A Hierarchy of Polyhedral Approximations of Robust Semidefinite Programs

Raphael Louca joint work with Eilyan Bitar

School of Electrical and Computer Engineering

Cornell University

Robust Semidefinite Program

Consider the robust semidefinite program (SDP)

minimize
$$c^{\top}x$$

subject to $\sum_{i=1}^{k} \xi_i \mathcal{A}_i(x) \in \mathbf{S}^n_+, \quad \forall \ \xi \in \Xi,$

where

- $x \in \mathbf{R}^m$ is the decision variable
- $\mathcal{A}_i:\mathbf{R}^{m{m}}
 ightarrow \mathbf{S}^{m{n}}$ is an affine function of x , and
- $\Xi \subseteq \mathbf{R}^k$ is the uncertainty set, a convex compact set

Some notation:

• $\mathbf{S}^{n}\left(\mathbf{S}_{+}^{n}\right)$: space of $n \times n$ symmetric (symmetric PSD) matrices

Uncertainty Model

The uncertainty set Ξ is defined

$$\Xi \triangleq \{ \xi \in \mathbf{R}^k \mid \xi_1 = 1, \ B\xi \in \mathbf{K} \},\$$

where \mathbf{K} is a proper cone, e.g.,

- positive orthant
- second-order cone
- positive semidefinite cone

Robust SDPs : Challenges

The robust SDP is **NP-hard**, in general

minimize
$$c^{\top}x$$
 subject to $\sum_{i=1}^{k} \xi_i \mathcal{A}_i(x) \in \mathbf{S}_+^n, \quad \forall \ \xi \in \Xi,$

Robust SDPs : Challenges

The robust SDP is **NP-hard**, in general

minimize
$$c^{\top}x$$

subject to $\sum_{i=1}^{k} \xi_i \mathcal{A}_i(x) \in \mathbf{S}^n_+, \quad \forall \ \xi \in \Xi,$

The constraint holds if and only if

$$\min_{\xi \in \Xi} \ \lambda_{\min} \left(\sum_{i=1}^{k} \xi_i \mathcal{A}_i(x) \right) \ge 0.$$
concave in ξ

 $\lambda_{\min}: \mathbf{S}^n \to \mathbf{R}$ is the minimum eigenvalue function

A Robust LP Approach

Approximate the robust SDP with a robust linear program (LP)

by approximating the PSD cone by a polyhedral cone

A Robust LP Approach

Approximate the robust SDP with a robust linear program (LP)

by approximating the PSD cone by a polyhedral cone

Robust LPs: Admit finite-dimensional reformulations as conic convex programs over the cone \mathbf{K} characterizing uncertainty set Ξ , e.g.

K	Polyhedral Cone	Second-order Cone	Semidefinite Cone
Robust LP	LP	SOCP	SDP

Finite-Dim. Reformulations and Approximations

Exact Reformulations

- Ben-Tal, El-Ghaoui, Nemirovski, ['00]
 - Ξ is "Unstructured norm-bounded"

Inner Approximations

- Ben-Tal, El-Ghaoui, Nemirovski, ['00]
 - \(\pi\) is "Structured norm-bounded"
- Scherer and Hol, ['06]
 - Ξ is described by polynomial matrix inequalities

Other related work

- Packard et al. ['93] Scherer ['05]

- Ben-Tal et al. ['02]
- El-Ghaoui et al. ['97] Dietz et al. ['08]
- Oishi et al. | '08|

Finite-Dim. Reformulations and Approximations

Exact Reformulations

- Ben-Tal, El-Ghaoui, Nemirovski, ['00]
 - ≡ is "Unstructured norm-bounded"

Inner Approximations

- Ben-Tal, El-Ghaoui, Nemirovski, ['00]
 - ≡ is "Structured norm-bounded"
- Scherer and Hol, ['06]
 - ≡ is described by polynomial matrix inequalities

Talk Outline

1. Introduction

2. Inner and Outer Polyhedral Hierarchies of the PSD Cone

3. Inner and Outer Hierarchies of Robust SDPs

4. Application: Robust Resistance Network Design Problem

Polyhedral Approximation of S_{+}^{n}

The positive semidefinite cone

$$\mathbf{S}_{+}^{n} = \bigcap_{u \neq 0} \left\{ X \in \mathbf{S}^{n} \mid u^{\top} X u \ge 0 \right\}$$

is an infinite intersection of half-spaces in S^n .

