elimination.

In practice, we discretize the generalized PDE problem first via a
large set of N test functionals A . Then we provide a very large set of
M>>N trial centers X for the algorithm to choose from. Note that
the test functionals are restricted to a computational domain and its
boundaries, while the trial centers can come from a larger domain.

The algorithm can be viewed as working on a full N x M matrix,
but it does never compute or store the full matrix. Instead, only the
essential elements are computed and stored “on—the—fly”.
Algorithm: Startup is done by finding some A\; € Ay with the greedy
criteria (8) and then an z1 € X such that gi(z1) :== \{®(y,z1) # 0
and large in absolute value. The first inverse matrix and the first
approximated solution are given by

B = —1 lRle — f)\l 9.
1:=g1(r1)" € , S1 —91(361)91()

For k= 2,3, ..., the algorithm then iterates as follows:

1. Compute all residuals \;(sx_1 — u) for all \; € Apy; this takes
O(kN) operations.

10.

. Search for A\ € Ay with maximum residual; this takes O(N)

operations.

e STOP if all residuals in absolute value are smaller than some
tolerance.

. Associated to Ay is a function g, = A ®(-,y). Compute and store

gr(zj) for 1 < j < M. This takes O(M) operations.

. Evaluate the function

g91(x)
= —gk(:lj)—{— [gk(acl),...,gk(wk_ﬂ}Bk—l 3
Jk—1()

v ()

for all x € X (see Theorem 2). This takes O(kM) operations.

. Search for z; € X such that |vg(zy)/o] is closest to 1. This

takes O(M) operations.
e STOP if computed values are smaller than some tolerance.

Update the index sets corresponding to the new sets of test func-
tionals and trial centers, Ay = Ax_1 U{ A} and Xy = Xj—1 U{zx},
respectively.

IF the new matrix Ay, x, is rank-deficient (numerically), OR IF
k reaches a prescribed maximal value kyax, solve subsystem (7),

k
AAIkaO‘ = f)\k’

with utmost numerical care, using SVD. Then STOP.

ELSE update the inverse matrix By, as in (10). This takes O(k?)
operations.

. Solve the k x k subsystem (7) for a* = By f,,. This takes O(k?)

operations.

Repeat the iteration for k + 1.

The rule in step 5 may look strange, but since the function vy is (up
to a factor) the determinant of the enlarged system, one has to avoid
large and small values to ensure numerical stability.

If the final iteration count is K, the total work of the adaptive
greedy method is O(K?3 + K2M + K2N) operations, while storage
is of order O(K? + M + N). The method is extremely efficient in
theory and practice, if K is small and M, N are large. The final

10

size of K determines its overall complexity, and K will be strongly
problem—dependent, turning out to be surprisingly small in standard
applications, as we will show in the next section.

Robert:
I suggest to drop the following example and the figure.
Reason:
It makes the reader think that everything just works within the matriz.
This is not true. The test functional selection works on residuals, not
on matriz elements. The trial function selection, however, is an oper-
ation on the matriz. The figure can possibly be seen as explaining only
the update step, but then the text is wrong, because it talks about se-
lection. When updating, one has already selected the row and column,
they will always be the boundary of the matriz.

Example 1 Suppose k£ = 6. In Figure 1, the 25 elements of Ax, x,,
(labeled by solid dots in Figure 1) are the elements of A, x,. We
labeled the newly selected elements 4 by squares, ¥ by circles, and -~y
by a diamond. The new column (test functional A\g) is chosen by the
greedy criteria (8). Then we search for a row (trial center z¢) by the
determinant function (9). In the algorithm (step 4), this corresponds
to multiplying the vector [y —1] from the left to the matrix of all
selected rows Apg x,, where v = [gr(z1),. .., gr(@k—1)]Br_1.

5 Numerical results

In this section we show some numerical examples which demonstrate
the efficiency of our proposed adaptive greedy algorithm. In all pre-
sented examples we have used the multiquadric

[z — yll?

q)c(xvy) =4/1+ 2

where 2,y € IR? and ¢ > 0 is the scaling parameter. As test equation
we solve the Poisson problem with Dirichlet boundary conditions, i.e.

>
B
&

I

f(z) forzeQc IRY

u(z) = g(x) for x € 0N (10)

We solve this problem on the three domains 1,9, Q3 C IR? which
are plotted in figure 2.

11

DS S a— ——

'Search for
'trial function
To) * v '

Figure 1: Demonstration of row and column selections.
Solid dots: elements of Ay, x,.

Squares: elements of .

Circles: elements of .

Diamond: « in (10).

