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Robust Semidefinite Program

Consider the robust semidefinite program (SDP)

minimize c¢'

k
subject to Zﬁz‘Az‘(fU) c S, VEekE,
i=1

where
e € R™ s the decision variable
e A, :R™ — S™ is an affine function of 2, and

« ZCRF is the uncertainty set, a convex compact set

Some notation:

« 8™ (SY) : space of n x n symmetric (symmetric PSD) matrices



Uncertainty Model

The uncertainty set = Is defined

=2 {¢eRF | ¢ =1, B¢ €K},

where K is a proper cone, e.g.,
0 * positive orthant
W * second-order cone
‘B * positive semidefinite cone

Taken from Jerome Malic’s “Semidefinite Projections, regularization algorithms and polynomial optimization.”



Robust SDPs : Challenges

The robust SDP is NP-hard, in general

minimize c¢'

k
subject to Zﬁz‘Az‘(fU) c S, VEekE,
i=1



Robust SDPs : Challenges

The robust SDP is NP-hard, in general

minimize c¢'

k
subject to Z{iAZ-(:C) c S, VEekE,
i=1

The constraint holds if and only if

concave in &

Amin : 9" — R is the minimum eigenvalue function



A Robust LP Approach

Approximate the robust SDP with a robust linear program (LP)

minimize ¢z
polyhedral cone

k
subject to Z{iAZ-(:c) e84, VX,
i=1

Robust LP:

by approximating the PSD cone by a polyhedral cone



A Robust LP Approach

Approximate the robust SDP with a robust linear program (LP)

minimize ¢z
polyhedral cone

k
subject to ZﬁiAi(:c) e84, VX,
i=1

Robust LP:

by approximating the PSD cone by a polyhedral cone

Robust LPs: Admit finite-dimensional reformulations as conic convex
programs over the cone K characterizing uncertainty set =, e.q.

K Polyhedral Cone | Second-order Cone | Semidefinite Cone
Robust LP LP SOCP SDP




Finite-Dim. Reformulations and Approximations

Exact Reformulations

« Ben-Tal, EI-Ghaoui, Nemirovski, [‘00]
— = is “Unstructured norm-bounded”

Inner Approximations

« Ben-Tal, EI-Ghaoui, Nemirovski, [‘00]
- = is “Structured norm-bounded”

e Scherer and Hol, ['06]
— = is described by polynomial matrix inequalities

Other related work

« Packard et al. ['93] « Scherer ['05]  Ben-Tal et al. ['02]
e El-Ghaoui et al. ['97] <« Dietz et al. ['08] « Qishi et al. ['08]



Finite-Dim. Reformulations and Approximations

Exact Reformulations

« Ben-Tal, EI-Ghaoui, Nemirovski, [‘00]
— = is “Unstructured norm-bounded”

Inner Approximations

« Ben-Tal, EI-Ghaoui, Nemirovski, [‘00]
- = is “Structured norm-bounded”

e Scherer and Hol, ['06]
— = is described by polynomial matrix inequalities



Talk Outline

1. Introduction

2. Inner and Outer Polyhedral Hierarchies of the PSD Cone

3. Inner and Quter Hierarchies of Robust SDPs

4. Application : Robust Resistance Network Design Problem



Polyhedral Approximation of S’

The positive semidefinite cone

f‘i_:ﬂ (X eS" |u'Xu>0}
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Outer Polyhedral Approximation of S

The positive semidefinite cone

ST =(){X€eS" |u Xu>0}
u7#0

Is an Infinite intersection of half-spaces in S™

* A finite intersection of half-spaces
yields an outer polyhedral cone to ST .



Inner Polyhedral Approximation of S’i

The positive semidefinite cone

’fr_:ﬂ (X eS" |u'Xu>0}
u7#0

Is an Infinite intersection of half-spaces in S™

* A finite intersection of half-spaces
yields an outer polyhedral cone to S

* The dual of the outer polyhedral cone
is an inner polyhedral cone to ST

S C polyhedral <= (polyhedral)® C (S})* = S”



Construction of Outer Polyhedral Approximations

Let A denote the boundary of the ¢1 norm ball in R"
A :={xeR"| || =1}

The PSD cone can be expressed as: A

T = ﬂ (X eS" |u'Xu>0}
u€CA




Construction of Outer Polyhedral Approximations

Let A denote the boundary of the ¢1 norm ball in R"
A :={xeR"| || =1}

The PSD cone can be expressed as: A

T = ﬂ (X eS" |u'Xu>0}
u€CA

* An outer polyhedral cone to SZ’_ arises by a
discretization of A, i.e.,

ST C {X eS"| u' Xu >0, for some u € A}.