Outer Polyhedral Approximation of \mathbf{S}^{n}_+

The positive semidefinite cone

$$\mathbf{S}_{+}^{n} = \bigcap_{u \neq 0} \left\{ X \in \mathbf{S}^{n} \mid u^{\top} X u \ge 0 \right\}$$

is an infinite intersection of half-spaces in S^n .

• A finite intersection of half-spaces yields an outer polyhedral cone to \mathbf{S}_{+}^{n} .

Inner Polyhedral Approximation of \mathbf{S}_{+}^{n}

The positive semidefinite cone

$$\mathbf{S}_{+}^{n} = \bigcap_{u \neq 0} \left\{ X \in \mathbf{S}^{n} \mid u^{\top} X u \ge 0 \right\}$$

is an infinite intersection of half-spaces in ${f S}^{m n}$

• A finite intersection of half-spaces yields an outer polyhedral cone to \mathbf{S}^n_+

• The dual of the outer polyhedral cone is an inner polyhedral cone to \mathbf{S}^n_+

$$\mathbf{S}_{+}^{n} \subseteq \mathsf{polyhedral} \iff (\mathsf{polyhedral})^{*} \subseteq (\mathbf{S}_{+}^{n})^{*} = \mathbf{S}_{+}^{n}$$

Construction of Outer Polyhedral Approximations

Let Δ denote the boundary of the ℓ_1 norm ball in ${\bf R}^n$

$$\Delta := \{ x \in \mathbf{R}^n \mid ||x||_1 = 1 \}.$$

The PSD cone can be expressed as:

$$\mathbf{S}_{+}^{n} = \bigcap_{u \in \Delta} \{ X \in \mathbf{S}^{n} \mid u^{\top} X u \ge 0 \}$$

Construction of Outer Polyhedral Approximations

Let Δ denote the boundary of the ℓ_1 norm ball in ${\bf R}^n$

$$\Delta := \{ x \in \mathbf{R}^n \mid ||x||_1 = 1 \}.$$

The PSD cone can be expressed as:

$$\mathbf{S}_{+}^{n} = \bigcap_{u \in \Delta} \{ X \in \mathbf{S}^{n} \mid u^{\top} X u \ge 0 \}$$

• An outer polyhedral cone to \mathbf{S}^n_+ arises by a discretization of Δ , i.e.,

$$\mathbf{S}_{+}^{n} \subseteq \{X \in \mathbf{S}^{n} \mid u^{\top}Xu \ge 0, \text{ for some } u \in \mathbf{\Delta}\}.$$

Fix $r \in \mathbb{N}$. Consider the following discretization of $\Delta \subseteq \mathbf{R}^n$:

$$\Delta_r := \{ u \in \Delta \mid 2^r u \in \mathbb{Z}^n \}$$

Fix $r \in \mathbb{N}$. Consider the following discretization of $\Delta \subseteq \mathbf{R}^n$:

$$\Delta_r := \{ u \in \Delta \mid 2^r u \in \mathbb{Z}^n \}$$

Examples: n=2

$$\mathbf{\Delta_0} = \left\{ \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm 1 \end{bmatrix} \right\}$$

Fix $r \in \mathbb{N}$. Consider the following discretization of $\Delta \subseteq \mathbb{R}^n$:

$$\Delta_r := \{ u \in \Delta \mid 2^r u \in \mathbb{Z}^n \}$$

Examples: n=2

$$\Delta_0 = \left\{ \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm 1 \end{bmatrix} \right\}$$

$$\Delta_{\mathbf{0}} = \left\{ \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm 1 \end{bmatrix} \right\}$$
 $\Delta_{\mathbf{1}} = \Delta_{\mathbf{0}} \cup \left\{ \begin{bmatrix} \pm \frac{1}{2} \\ \pm \frac{1}{2} \end{bmatrix} \right\}$