1 06 03
04 02
05 02 01
0 0

0

-02 -01
05 -04 -02
Q -06 QZ -03

L5 0 05 1 M2 0 0z s o5 o8 s 0 05

Figure 2: The domains €21, {25, €25.

12

In order to compare the exact solution of (10) with the computed
approximant, we choose as the right hand sides of (10) the functions
f=As; and g = s; for 1 < i < 3 where the functions s; are

si(z,y) = 0.5log(z? — 4z + 8 +y* — 4y),
so(z,y) := MATLAB’s peaks function,
s3(x,y) = (max{z,0})>.

We collocate the PDE (10) at Ny + N points
{Zl,"'val}Cﬁa {21""32N2}C89 (10)

such that the first point set associates with the domain operator and
the second set associates with the boundary operator. Finally, we
discretize the set [—6,6]? by 47229 equally distributed points X C
[—6,6]2. We allow the greedy method to pick from the trial functions

{Pc(iy-) s € Xpg}
and from the test functionals
{)\z = (SZZA[U] 01 S 1 S Nl} U {5\] = 55].[11,] 01 S j S NQ}

Since the method is extremely fast, the forthcoming examples are
not restricted to single solutions of single problems. Instead, a full
sequence of problems is solved, using varying scalings of the kernel.

Example 2 In our first example we solve (10) for the domain € (see
Figure 2) and for f = Asj and g = s1. The adaptive greedy algorithm
can pick from Ny + No = 1116 test functionals (see (10)). To show the
influence of the scaling parameter ¢, we run the algorithm 73 times
with ¢; := 14 0.125¢,0 < ¢ < 72. The left plot of figure 3 shows the
root-mean-square (RMS) error! against the scaling parameter c. The
right plot of figure 3 shows the degrees of freedom, i.e. the number K
of chosen trial centers or the number of total iterations, against the
scaling parameter c.

A small value of ¢ allows the algorithm to pick many trial centers
and test functionals which results in a high accuracy. A huge value of
¢ causes an ill-conditioned matrix. Therefore the iteration terminates

1 o Y o (s1(@)—5(x))2
RMS = \/ St @l

sufficiently fine discretization of Q2

where 3 denotes the computed approximant and is a

13

107 ‘ ‘ ‘ 120

c

£

£ 100

5

2 8

<|% o 80

c -

e o

5 O o

3 o 60

0 (o))

- a

I 40

%

>

10t ‘ ‘ ‘ 20

2 4 6 8 10 2 4 6 10
Scaling parameter ¢ Scaling parameter ¢

Figure 3: RMS and DOF against scaling parameter ¢ for the domain €2, and
for f = As; and g = s;.

after fewer steps. However, all computed examples have a remarkably
small error, taking into account that we have actually picked less than
100 points in all examples. The greedy algorithm proposed by [6] needs
nearly 3000 points for the same problem to achieve an accuracy of
0.001. To show how the scaling parameter ¢ influences the distribution
of the points, Figure 4 and 5 show the loci of the chosen trial centers
and test functionals for the scaling parameters ¢ = 1 and ¢ = 5. In the
left plots of figure 4 and 5, the circles indicate the chosen boundary
functionals whereas the crosses indicate the interior functionals.

For ¢ = 1 the trial centers are uniformly distributed close to the do-
main 2y, whereas for ¢ = 5 the triall centers move out of the domain.
We observed the same behaviour in other examples: the adaptive
greedy algorithm prefers “exterior” centers for large scaling parame-
ters c.

Example 3 In this example we solve the PDE (10) for the domain
Qy (see Figure 2) and for f = Asy, g = so. We run the algorithm
with the same settings as in the previous example, but the number of
test functionals is now N+ No = 1082. The left plot of figure 6 shows
the RMS error while the right plot of figure 3 shows the final degrees
of freedom K against the scaling parameter c.

14

Or X
05 xxg’ 4r
B xx
®xxx x %):(x ® 2 x x xxx X
0 x xxx xxxgo s X
x*x x x7® 0 x X
x X X
= XX) xxx xx"xx X
0 0‘0 x x XX x
X
-1 w w -4 ‘ «
-1 -0.5 0 05 -5 0 5

Figure 4: Loci of points for ¢ = 1.

test functionals.

1
®
8y ®
05 «® x .
L
x0 X
0 x <®
o ®
X
x
x
-05 00 %
x
®
-1 . .
-1 -0.5 0 05

Figure 5: Loci of points for ¢ = 5.

test functionals.

