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Worldwide, Pseudomonas aeruginosa remains a leading nosocomial pathogen that is difficult to 
treat and constitutes a challenging menace to healthcare systems. P. aeruginosa shows increased and 
alarming resistance to carbapenems, long acknowledged as last-resort antibiotics for treatment of 
resistant infections. Varied and recalcitrant pathways of resistance to carbapenems can simultaneously 
occur in P. aeruginosa, including the production of carbapenemases, broadest spectrum types of 
β-lactamases that hydrolyze virtually almost all β-lactams, including carbapenems. The organism can 
produce chromosomal, plasmid-encoded, and integron- or transposon-mediated carbapenemases from 
different molecular classes. These include Ambler class A (KPC and some types of GES enzymes), 
class B (different metallo-β-lactamases such as IMP, VIM, and NDM), and class D (oxacillinases with 
carbapenem-hydrolyzing capacity like OXA-198) enzymes. Additionally, derepression of chromosomal 
AmpC cephalosporinases in P. aeruginosa contributes to carbapenem resistance in the presence of 
other concomitant mechanisms such as impermeability or efflux overexpression. Epidemiologic and 
molecular evidence of carbapenemases in P. aeruginosa has been long accumulating, and reports of their 
existence in different geographical areas of the world currently exist. Such reports are continuously being 
updated and reveal emerging varieties of carbapenemases and/or new genetic environments. This review 
summarizes carbapenemases of importance in P. aeruginosa, highlights their genetic profile, and presents 
current knowledge about their global epidemiology.
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INTRODUCTION TO PSEUDOMONAS 
AERUGINOSA AND SIGNIFICANCE OF 
CARBAPENEM RESISTANCE

A versatile, opportunistic, and multidrug resistant 

pathogen, Pseudomonas aeruginosa remains a significant 
cause of infections with high morbidity and mortality [1], 
including hospital-acquired and ventilator-associated 
pneumonias, urinary tract, surgical site, burn, and blood-
stream infections [2,3]. It shows high propensity to infect 
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immunocompromised hosts, patients in intensive care 
units, and those with structural lung diseases like cystic 
fibrosis [4,5]. The tenacious nature of P. aeruginosa, 
its dynamic array of antimicrobial resistance pathways, 
and its substantial burden on healthcare, have impelled 
its ranking as a critical priority pathogen by the World 
Health Organization, which is the highest in its three-tier 
list of pathogens indicating global urgency to develop 
new therapeutics against this challenging organism [6].

The formidable pathogenic profile of P. aeruginosa 
is greatly linked to its assortment of virulence factors 
[7], and to numerous and variable resistance determi-
nants, known to confer resistance to multiple antibiotics 
including β-lactams, aminoglycosides, fluoroquinolones, 
colistin, and tigecycline, leading to multidrug or even 
pandrug resistance [8,9]. Most antibiotics are not effec-
tive against P. aeruginosa due to its disconcerting levels 
of intrinsic and acquired resistance [5], in addition to 
recently characterized adaptive resistance, whereby gene 
expression changes with growth or environmental condi-
tions, including exposure to stress, and is responsible for 
recalcitrance and relapse of infections [10]. Specifically, 
the emergence of pseudomonal resistance to carbap-
enems has become a global health concern. Pioneered 
by imipenem, and including the approved compounds 
meropenem and doripenem, these broadest spectrum and 
greatest potency β-lactam antibiotics represent last-resort 
options for P. aeruginosa infections [11,12]. Neverthe-
less, resistance to these compounds in P. aeruginosa is 
on the rise, caused by an arsenal of mechanisms. Most 
commonly, intrinsic loss or decrease in the porin protein 
OprD, involved in carbapenem uptake, was demonstrat-
ed as the most frequent mechanism [13-15]. Moreover, 
overexpression of efflux pumps of the resistance-nodu-
lation-division (RND) family, mainly the MexAB-OprM 
efflux pump, plays a major role in carbapenem resistance 
in P. aeruginosa by expelling these compounds to the 
extracellular environment [16,17]. The role of porin in-
activation is known to account for imipenem resistance, 
while efflux pump overexpression is mainly associated 
with meropenem resistance [18], but has lower impact on 
doripenem [19]. In addition, the overproduction of chro-
mosomally encoded, inducible AmpC cephalosporinases, 
in isolates with accompanying resistance mechanisms, 
could positively contribute to carbapenem resistance, 
with ertapenem being completely excluded from these 
pathways as it has more limited spectrum and is naturally 
ineffective against P. aeruginosa [20,21].

