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where 
•              is the decision variable 

•                      is an affine function of   , and 
•             is the uncertainty set, a convex compact set  ⌅ ✓ Rk

x 2 Rm

Ai : R
m ! Sn

Robust Semidefinite Program 

Consider the robust semidefinite program (SDP) 

Some notation: 
•      (    ) : space of          symmetric (symmetric PSD) matrices 
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Uncertainty Model 

The uncertainty set     is defined   ⌅

where      is a proper cone, e.g., 
•  positive orthant 

•  second-order cone 

•  positive semidefinite cone 
 

          

⌅ , {⇠ 2 Rk | ⇠1 = 1, B⇠ 2 K},

⌅

K
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Taken from Jerome Malic’s “Semidefinite Projections, regularization algorithms and polynomial optimization.” 3	



Robust SDPs : Challenges   
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The robust SDP is NP-hard, in general 
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The robust SDP is NP-hard, in general 

The constraint holds if and only if 

concave in  

          is the minimum eigenvalue function �min : Sn ! R
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A Robust LP Approach 
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Approximate the robust SDP with a robust linear program (LP) 

by approximating the PSD cone by a polyhedral cone  

Robust LP: 
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polyhedral cone 



A Robust LP Approach 

Approximate the robust SDP with a robust linear program (LP) 

Robust LP: 

by approximating the PSD cone by a polyhedral cone  

Robust LPs: Admit finite-dimensional reformulations as conic convex 
programs over the cone    characterizing uncertainty set   , e.g. ⌅

Polyhedral Cone Second-order Cone Semidefinite Cone 
Robust LP LP SOCP SDP 

K

K
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polyhedral cone 
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Finite-Dim. Reformulations and Approximations 

•  Packard et al. [‘93] •  Scherer [‘05] •  Ben-Tal et al. [‘02] 

•  El-Ghaoui et al. [‘97] •  Dietz et al. [’08] •  Oishi et al. [‘08] 

Exact Reformulations 
 
•  Ben-Tal, El-Ghaoui, Nemirovski, [‘00] 

-    is “Unstructured norm-bounded” 

Inner Approximations  
 
•  Ben-Tal, El-Ghaoui, Nemirovski, [‘00] 

-    is “Structured norm-bounded” 

•  Scherer and Hol, [‘06]  
-    is described by polynomial matrix inequalities 

Other related work 

⌅

⌅

⌅
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Talk Outline 

1.  Introduction  

2.  Inner and Outer Polyhedral Hierarchies of the PSD Cone 

3.  Inner and Outer Hierarchies of Robust SDPs 

4.  Application : Robust Resistance Network Design Problem 
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Polyhedral Approximation of 
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The positive semidefinite cone 

is an infinite intersection of half-spaces in    . 

Sn
+

Sn

Sn
+

Sn
+ =

\

u 6=0

{X 2 Sn | u>Xu � 0}



Outer Polyhedral Approximation of 

The positive semidefinite cone 

is an infinite intersection of half-spaces in    . 

Sn
+

Sn

•  A finite intersection of half-spaces 
yields an outer polyhedral cone to     . Sn

+
◆ Sn

+

Sn
+ =

\

u 6=0

{X 2 Sn | u>Xu � 0}
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Inner Polyhedral Approximation of 

The positive semidefinite cone 

is an infinite intersection of half-spaces in     

•  A finite intersection of half-spaces 
yields an outer polyhedral cone to      

Sn
+

•  The dual of the outer polyhedral cone 
is an inner polyhedral cone to      Sn

+

Sn
+

Sn

✓ Sn
+

Sn
+ =

\

u 6=0

{X 2 Sn | u>Xu � 0}

polyhedral Sn
+ ✓ () )⇤ ✓ (Sn

+)
⇤ = Sn

+(polyhedral 
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Student Version of MATLAB

The PSD cone can be expressed as:  

Construction of Outer Polyhedral Approximations 
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� := {x 2 Rn | kxk1 = 1}.

�

Let     denote the boundary of the    norm ball in   . `1 Rn�
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\

u2�

{X 2 Sn | u>Xu � 0}



S

n
+ ✓ {X 2 S

n | u>Xu � 0, for some u 2 �}.