Left: chosen trial centers. Right: chosen

(3} X X X X x
4r x X
X
X X «
2 X
X x X
X X « X
0 <X :
X X
X X x .
-2F X «
X
X
—4r X x
-6 s
-5 0 5

chosen trial centers. Right: chosen

(=}

120

10
c
£
£ 100
S10° :
2 3
<|% o 80
5107 5
5 O anl
0 [o)]
~10° 8
o 40t
)
P
" 10— ‘ ‘ ‘ 20
2 4 6 8 10 2 4 6 10
Scaling parameter ¢ Scaling parameter ¢

Figure 6: RMS and DOF against scaling parameter ¢ for the domain €25 and
for f = Asy and g = 35 .

In this example we observe a similar behaviour of the algorithm with
respect to the scaling parameter ¢ as in the previous example. A small
c results in a very high accuracy. If we choose the scaling parameter
close to 10, the algorithm can only pick about 20 points before it runs
into condition problems. Therefore we lose accuracy.

Example 4 In our last example we solve the PDE (10) for 23 and
for f = As3 and g = s3. Note that in this example Asg has a corner
inside the domain {23, and the solution has a derivative singularity
there. Since our approximant is always a superposition of shifted super
smooth functions, we can not expect a high accuracy. The number of
test functionals is N1 4+ Ny = 636 in this example. We only ran the
adaptive greedy algorithm 29 times for ¢; := 0.2 + 0.1¢,0 < ¢ < 28.
Figure 7 shows the RMS error and the degrees of freedom against the
scaling parameter c.

6 Conclusion

We propose a truly meshless adaptive greedy technique that allows
general PDE problems to be solved on complicated domains. The

16

[=}

300

10
g
E 250t
510" :
g 2 2000
g 0
§10° 5 150
5 [0}
= [0}
% 5100
~— -3 Q
s 10 + [a]
0 50/
b
X

10 0

05 25 3 3

1 15 2 é .15 2
Scaling parameter ¢ caling paramefer ¢

Figure 7: RMS and DOF against scaling parameter ¢ for the domain €23 and
for f = Asz and g = s3 .

method is adaptive, data-dependent and matrix-free; hence, it pro-
vides a fast and efficient alternative to solve large-scale problems.

Note that the greedy method currently runs on large discrete sets
of test functionals and trial centers. But it can be run on infinite sets
thereof. In the latter case, the searches over the discrete sets A and
X are replaced by two d-dimensional optimization problems. Also,
there is quite some chance to prove convergence to the true solution
of the full problem, using the techniques of [10]. We leave this to a
forthcoming paper, together with the possibility to use trial spaces
that arise from kernels of different scales and incorporate functions
which account for singularities of solutions at the boundary.

References
[1] Aronszajn, N. (1950): “Theory of reproducing kernels”, Trans.
Amer. Math. Soc. 68, 337-404

[2] Atluri, S. N., and S Shen (2002): The Meshless Local Petrov—
Galerkin (MLPG) Method, Tech Science Press, California, 402

pages.

17

[3]

Franke, C. and Schaback, R. (1998): “Solving Partial Differ-
ential Equations by Collocation using Radial Basis Functions”,
Appl. Math. Comp 93, 73-82

Franke, C. and Schaback, R. (1998): “Convergence Order Esti-
mates of Meshless Collocation Methods using Radial Basis Func-
tions”, Advances in Computational Mathematics 8, 381-399

M.A. Golberg and C.S. Chen (eds., 2000): “The Dual Reci-
procity Method and Radial Basis Functions”, International
Journal of Engineering Analysis with Boundary Elements 24,
Elsevier

Hon, Y. C. and R. Schaback (2001): “On Unsymmetric Colloca-
tion by Radial Basis Functions”, J. Appl. Math. Comp. 119,177—
186

Kansa, E. J. (1986): “Application of Hardy’s multiquadric in-
terpolation to hydrodynamics”,Proc. 1986 Simul. Conf., Vol. 4,
p. 111-117

Kansa, E. J. (1990): “ Multiquadrics — A scattered data ap-
proximation scheme with applications to computational fluid-
dynamics — I: Surface approximation and partial derivative es-
timates”, Comput. Math. Appl. 19, p. 127-145

Schaback, R. (1999): “Native Hilbert Spaces for Radial Basis
Functions I”, in Buhmann, M.D., Mache, D. H., Felten, M.
and Miiller, M.W. (eds.): “New Developments in Approximation
Theory”, Birkhauser Verlag, International Series of Numerical
Mathematics 132, 255-282

Schaback, R. (2003): On the Versatility of Meshless Kernel
Methods, ICCES03 proceedings

Wu, Z. (1992): “Hermite-Birkhoff Interpolation of scattered
data by radial basis functions”, Approzimation Theory and Ap-
plications 8, 1-10

18