Parallel to such intrinsic resistance, P. aeruginosa can 
attain carbapenem resistance through acquisition of car-
bapenemase genes. P. aeruginosa genome is among the 
largest bacterial genomes and maintains a blend of genes 
acquired through horizontal transfer, and localized within 
integrons and mobile elements like transposons, insertion 

sequences, genomic islands, and plasmids [9]. Among 
these, genes encoding carbapenemases are particularly 
relevant, due to wide spectrum of antibiotics affected 
[22]. Since the first description of the plasmid-encoded, 
transferrable IMP metallo-β-lactamase in P. aeruginosa 
more than 2 decades ago [23], numerous carbapenemases 
of Ambler classes A, B, and D have been described in 
this organism [8], whereby they continue to escalate the 
heterogeneity of carbapenem resistance mechanisms and 
complicate treatment.

CLASSES OF CARBAPENEMASES IN 
P. AERUGINOSA AND THEIR GENETIC 
ENVIRONMENT

Carbapenemases are β-lactamases with the most 
versatile nature and broadest spectrum of activity, ca-
pable of hydrolyzing carbapenems, in addition to most 
other β-lactam antibiotics with few exceptions. At the 
molecular level, carbapenemases belong to classes A, B, 
and D of the Ambler classification [24], although infre-
quent carbapenemases of class C exist, possibly reducing 
susceptibility to carbapenems via weak catalytic activity 
coupled to permeability defects [25]. The ability of P. 
aeruginosa to act as a reservoir and a dispersion trajec-
tory for transferable carbapenemases constitutes a threat 
for antimicrobial therapy [22]. The major properties of 
P. aeruginosa carbapenemases are described below, and 
their names and abbreviations are shown in Table 1. Also, 
examples of recent studies reporting P. aeruginosa car-
bapenemases are summarized in Table 2.

Ambler Class A Carbapenemases in P. aeruginosa
Class A carbapenemases hydrolyze penicillins, 

classical cephalosporins, monobactams, and carbapen-
ems, with hydrolysis dependent on their serine active 
site [24]. In 2001, Poirel and Colleagues described a 
self-transferable 100-kb plasmid of P. aeruginosa grown 
from blood cultures of a South African patient with 
pneumonia. The plasmid harbored a β-lactamase gene, 
blaGES-2, whose product hydrolyzed expanded-spectrum 
cephalosporins and imipenem. GES-2 activity was less 
inhibited by clavulanic acid and tazobactam, common 
inhibitors of Ambler class A enzymes [26]. In addition to 
GES-2, GES-5-producing isolates of P. aeruginosa were 
identified in medical settings in Japan since 2014, and its 
gene was acquired and chromosomally encoded [27,28]. 
They were also detected in Dubai [29], as well as in Saudi 
Arabia [30] among sequence type (ST) 235 lineage, the 
most prevalent global clone associated with multidrug re-
sistance [31]. GES-6 is another P. aeruginosa carbapene-
mase identified on a new type of class 1 integrons named 
In1076 and is chromosomally located [32]. GES-20 was 
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Table 1. List of Names and Abbreviations of Carbapenemases Discussed in this Article
Carbapenemase name Abbreviation
Ambler Class A
    Guiana extended spectrum GES
    Klebsiella pneumoniae carbapenemase KPC
Ambler Class B
    Central Alberta metallo-β-lactamase CAM
    Dutch imipenemase DIM
    Florence imipenemase FIM
    German imipenemase GIM
    Hamburg metallo-β-lactamase HMB
    Imipenemase metallo-β-lactamase IMP
    New Delhi metallo-β-lactamase NDM
    Seoul imipenemase SIM
    Sao Paulo metallo-β-lactamase SPM
    Verona integron-encoded metallo-β-lactamase VIM
Ambler Class D
    Oxacillinase OXA

Table 2. Examples of Studies Reporting Carbapenemases in Pseudomonas aeruginosa since 2020
Ambler 
class

Carbapenemase Source of Isolation Country Year Reference

A KPC-2 Ascitic fluid Brazil 2021 [63]
KPC-2 Respiratory, surgical, and urine samples 

from ICU patients
China 2021 [64]

KPC-90 Fecal screening sample China 2022 [65]
GES-24 Long-term care facilities Korea 2020 [66]

B VIM-5 Various clinical isolates Nigeria 2021 [67]
VIM Various clinical isolates Malaysia 2021 [68]
VIM-1, VIM-2, VIM-4 Clinical and screening specimens from 

critical care units
Germany 2022 [69]

VIM-6 Various clinical samples Kenya 2022 [70]
IMP-1, IMP-7, IMP-10, 
IMP-34, IMP-41

Various clinical samples Japan 2022 [71]

IMP-6 Urine Korea 2022 [72]
NDM-1 Sputum or endotracheal aspirates of 

COVID-19 patients
Egypt 2020 [73]

NDM-1 Clinical and screening specimens from 
critical care units

Germany 2022 [69]