A Discretization Scheme of A

Fix 7 € N. Consider the following discretization of A C R":

A, ={ueA|2"uecZ™}



A Discretization Scheme of A

Fix 7 € N. Consider the following discretization of A C R":
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Examples: n = 2
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A Discretization Scheme of A

Fix 7 € N. Consider the following discretization of A C R":

A, ={ueA|2"uecZ™}
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A Discretization Scheme of A

Fix 7 € N. Consider the following discretization of A C R":
A, ={ueA|2"uecZ™}
Examples: n = 2
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A Discretization Scheme of A

Fix 7 € N. Consider the following discretization of A C R":

A, ={ueA|2"uecZ™}

Remarks: For any r € N, 1t holds that

Ar - Ar—l—l



A Discretization Scheme of A

Fix 7 € N. Consider the following discretization of A C R":

A, ={ueA|2"uecZ™}

Remarks: For any r € N, 1t holds that

Ar - Ar—l—l

Some notation: The set A, has pr elements denoted by:

UL, U2y« -« y Up

™



Outer Polyhedral Hierarchies of S’}

A hierarchy of outer polyhedral cones to Si
arises by the following family of polyhedral cones

Op:= () {XeS"|u'Xu>0}
ucA,

where 7 € N In particular

oy O S7




Outer Polyhedral Hierarchies of S’}

&

A hierarchy of outer polyhedral cones to Si
arises by the following family of polyhedral cones

Op:= () {XeS"|u'Xu>0}

T
ucA,

where 7 € N In particular
Op 2 O} 2> S%
n
Ol

since Ag € A;.



Outer Polyhedral Hierarchies of S’}

A hierarchy of outer polyhedral cones to Si
arises by the following family of polyhedral cones

Op:= () {XeS"|u'Xu>0}
ucA,

where 7 € N In particular:

since \
A C Ay, \\



Outer Polyhedral Hierarchies of S’}

Uj
A hierarchy of outer polyhedral cones to S'f”,_
arises by the following family of polyhedral cones
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Inner Polyhedral Hierarchies of St

w
The dual cones to Oy give a hierarch of S7 y
inner polyhedral cones to S’}
I = (O™)* = cone {uluir, e ,upru;r
where 7 € N In particular: /
Iy € SY
| K
0




Inner Polyhedral Hierarchies of St

The dual cones to Oy give a hierarch of S7
inner polyhedral cones to S’}

T

n T\ * T
I = (O7)" = cone{uiuy , ..., up u,

where 7 € N In particular:




Inner Polyhedral Hierarchies of St

The dual cones to Oy give a hierarch of S7
inner polyhedral cones to S’}

-
I = (O)* = cone {uju, ,... ,upru;r

where 7 € N In particular:
B €I EIE € 0 € G




Inner Polyhedral Hierarchies of St

The dual cones to Oy give a hierarch of S7
inner polyhedral cones to S’}

-
I = (O)* = cone {uju, ,... ,upru;r
where 7 € N In particular:
Ip C I C Iy C c St
Examples
™
« Ig : cone of nonnegative diagonal matrices r

« I3 : cone of diagonally dominant matrices
with nonnegative diagonal entries.

Ahmadi et al.’16 : Application of If to Sums of Squares Optimization.



Polyhedral Hierarchies of the PSD Cone

Theorem: For each level r € N,
1. Oy 2 Oy, 2 S and

(107 = sy
1€N

2. Iy € I, € ST and

c1<U Iy> = ST
1€EN




Polyhedral Hierarchies of the PSD Cone

Theorem: For each level r € N,
1. Oy 2 Oy, 2 S and

(107 = sy
1€N

2. Iy € I, € ST and

c1<U Iy> = ST
1€EN

programs (beyond hierarchies).”

[Braun, Fiorini, Pokutta, Steurer '12] “Approximation limits of linear

“It’s not possible to approximate SDPs arbitrarily well using small LPs”



Talk Outline

1. Introduction

2. Inner and Outer Polyhedral Hierarchies of the PSD Cone

3. Inner and Quter Hierarchies of Robust SDPs

4. Application : Robust Resistance Network Design Problem



Outer Approximations to Robust SDP

Recall the outer and inner polyhedral cones approximating S:’L




Outer Approximations to Robust SDP

Recall the outer and inner polyhedral cones approximating S:ﬁ

For any r € N, the robust LP:
minimize ¢ x
n .
k O, IS an outer approx. to
subject to Z@Ai(x) C M= VECEH, the robust SDP
i=1



Inner Approximations to Robust SDP

Recall the outer and inner polyhedral cones approximating S:ﬁ

For any r € N, the robust LP:

minimize ¢z

k
subject to Z@Ai(
i=1

minimize c'z

k
subject to Z&Ai(
i=1

O,
) € W= VEE€E,

L.

) € = VECE,

IS an outer approx. to
the robust SDP

IS an inner approx. to
the robust SDP



Finite-Dimensional Outer Approximation

The hyperplane representation of the outer polyhedral cones O’

Pr
O; = ﬂ half-space ;
i=1
and strong duality gives a finite-dimensional representation of the robust
LP.



Finite-Dimensional Outer Approximation

The hyperplane representation of the outer polyhedral cones O’

Pr
Op =) {XeS"|u Xu; >0, u; € Ay}
j=1
and strong duality gives a finite-dimensional representation of the robust

LP.