Fix $r \in \mathbb{N}$. Consider the following discretization of $\Delta \subseteq \mathbf{R}^n$:

$$\Delta_r := \{ u \in \Delta \mid 2^r u \in \mathbb{Z}^n \}$$

Examples: n=2

$$\Delta_0 = \left\{ \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm 1 \end{bmatrix} \right\}$$

$$oldsymbol{\Delta_1} = oldsymbol{\Delta_0} \cup \left\{ egin{bmatrix} \pm rac{1}{2} \ \pm rac{1}{2} \end{bmatrix}
ight\}$$

$$\Delta_{\mathbf{0}} = \left\{ \begin{bmatrix} \pm 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ \pm 1 \end{bmatrix} \right\} \qquad \Delta_{\mathbf{1}} = \Delta_{\mathbf{0}} \cup \left\{ \begin{bmatrix} \pm \frac{1}{2} \\ \pm \frac{1}{2} \end{bmatrix} \right\} \qquad \Delta_{\mathbf{2}} = \Delta_{\mathbf{1}} \cup \left\{ \begin{bmatrix} \pm \frac{1}{4} \\ \pm \frac{3}{4} \end{bmatrix}, \begin{bmatrix} \pm \frac{3}{4} \\ \pm \frac{1}{4} \end{bmatrix} \right\}$$

Fix $r \in \mathbb{N}$. Consider the following discretization of $\Delta \subseteq \mathbf{R}^n$:

$$\Delta_r := \{ u \in \Delta \mid 2^r u \in \mathbb{Z}^n \}$$

Remarks: For any $r \in \mathbb{N}$, it holds that

$$oldsymbol{\Delta_r} \subseteq oldsymbol{\Delta_{r+1}}$$

Fix $r \in \mathbb{N}$. Consider the following discretization of $\Delta \subseteq \mathbb{R}^n$:

$$\Delta_r := \{ u \in \Delta \mid 2^r u \in \mathbb{Z}^n \}$$

Remarks: For any $r \in \mathbb{N}$, it holds that

$$\Delta_r \subseteq \Delta_{r+1}$$

Some notation: The set Δ_r has p_r elements denoted by:

$$u_1, u_2, \ldots, u_{p_r}$$

Outer Polyhedral Hierarchies of \mathbf{S}_{+}^{n}

A hierarchy of outer polyhedral cones to \mathbf{S}_{+}^{n} arises by the following family of polyhedral cones

$$\mathbf{O}_{r}^{n} := \bigcap_{u \in \Delta_{r}} \{ X \in \mathbf{S}^{n} \mid u^{\top} X u \ge 0 \}$$

where $r \in \mathbb{N}$. In particular

$$\mathbf{O}_0^n \supseteq \mathbf{S}_+^n$$

A hierarchy of outer polyhedral cones to \mathbf{S}_{+}^{n} arises by the following family of polyhedral cones

$$\mathbf{O}_{\boldsymbol{r}}^{\boldsymbol{n}} := \bigcap_{u \in \boldsymbol{\Delta}_{\boldsymbol{r}}} \{ X \in \mathbf{S}^n \mid u^\top X u \ge 0 \}$$

where $r \in \mathbb{N}$. In particular

$$\mathbf{O}_0^n \ \supseteq \ \mathbf{O}_1^n \ \supseteq \ \mathbf{S}_+^n$$

since $\Delta_0 \subseteq \Delta_1$.

A hierarchy of outer polyhedral cones to \mathbf{S}_{+}^{n} arises by the following family of polyhedral cones

$$\mathbf{O}_{\boldsymbol{r}}^{\boldsymbol{n}} := \bigcap_{u \in \boldsymbol{\Delta}_{\boldsymbol{r}}} \{ X \in \mathbf{S}^n \mid u^\top X u \ge 0 \}$$

where $r \in \mathbb{N}$. In particular:

$$\mathbf{O}_0^n \ \supseteq \ \mathbf{O}_1^n \ \supseteq \ \mathbf{O}_2^n \ \supseteq \ \mathbf{S}_+^n$$

since $\Delta_1 \subseteq \Delta_2$.

A hierarchy of outer polyhedral cones to \mathbf{S}_{+}^{n} arises by the following family of polyhedral cones

$$\mathbf{O}_{r}^{n} := \bigcap_{u \in \Delta_{r}} \{ X \in \mathbf{S}^{n} \mid u^{\top} X u \ge 0 \}$$

where $r \in \mathbb{N}$. In particular:

$$\mathbf{O_0^n} \ \supseteq \ \mathbf{O_1^n} \ \supseteq \ \mathbf{O_2^n} \ \supseteq \ \cdots \ \supseteq \ \mathbf{S_+^n}$$

since $\Delta_r \subseteq \Delta_{r+1}$, for all $r \in \mathbb{N}$.