NDM-1 Various clinical samples Kenya 2022 [70]
NDM-1 Urine Korea 2022 [72]

D OXA-913 Skin specimen of a dog with pyoderma Korea 2021 [74]
OXA-486 Feces of a red deer sampled in a 

humanized area
Portugal 2022 [75]
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ST111, ST175, ST233, ST235, ST277, ST357, ST654, 
and ST733 are at the origin of the wide dissemination 
of NDM, VIM, and IMP [45]. In Brazil, the emergence 
of rmtD1 gene, encoding aminoglycoside resistance, was 
recently reported in P. aeruginosa isolates carrying KPC-
2 and/or VIM-2, featuring a pan-resistant phenotype [46]. 
The infuriating spread of the metallo-β-lactamase NDM-
1, which displays tighter binding to most β-lactams and 
which has spread among many Gram-negative bacteria 
was captured by P. aeruginosa, adding to its arsenal of 
resistance weapons. After its initial reporting in Serbia 
[47], NDM-1-positive P. aeruginosa isolates have been 
recovered throughout the world [48]. In 2021, an emerg-
ing clone, ST308, was identified including NDM-1-pro-
ducing P. aeruginosa, in addition to the global high-risk 
ST235 clone which was predominant and has circulated 
for the previous 14 years in Singapore [49].

The genetic environment of IPM- and VIM-encod-
ing genes is mainly a class 1 integron, characterized by 
an integrase intlI gene associated with a transposase tnpA. 
This integron belongs to mobile integron elements that 
are commonly plasmid-mediated; however, some large 
integrons, classified as superintegrons that harbor hun-
dreds of gene cassettes and homogeneous sites, have been 
detected in the pseudomonal chromosome [40]. Recently, 
five types of blaVIM-2-containing integrons were described 
in Russia, including In56, In559, In59-like, In59, and 
In249 [50]. Regarding NDM-1, its encoding gene in P. 
aeruginosa was reported as part of the variable region of 
a complex class 1 integron bearing IS common region 1 
(ISCR1), and surrounded by ISAba125 and a truncated 
bleomycin resistance gene [51].

Overexpression of Class C Cephalosporinases 
Associated with Other Mechanisms, or Peculiar 
Carbapenem-Hydrolyzing AmpC Enzymes

In addition to carbapenemases, another β-lactam 
resistance mechanism in P. aeruginosa is production 
of chromosomal AmpC enzymes, also called Pseu-
domonas-derived cephalosporinases (PDCs), induced 
or derepressed to cause penicillin and cephalosporin 
resistance. Inducible AmpC can be upregulated by sub-
inhibitory concentrations of some β-lactams. Moreover, 
mutations in regulatory AmpC components can lead to 
stable expression resulting in resistance [52]. The current 
knowledge regarding the role of AmpC in carbapenem 
resistance in P. aeruginosa suggests that their mere over-
expression does not significantly affect carbapenems, but 
certainly could contribute to resistance if escorted by 
additional mechanisms like efflux pump overproduction, 
poor OprD, and/or carbapenemases [20]. For example, 
in an investigation from Korea, co-expression of PDC-2 
with IMP or VIM resulted in high level carbapenem re-
sistance, unlike either mechanism alone [52]. Also, PDC 

described in prevalence approaching 85% among car-
bapenem-resistant P. aeruginosa collected from Mexican 
hospitals and was chromosomally encoded on embedded 
class 1 integron arrays [33].

Currently, the plasmid-borne Klebsiella pneumoniae 
carbapenemases (KPCs) are among the most prevailing 
and widely distributed carbapenemases. While well ac-
knowledged in Enterobacteriaceae family, the first KPC-
2 identification in P. aeruginosa was in Columbia in 2007 
with a suggested chromosomal gene location [34]. How-
ever, blaKPC-2 genes in this organism are mostly carried by 
plasmids of different sizes, associated with Tn4401b or a 
part of the Tn4401 sequence [35]. A recent detailed un-
derstanding of the genetic background of KPC-carrying 
plasmids harbored by P. aeruginosa was described, with 
29-kb blaKPC-2 -carrying plasmid, pR31-KPC, including 
two accessory modules, the IS26- blaKPC-2 - IS26 unit 
and IS26-∆Tn6376-IS26 region, separated by a 5.9-kb 
backbone region [36]. Almost a decade ago, it was an-
ticipated that emergence of unrelated plasmids, differing 
in size and incompatibility group, and harboring diverse 
genetic structures containing blaKPC-2 in P. aeruginosa 
would eventually assume a dissemination pattern close 
to that in Enterobacteriaceae [37]. Currently, the spread 
of successful international clones, the variable existence 
of blaKPC-2 on integrons, transposable elements, and plas-
mids, accompanied by gene rearrangement events like 
transposition and recombination, and antimicrobial pres-
sure, may all have driven the observed spread of blaKPC-2 
in P. aeruginosa [38].