Student Version of MATLAB

Sn
+ =

\

u2�

{X 2 Sn | u>Xu � 0}

Let     denote the boundary of the    norm ball in   . `1

The PSD cone can be expressed as:  

Construction of Outer Polyhedral Approximations 

Rn

� := {x 2 Rn | kxk1 = 1}.

�

•  An outer polyhedral cone to      arises by a 
discretization of    , i.e., �

Sn
+

�
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Fix        . Consider the following discretization of             : 

A Discretization Scheme of 
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�

r 2 N � ✓ Rn

�r := {u 2 � | 2ru 2 Zn}
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Fix        . Consider the following discretization of             : 

A Discretization Scheme of 
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�

r 2 N � ✓ Rn

�r := {u 2 � | 2ru 2 Zn}

Remarks: For any        , it holds that  
 

 �r ✓ �r+1

r 2 N



Some notation: The set       has     elements denoted by: 
 

 u1, u2, . . . , upr

Fix        . Consider the following discretization of             : 

A Discretization Scheme of 
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Student Version of MATLAB

Level r = 0

Outer Polyhedral Hierarchies of 
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since              . �0 ✓ �1
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Student Version of MATLAB

Outer Polyhedral Hierarchies of Sn
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The dual cones to       give a hierarch of 
inner polyhedral cones to         

Inner Polyhedral Hierarchies of 
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The dual cones to       give a hierarch of 
inner polyhedral cones to         
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•      : cone of nonnegative diagonal matrices 
   
•      : cone of diagonally dominant matrices 

with nonnegative diagonal entries. 

The dual cones to       give a hierarch of 
inner polyhedral cones to         

Inner Polyhedral Hierarchies of 
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Examples 

Student Version of MATLAB

Level r

      Ahmadi et al.’16 : Application of     to Sums of Squares Optimization. 
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Polyhedral Hierarchies of the PSD Cone 
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[Braun, Fiorini, Pokutta, Steurer ’12] “Approximation limits of linear 
programs (beyond hierarchies).” 
 
“It’s not possible to approximate SDPs arbitrarily well using small LPs” 

Inr ✓ Inr+1 ✓ Sn
+

Polyhedral Hierarchies of the PSD Cone 
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Outer Approximations to Robust SDP 

For any        , the robust LP: 

Recall the outer and inner polyhedral cones approximating  
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Inner Approximations to Robust SDP 

For any        , the robust LP: 

is an outer approx. to 
the robust SDP 

Recall the outer and inner polyhedral cones approximating  
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Finite-Dimensional Outer Approximation 

The hyperplane representation of the outer polyhedral cones  
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and strong duality gives a finite-dimensional representation of the robust 
LP. 
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Finite-Dimensional Outer Approximation 

The hyperplane representation of the outer polyhedral cones  

Theorem : The robust LP over      admits an equivalent reformulation 
as a finite-dimensional conic linear program: 

Its optimal value is a lower bound to the optimal value of the robust 
SDP. 
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•  Since     is polyhedral, it has a hyperplane representation: 

 

for some            (possibly large) 

•  Hyperplane representation yields a finite-dim. 
reformulation of robust LP  

A Challenge with the Inner Approximation 
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robust LP over 

A Challenge with the Inner Approximation 

The vertex representation of the inner polyhedral cone                 

precludes a direct finite-dim. reformulation for the robust LP over      

Inr =
qr\

i=1

half-space i

Inr

qr < 1

Inr

Inr = (On
r )

⇤

Inr

Inr

17	



Finite-Dimensional Outer Approximation 

Let 

be the hyperplane representation of the inner polyhedral cone  Inr

Inr =

qr\

j=1

{X 2 Sn | tr(HiX) � 0}
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Finite-Dimensional Outer Approximation 

Let 

Theorem: The robust LP over      admits an equivalent reformulation as 
a finite-dimensional conic linear program: 

Its optimal value is an upper bound to the optimal value of the robust 
SDP. 
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Inr