The dual cones to \mathbf{O}_r^n give a hierarch of \mathbf{S}_+^n inner polyhedral cones to \mathbf{S}_+^n

$$\mathbf{I_r^n} = (\mathbf{O_r^n})^* = \operatorname{cone} \left\{ u_1 u_1^\top, \dots, u_{p_r} u_{p_r}^\top \right\}$$

where $r \in \mathbb{N}$. In particular:

$$\mathbf{I}_0^n \subseteq \mathbf{S}_+^n$$

The dual cones to \mathbf{O}_r^n give a hierarch of \mathbf{S}_+^n inner polyhedral cones to \mathbf{S}_+^n

$$\mathbf{I_r^n} = (\mathbf{O_r^n})^* = \operatorname{cone} \left\{ u_1 u_1^\top, \dots, u_{p_r} u_{p_r}^\top \right\}$$

where $r \in \mathbb{N}$. In particular:

$$\mathbf{I}_0^n \subseteq \mathbf{I}_1^n \subseteq \mathbf{S}_+^n$$

The dual cones to \mathbf{O}_r^n give a hierarch of \mathbf{S}_+^n inner polyhedral cones to \mathbf{S}_+^n

$$\mathbf{I}_{\boldsymbol{r}}^{\boldsymbol{n}} = (\mathbf{O}_{\boldsymbol{r}}^{\boldsymbol{n}})^* = \operatorname{cone}\left\{u_1 u_1^\top, \dots, u_{p_r} u_{p_r}^\top\right\}$$

where $r \in \mathbb{N}$. In particular:

$$\mathbf{I_0^n} \subseteq \mathbf{I_1^n} \subseteq \mathbf{I_2^n} \subseteq \cdots \subseteq \mathbf{S_+^n}$$

The dual cones to \mathbf{O}_r^n give a **hierarch of** \mathbf{S}_+^n inner polyhedral cones to \mathbf{S}_+^n

$$\mathbf{I}_{\boldsymbol{r}}^{\boldsymbol{n}} = (\mathbf{O}_{\boldsymbol{r}}^{\boldsymbol{n}})^* = \operatorname{cone}\left\{u_1 u_1^\top, \dots, u_{p_r} u_{p_r}^\top\right\}$$

where $r \in \mathbb{N}$. In particular:

$$\mathbf{I}_0^n \subseteq \mathbf{I}_1^n \subseteq \mathbf{I}_2^n \subseteq \cdots \subseteq \mathbf{S}_+^n$$

Examples

- $\mathbf{I_0^n}$: cone of nonnegative diagonal matrices
- $\mathbf{I_1^n}$: cone of diagonally dominant matrices with nonnegative diagonal entries.

Polyhedral Hierarchies of the PSD Cone

Theorem: For each level $r \in \mathbb{N}$,

1.
$$\mathbf{O}^n_r \supseteq \mathbf{O}^n_{r+1} \supseteq \mathbf{S}^n_+$$
 and

$$igcap_{i\in\mathbb{N}}\mathbf{O}_i^n\ =\ \mathbf{S}_+^n$$

2.
$$\mathbf{I}_r^n \subseteq \mathbf{I}_{r+1}^n \subseteq \mathbf{S}_+^n$$
 and

$$\operatorname{cl}\left(igcup_{i\in\mathbb{N}}\mathbf{I}_{i}^{n}
ight)\ =\ \mathbf{S}_{+}^{n}$$

Polyhedral Hierarchies of the PSD Cone

Theorem: For each level $r \in \mathbb{N}$,

1.
$$\mathbf{O}^n_r \ \supseteq \ \mathbf{O}^n_{r+1} \ \supseteq \ \mathbf{S}^n_+$$
 and

$$igcap_{i\in\mathbb{N}}\mathbf{O}_{i}^{n}\ =\ \mathbf{S}_{+}^{n}$$

2.
$$\mathbf{I}_r^n \subseteq \mathbf{I}_{r+1}^n \subseteq \mathbf{S}_+^n$$
 and $\operatorname{cl}\left(\left(\begin{array}{c} \mathbf{I}_r^n \end{array}\right)^{n}\right)$

$$\operatorname{cl}\left(\bigcup_{i\in\mathbb{N}}\mathbf{I}_{i}^{n}\right) = \mathbf{S}_{+}^{n}$$

[Braun, Fiorini, Pokutta, Steurer '12] "Approximation limits of linear programs (beyond hierarchies)."