Ambler Class B Carbapenemases in P. aeruginosa
These are metallo-β-lactamases that use zinc-de-

pendent hydrolysis to confer resistance to all β-lactams 
except aztreonam. They are resistant to β-lactamase 
inhibitors such as clavulanic acid, sulbactam, and ta-
zobactam, but susceptible to inhibition by metal ion 
chelators like ethylene diamine tetraacetic acid (EDTA) 
[39]. The most common families of Class B include 
IMP, VIM, NDM, GIM, and SIM, whose encoding genes 
are located within various integrons as gene cassettes. 
When these integrons become associated with plasmids 
or transposons, horizontal transfer between bacteria is 
highly probable [40]. Interestingly, the initial discoveries 
of four families of metallo-β-lactamases including IMP 
[23], VIM [41], SPM [42], and GIM [43] were from 
P. aeruginosa, indicating this organism as a favorable 
reservoir for metallo-β-lactamases. At least 32 different 
variants of IMP and 23 variants of VIM exist in P. aerugi-
nosa [8], and some reports indicate that 30% of resistant 
strains possess a metallo-β-lactamase [44]. According to 
a recent whole-genome sequencing analysis, internation-
ally disseminated P. aeruginosa high-risk clones that are 
multidrug resistant, such as the most frequently reported 
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impact on resistance remains inconclusive [24,56]. Low 
rates of OXA-23, OXA-40, and OXA-58 families, that 
mainly exist in Acinetobacter baumannii, were detected 
in P. aeruginosa [57] even though their associated genes 
have both chromosomal and plasmid locations [56]. A 
specific carbapenemase, OXA-198, was identified in 
one P. aeruginosa strain and its gene was harbored by 
a class 1 integron carried on a 46-kb nontypeable plas-
mid [58]. Later, this carbapenemase was identified in a 
hospital-associated cluster, and its gene belonged to a 
novel IncP-11 plasmid, whose transfer operon was partly 
deleted, perhaps limiting horizontal spread [59]. In India, 
the carbapenem-hydrolyzing OXA-48, predominant in 
Enterobacteriaceae, was detected in Escherichia coli 
and P. aeruginosa co-infection. The blaOXA-48 gene was 
identified on a 60-Kb plasmid previously associated with 
spread of this resistance trait [60], probably emphasizing 
genome plasticity of P. aeruginosa.

WORLDWIDE EPIDEMIOLOGY OF 
CARBAPENEMASES IN P. AERUGINOSA

The rates of carbapenem resistance in P. aeruginosa 
vary worldwide, with a prevalence of 10-50% in most 
countries. For example, Canada and the Dominican 
Republic represent the lowest rates (3.3% and 8% re-
spectively), while Australia, North America, and some 

genes were detected together with OprD and efflux pump 
mutations to contribute to high-level imipenem resistance 
in P. aeruginosa isolates from companion animals in Ja-
pan [53]. Furthermore, some mutational variants of PDC 
like PDC-2, PDC-3, PDC-4, or PDC-5 show reduced 
susceptibility for all β-lactams, including ceftazidime, 
cefepime, cefpirome, aztreonam, imipenem, and mero-
penem, compared to PDC-1 [54], putting forward a novel 
resistance mechanism.

Ambler Class D Carbapenemases in P. aeruginosa
The class D serine β-lactamases are enzymes capable 

of hydrolyzing oxacillin and cloxacillin, hence the name 
oxacillinases and are not inhibited by Ambler classes A 
or B inhibitors. Originally, these enzymes were identified 
in Enterobacteriaceae and P. aeruginosa, and were plas-
mid-encoded [24]. In 1993, Hall and Colleagues described 
the first extended-spectrum OXA enzyme, OXA-11, in P. 
aeruginosa recovered from blood cultures of a Turkish 
burn patient and showed that the enzyme exhibited con-
siderable hydrolysis rates of ceftazidime [55]. Additional 
extended-spectrum variants were later described, like 
OXA-13, OXA-14, 15, OXA-18, OXA-28, and OXA-
45, with none exhibiting carbapenem hydrolysis. These 
enzymes were seldom identified in other species, and 
despite their importance to resistance profile of P. aeru-
ginosa, they did not spread, and their epidemiological 

Figure 1. Heatmaps showing the worldwide distribution of Pseudomonas aeruginosa carbapenemases, with 
colored areas corresponding to the geographical regions with predominance of the specific carbapenemase group. 
(a): KPC; (b): GES carbapenemases; (c): IMP; (d): VIM; (e): NDM. The heatmaps were extracted using data from the 
Antimicrobial Testing, Leadership, and Surveillance (ATLAS). Accessible through: https://atlas-surveillance.com.
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