A hyperplane representation of     can be     
 
•  Computationally expensive to compute  

•  Impractical : the number,    of hyperplanes can be rather large 
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Restriction to affine functions yields a finite-
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Inner Approximation to Robust LP over  

Let 

Theorem: The robust LP over      admits an finite-dimensional inner 
approximation as a conic linear program: 

Its optimal value is an upper bound to the optimal value of the robust 
SDP. 
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Robust Resistance Network Design Problem 

Given a circuit topology and a set                         of external currents  I = {Q⇠ | ⇠ 2 ⌅}

1 2

3

4

5
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Robust Resistance Network Design Problem 

Objective: Choose a conductance      for each line        such that: gij (i, j)

minimize

subject to

Given a circuit topology and a set                         of external currents  I = {Q⇠ | ⇠ 2 ⌅}

maximal dissipation over I

g � 0

1>g  b budget constraint 

physical constraints 

g
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Robust Resistance Network Design Problem 

Objective: Choose a conductance      for each line        such that: gij (i, j)

minimize

subject to

Given a circuit topology and a set                         of external currents  I = {Q⇠ | ⇠ 2 ⌅}

1>g  !

g � 0

8 ⇠ 2 ⌅


⌧ Q⇠
Q⇠ Mdiag(g)M>

�
⌫ 0,

⌧
(⌧, g)

incidence matrix 21	
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⌅ = {⇠ 2 R6 | k⇠k2  2, ⇠1 = 1}

Unstructured Normed-Bounded Uncertainty 



⌅ = {⇠ 2 R6 | k⇠k2  2, ⇠1 = 1}

Unstructured Normed-Bounded Uncertainty 

Level   in Hierarchy  

0 1 2 3 4 
Lower Bound    (     ) 

Upper Bound I  (     ) 

Upper Bound II (     ) 

r

Robust LP Hierarchies 

Inr

On
r

Inr

Comparisons : 
•  Ben-Tal et. al [‘00] – (Optimal Value to Robust SDP) 

2.37 
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Unstructured Normed-Bounded Uncertainty 

Level   in Hierarchy  
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Structured Normed-Bounded Uncertainty 
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Structured Normed-Bounded Uncertainty 
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Upper Bound I  (     ) 6.35 5.26  comp. expensive 

Upper Bound II (     ) 8.02 6.80 6.61 6.51 

r

1
1

On
r

Inr

Comparisons : 
•  Ben-Tal et. al [’00] – (Upper Bound to Robust SDP) 

    
 
•  Scherer, Hol [’06] – (Upper Bound to Robust SDP) 

4.27 
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Polytopic Uncertainty 
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⌅ = {⇠ 2 R6 | k⇠k1  1, L⇠ � 0, ⇠1 = 1}



Polytopic Uncertainty 
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⌅ = {⇠ 2 R6 | k⇠k1  1, L⇠ � 0, ⇠1 = 1}

Level   in Hierarchy  

0 1 2 3 4 
Lower Bound    (     ) 0 3.40 8.17 8.17 8.17 

Upper Bound I  (     ) 8.96 8.44  comp. expensive 

Upper Bound II (     ) 8.96 8.44 8.34 8.26 

r

1
1

Comparisons : 
•  Nemirovski, El-Ghaoui [‘00] – (Not Applicable) 
    
 
•  Scherer, Hol [’06] – (Upper Bound to Robust SDP) 

8.22 

Robust LP Hierarchies 

On
r

Inr

Inr



•  Developed computationally tractable inner and outer hierarchies 
to robust SDPs that are exact in the limit 
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Robust SDP 

•  Approach: Developed inner and outer 
polyhedral hierarchies to 

•  Challenges: Impractical for moderate 
levels in the hierarchy! 
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•  Developed computationally tractable inner and outer hierarchies 
to robust SDPs that are exact in the limit 
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Robust SDP 

•  Approach: Developed inner and outer 
polyhedral hierarchies to 

•  Challenges: Impractical for moderate 
levels in the hierarchy! 

 

 

 

 

 

Future Research 

•  Adaptively improve the polyhedral approx. of      by using the 
guidance of the objective function!  
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Questions? 
 
 

Thank you! 
Raphael Louca 
e-mail: rl553@cornell.edu 
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