"It's not possible to approximate SDPs arbitrarily well using small LPs"

Talk Outline

1. Introduction

2. Inner and Outer Polyhedral Hierarchies of the PSD Cone

3. Inner and Outer Hierarchies of Robust SDPs

4. Application: Robust Resistance Network Design Problem

Outer Approximations to Robust SDP

Recall the outer and inner polyhedral cones approximating \mathbf{S}^n_+

$$I_0^n \subseteq I_1^n \subseteq \cdots \subseteq S_+^n \subseteq \cdots \subseteq O_1^n \subseteq O_0^n$$
.

Outer Approximations to Robust SDP

Recall the outer and inner polyhedral cones approximating \mathbf{S}^n_+

$$I_0^n \subseteq I_1^n \subseteq \cdots \subseteq S_+^n \subseteq \cdots \subseteq O_1^n \subseteq O_0^n$$
.

For any $r \in \mathbb{N}$, the robust LP:

minimize
$$c^{\top}x$$
subject to
$$\sum_{i=1}^{k} \xi_{i} \mathcal{A}_{i}(x) \in \mathbf{S}_{+}^{n} \quad \forall \ \xi \in \Xi,$$

is an **outer approx.** to the robust SDP

Inner Approximations to Robust SDP

Recall the outer and inner polyhedral cones approximating \mathbf{S}^n_+

$$I_0^n \subseteq I_1^n \subseteq \cdots \subseteq S_+^n \subseteq \cdots \subseteq O_1^n \subseteq O_0^n$$
.

For any $r \in \mathbb{N}$, the robust LP:

minimize
$$c^{\top}x$$
 is an **outer applied** subject to $\sum_{i=1}^k \xi_i \mathcal{A}_i(x) \in \mathbf{S}^n_{+} \ \forall \ \xi \in \Xi,$ the robust SDP

is an **outer approx.** to

minimize
$$c^{\top}x$$
 is an **inner appr** subject to $\sum_{i=1}^k \xi_i \mathcal{A}_i(x) \in \mathbf{S}^n_+ \ \forall \ \xi \in \Xi,$ the robust SDP

is an **inner approx.** to

Finite-Dimensional Outer Approximation

The **hyperplane representation** of the outer polyhedral cones \mathbf{O}_r^n

$$\mathbf{O}_{m{r}}^{m{n}} = \bigcap_{i=1}^{p_r} \mathsf{half-space}_i$$

and strong duality gives a finite-dimensional representation of the robust LP.

Finite-Dimensional Outer Approximation

The **hyperplane representation** of the outer polyhedral cones \mathbf{O}_r^n

$$\mathbf{O}_{\boldsymbol{r}}^{\boldsymbol{n}} = \bigcap_{j=1}^{p_r} \{ X \in \mathbf{S}^n \mid u_j^\top X u_j \ge 0, \ u_j \in \boldsymbol{\Delta}_{\boldsymbol{r}} \}$$

and strong duality gives a finite-dimensional representation of the robust LP.

Theorem : The robust LP over \mathbf{O}_r^n admits an equivalent reformulation as a finite-dimensional conic linear program:

minimize
$$c^{\top}x$$

subject to $x \in \mathbf{R}^{m}, \mu_{j} \in \mathbf{R}_{+}, \lambda_{j} \in \mathbf{K}^{*}, \quad \forall j = 1, \dots, p_{r}$
 $u_{j}^{\top} \mathcal{A}_{i}(x) u_{j} = \mu_{j} + e_{i}^{\top} B^{\top} \lambda_{j}, \quad \forall j = 1, \dots, k$
 $\forall j = 1, \dots, k$
 $\forall j = 1, \dots, p_{r}$

Its optimal value is a **lower bound** to the optimal value of the robust SDP.

16

A Challenge with the Inner Approximation

The vertex representation of the inner polyhedral cone $\mathbf{I}^{m{n}}_{m{r}}=(\mathbf{O}^{m{n}}_{m{r}})^*$

$$\mathbf{I}_{r}^{n} = \operatorname{cone}\left\{u_{1}u_{1}^{\top}, \dots, u_{p_{r}}u_{p_{r}}^{\top}\right\}$$

precludes a direct finite-dim. reformulation for the robust LP over \mathbf{I}_r^n

A Challenge with the Inner Approximation

The vertex representation of the inner polyhedral cone $\mathbf{I}^{m{n}}_{m{r}}=(\mathbf{O}^{m{n}}_{m{r}})^*$

$$\mathbf{I}_{r}^{n} = \operatorname{cone}\left\{u_{1}u_{1}^{\top}, \dots, u_{p_{r}}u_{p_{r}}^{\top}\right\}$$

precludes a direct finite-dim. reformulation for the robust LP over \mathbf{I}_r^n

Hyperplane representation of \mathbf{I}_r^n

• There exists $q_r < \infty$ such that

$$\mathbf{I}_{m{r}}^{m{n}} = \bigcap_{i=1}^{m{q_r}} \mathsf{half-space}_i$$

A Challenge with the Inner Approximation

The **vertex representation** of the inner polyhedral cone $\mathbf{I}_{r}^{n}=(\mathbf{O}_{r}^{n})^{*}$

$$\mathbf{I}_{r}^{n} = \operatorname{cone}\left\{u_{1}u_{1}^{\top}, \dots, u_{p_{r}}u_{p_{r}}^{\top}\right\}$$

precludes a direct finite-dim. reformulation for the robust LP over \mathbf{I}_r^n

Hyperplane representation of \mathbf{I}_r^n

• There exists $q_r < \infty$ such that

$$\mathbf{I}_{m{r}}^{m{n}} = igcap_{i=1}^{m{q_r}}$$
 half-space i

• Yields a finite-dim. reformulation of robust LP over \mathbf{I}_r^n

Finite-Dimensional Outer Approximation

Let

$$\mathbf{I}_{r}^{n} = \bigcap_{j=1}^{q_{r}} \{X \in \mathbf{S}^{n} \mid \operatorname{tr}(H_{i}X) \ge 0\}$$

be the hyperplane representation of the inner polyhedral cone ${f I}_r^n$

Finite-Dimensional Outer Approximation

Let

$$\mathbf{I}_{r}^{n} = \bigcap_{j=1}^{q_{r}} \{X \in \mathbf{S}^{n} \mid \operatorname{tr}(H_{i}X) \ge 0\}$$

be the hyperplane representation of the inner polyhedral cone \mathbf{I}_r^n

Theorem: The robust LP over \mathbf{I}_r^n admits an equivalent reformulation as a finite-dimensional conic linear program:

minimize
$$c^{\top}x$$

subject to $x \in \mathbf{R}^{m}, \mu_{j} \in \mathbf{R}_{+}, \lambda_{j} \in \mathbf{K}^{*}, \quad \forall j = 1, \dots, q_{r}$

$$\operatorname{tr}(\mathcal{A}_{i}(x)H_{j}) = \mu_{j} + e_{i}^{\top}B^{\top}\lambda_{j}, \quad \forall j = 1, \dots, k$$

$$\forall j = 1, \dots, q_{r}$$

Its optimal value is an **upper bound** to the optimal value of the robust SDP.

A hyperplane representation of \mathbf{I}_r^n can be

- Computationally expensive to compute
- Impractical: the number, q_r of hyperplanes can be rather large

A hyperplane representation of \mathbf{I}_r^n can be

- Computationally expensive to compute
- Impractical: the number, q_r of hyperplanes can be rather large

Question : Can we work directly with the vertex representation of \mathbf{I}_r^n ?

A hyperplane representation of \mathbf{I}_r^n can be

- Computationally expensive to compute
- Impractical: the number, q_r of hyperplanes can be rather large

Question : Can we work directly with the vertex representation of \mathbf{I}_r^n ?

$$\mathbf{I}_{r}^{n} = \operatorname{cone} \left\{ u_{1}u_{1}^{\top}, \dots, u_{p_{r}}u_{p_{r}}^{\top} \right\}$$

$$\exists \phi_{1}, \dots, \phi_{p_{r}} : \mathbf{R}^{k} \to \mathbf{R}_{+}, \text{ such that}$$

$$\sum_{i=1}^{k} \xi_{i} \mathcal{A}_{i}(x) \quad \forall \xi \in \Xi$$

$$\sum_{i=1}^{k} \xi_{i} \mathcal{A}_{i}(x) = \sum_{j=1}^{p_{r}} \phi_{j}(\xi)u_{j}u_{j}^{\top}, \quad \forall \xi \in \Xi.$$

A hyperplane representation of \mathbf{I}_r^n can be

- **Computationally expensive** to compute
- **Impractical**: the number, q_r of hyperplanes can be rather large

Question : Can we work directly with the vertex representation of \mathbf{I}_r^n ?

$$\mathbf{I}_{r}^{n} = \operatorname{cone} \left\{ u_{1}u_{1}^{\top}, \dots, u_{p_{r}}u_{p_{r}}^{\top} \right\}$$

$$\exists \phi_{1}, \dots, \phi_{p_{r}} : \mathbf{R}^{k} \to \mathbf{R}_{+}, \text{ such that}$$

$$\sum_{i=1}^{k} \xi_{i} \mathcal{A}_{i}(x) \quad \forall \ \xi \in \Xi$$

$$\Rightarrow \sum_{i=1}^{k} \xi_{i} \mathcal{A}_{i}(x) = \sum_{j=1}^{p_{r}} \phi_{j}^{\top} \xi, \quad \varphi_{j} \in \mathbf{R}^{k}$$

$$\sum_{i=1}^{k} \xi_{i} \mathcal{A}_{i}(x) = \sum_{j=1}^{p_{r}} \phi_{j}(\xi) u_{j} u_{j}^{\top}, \quad \forall \ \xi \in \Xi.$$

Restriction to affine functions yields a finitedim. inner approximation to robust LP

Let

$$\mathbf{I}_{r}^{n} = \operatorname{cone}\left\{u_{1}u_{1}^{\top}, \dots, u_{p_{r}}u_{p_{r}}^{\top}\right\}$$

be the vertex representation of the inner polyhedral cone \mathbf{I}_r^n

Theorem: The robust LP over \mathbf{I}_r^n admits an finite-dimensional inner approximation as a conic linear program:

minimize
$$c^{\top}x$$

subject to $x \in \mathbf{R}^{m}, \mu_{j} \in \mathbf{R}_{+}, \lambda_{j} \in \mathbf{K}^{*}, \quad \forall j = 1, \dots, p_{r}$

$$\mathcal{A}_{i}(x) = \sum_{j=1}^{p_{r}} e_{i}^{\top}(\mu_{j}e_{1} + B^{\top}\lambda_{j})u_{j}u_{j}^{\top}, \quad \forall i = 1, \dots, k$$

Its optimal value is an **upper bound** to the optimal value of the robust SDP.

Talk Outline

1. Introduction

2. Inner and Outer Polyhedral Hierarchies of the PSD Cone

3. Inner and Outer Hierarchies of Robust SDPs

4. Application: Robust Resistance Network Design Problem

Robust Resistance Network Design Problem

Given a circuit topology and a set $\mathcal{I} = \{Q\xi \mid \xi \in \Xi\}$ of external currents

Robust Resistance Network Design Problem

Given a circuit topology and a set $\mathcal{I} = \{Q\xi \mid \xi \in \Xi\}$ of external currents

Objective: Choose a conductance g_{ij} for each line (i, j) such that:

$\displaystyle $	maximal dissipation over \mathcal{I}				
subject to	$1^{\top}g \leq b$	budget constraint			
	$g \ge 0$	physical constraints			

Robust Resistance Network Design Problem

Given a circuit topology and a set $\mathcal{I} = \{Q\xi \mid \xi \in \Xi\}$ of external currents

Objective: Choose a conductance g_{ij} for each line (i, j) such that:

$$\begin{array}{ll} \underset{(\tau,g)}{\operatorname{minimize}} & \tau \\ \text{subject to} & \mathbf{1}^\top g \leq \omega \\ & g \geq 0 \\ & \left[\begin{matrix} \tau & Q \xi \\ Q \xi & M \mathrm{diag}(g) M^\top \end{matrix} \right] \succeq 0, \quad \forall \; \xi \in \Xi \\ & \text{incidence matrix} \end{array}$$

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid \|\xi\|_2 \le 2, \ \xi_1 = 1 \}$$

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid \|\xi\|_2 \le 2, \ \xi_1 = 1 \}$$

Robust LP Hierarchies

		Level r in Hierarchy				
		0	1	2	3	4
Lower Bound	$(\mathbf{O}^{\boldsymbol{n}}_{\boldsymbol{r}})$					
Upper Bound I	$(\; \mathbf{I^{n}_{r}}\;)$					
Upper Bound II	$(\ \mathbf{I}^n_r\)$					

Comparisons:

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid \|\xi\|_2 \le 2, \ \xi_1 = 1 \}$$

Robust LP Hierarchies

	Level r in Hierarchy				
	0	1	2	3	4
Lower Bound (\mathbf{O}^n_r)	0				
Upper Bound I (\mathbf{I}_{r}^{n})	∞				
Upper Bound II (\mathbf{I}_{r}^{n})	∞				

Comparisons:

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid ||\xi||_2 \le 2, \ \xi_1 = 1 \}$$

Robust LP Hierarchies

	Level r in Hierarchy				
	0	1	2	3	4
Lower Bound (\mathbf{O}^n_r)	0	0			
Upper Bound I (\mathbf{I}_{r}^{n})	∞	4.75			
Upper Bound II ($\mathbf{I}^{m{n}}_{m{r}}$)	∞	6.72			

Comparisons:

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid ||\xi||_2 \le 2, \ \xi_1 = 1 \}$$

Robust LP Hierarchies

	Level r in Hierarchy				
	0	1	2	3	4
Lower Bound (\mathbf{O}^n_r)	0	0	2.25		
Upper Bound I (\mathbf{I}_{r}^{n})	∞	4.75	3.15		
Upper Bound II ($\mathbf{I}^{m{n}}_{m{r}}$)	∞	6.72	4.94		

Comparisons:

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid ||\xi||_2 \le 2, \ \xi_1 = 1 \}$$

Robust LP Hierarchies

	Level r in Hierarchy				
	0	1	2	3	4
Lower Bound (\mathbf{O}^n_r)	0	0	2.25	2.34	2.36
Upper Bound I (\mathbf{I}_r^n)	∞	4.75	3.15	comp. e	expensive
Upper Bound II (\mathbf{I}_{r}^{n})	∞	6.72	4.94	4.56	4.55

Comparisons:

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid \|(\xi_2, \xi_3)\|_2 \le 1, \|(\xi_4, \xi_5, \xi_6)\|_2 \le 1, \xi_1 = 1 \}$$

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid \|(\xi_2, \xi_3)\|_2 \le 1, \|(\xi_4, \xi_5, \xi_6)\|_2 \le 1, \xi_1 = 1 \}$$

Robust LP Hierarchies

	Level r in Hierarchy				
	0	1	2	3	4
Lower Bound (\mathbf{O}^n_r)	0	1.65	3.66	4.19	4.24
Upper Bound I (\mathbf{I}_{r}^{n})	∞	6.35	5.26	comp. e	xpensive
Upper Bound II (\mathbf{I}_{r}^{n})	∞	8.02	6.80	6.61	6.51

Comparisons:

• **Ben-Tal et. al ['00]** – (Upper Bound to Robust SDP)

 ∞

Scherer, Hol ['06] – (Upper Bound to Robust SDP)
 4.27

Polytopic Uncertainty

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid ||\xi||_{\infty} \le 1, \ L\xi \ge 0, \ \xi_1 = 1 \}$$

Polytopic Uncertainty

$$\Xi = \{ \xi \in \mathbf{R}^6 \mid ||\xi||_{\infty} \le 1, \ L\xi \ge 0, \ \xi_1 = 1 \}$$

Robust LP Hierarchies

	Level r in Hierarchy				
	0	1	2	3	4
Lower Bound (\mathbf{O}^n_r)	0	3.40	8.17	8.17	8.17
Upper Bound I (\mathbf{I}_{r}^{n})	∞	8.96	8.44	comp. e	expensive
Upper Bound II ($\mathbf{I}^{m{n}}_{m{r}}$)	∞	8.96	8.44	8.34	8.26

Comparisons:

- Nemirovski, El-Ghaoui ['00] (Not Applicable)
- Scherer, Hol ['06] (Upper Bound to Robust SDP)
 8.22

Summary and Future Research

Developed computationally tractable inner and outer hierarchies

to robust SDPs that are exact in the limit

• **Approach**: Developed inner and outer polyhedral hierarchies to \mathbf{S}^n_+

 Challenges: Impractical for moderate levels in the hierarchy!

Summary and Future Research

Developed computationally tractable inner and outer hierarchies

to robust SDPs that are exact in the limit

- **Approach**: Developed inner and outer polyhedral hierarchies to \mathbf{S}^n_+
- **Challenges:** Impractical for moderate levels in the hierarchy!

Future Research

• Adaptively improve the polyhedral approx. of \mathbf{S}_{+}^{n} by using the guidance of the objective function!

Questions?

Thank you! Raphael Louca e-mail: rl553@cornell.edu