Theorem : The robust LP over O; admits an equivalent reformulation
as a finite-dimensional conic linear program:

minimize c'z

subject to z € R™, pj € R, A; €KY, Vji=1,...,p,
Vi=1,. .. k

- T T
u; Ai(x)u; = pj +e; B A, Vi=1,...,p,

lts optimal value is a lower bound to the optimal value of the robust
SDP.




A Challenge with the Inner Approximation

The vertex representation of the inner polyhedral cone I) = (O}})*

n __
I, = cone {u1u1 sy Up, U pr}

precludes a direct finite-dim. reformulation for the robust LP over I7*




A Challenge with the Inner Approximation

The vertex representation of the inner polyhedral cone I) = (O}})*

n
I, = cone {u1u1 sy Up, U pr}

precludes a direct finite-dim. reformulation for the robust LP over I7*

Hyperplane representation of I

 There exists ¢, < oo such that

qr
= ﬂ half-space ; .
=1 |




A Challenge with the Inner Approximation

The vertex representation of the inner polyhedral cone I) = (O}})*
I = cone {u1u1 sy Up U pr}

r

precludes a direct finite-dim. reformulation for the robust LP over I7*

Hyperplane representation of I

* There exists g, < oo such that

qr
= ﬂ half-space ; .
=1 |

* Yields a finite-dim. reformulation of
robust LP over I.”




Finite-Dimensional Outer Approximation

Let
q,

I} =) {X €8" | tr(H;X) >0}
j=1

be the hyperplane representation of the inner polyhedral cone I



Finite-Dimensional Outer Approximation

Let
q,

I} =) {X €8" | tr(H;X) >0}

j=1

be the hyperplane representation of the inner polyhedral cone I

Theorem: The robust LP over I admits an equivalent reformulation as
a finite-dimensional conic linear program:

minimize ¢z

subject to z € R™, 1tj € R4, Aj € K7, Vi=1...,q

tr(Ai(@)Hy) = +ef BTy, 0T Lok
Vi=1,...,qr

lts optimal value i1s an upper bound to the optimal value of the robust
SDP.




Inner Approximation to Robust LP over I

A hyperplane representation of I can be

 Computationally expensive to compute

* Impractical : the number, ¢, of hyperplanes can be rather large



Inner Approximation to Robust LP over I

A hyperplane representation of I can be

 Computationally expensive to compute
* Impractical : the number, ¢, of hyperplanes can be rather large

Question : Can we work directly with the vertex representation of I, ?

n o __ T
\ I, = cone {u1u1 yeee s Up U pr}

In

I”b




Inner Approximation to Robust LP over 1.}

A hyperplane representation of I can be

 Computationally expensive to compute
* Impractical : the number, ¢, of hyperplanes can be rather large

Question : Can we work directly with the vertex representation of I, ?

n o __ T
\ I, = cone {u1u1 yeeey Up, U pr}

3 P1,-.-,Pp, : R® = Ry, such that

k Pr
S GAi@) =Y ¢i(uu], VEEE
i=1 =1




Inner Approximation to Robust LP over I

A hyperplane representation of I can be

Computationally expensive to compute

Impractical :

the number, ¢ of hyperplanes can be rather large

Question : Can we work directly with the vertex representation of I, ?

= cone {ululT,.. , Up, U pr}

3 P1,-.-,Pp, : R® = Ry, such that
. ©; & w; ERF

k
Y G Aix) =Y épuju], VeEeE
i=1 =1

Restriction to affine functions yields a finite-
dim. inner approximation to robust LP



Inner Approximation to Robust LP over I

Let

n
I, = cone {ulul yoees Up U pr}

be the vertex representation of the inner polyhedral cone I}

Theorem: The robust LP over I’ admits an finite-dimensional inner
approximation as a conic linear program:

minimize c'z

subject to z € R™, 1; € Ry, A\j € K¥, Vi=1...,pr

Ai(x) = Zef(,ujel + BT)\j)ujujT, Vi=1,...,k

g=1

lts optimal value is an upper bound to the optimal value of the robust
SDP.




Talk Outline

1. Introduction

2. Inner and Outer Polyhedral Hierarchies of the PSD Cone

3. Inner and Quter Hierarchies of Robust SDPs

4. Application : Robust Resistance Network Design Problem



Robust Resistance Network Design Problem

Given a circuit topology and a set Z ={Q¢ | £ € Z} of external currents
4
/‘\
s \ g,
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Robust Resistance Network Design Problem

Given a circuit topology and a set Z ={Q¢ | £ € Z} of external currents

1 ‘ gi2 >‘ 2

Objective: Choose a conductance gij for each line (i, 7) such that:

minimize maximal dissipation over 7
g

subject to 1'g<b budget constraint

g=0 physical constraints



Robust Resistance Network Design Problem

Given a circuit topology and a set Z ={Q¢ | £ € Z} of external currents
4
o
oo
g3s
<
5‘ gi4
g25

g34
@3
g24
915\ /;23

1 ‘ gi2 >‘ 2

Objective: Choose a conductance gij for each line (i, 7) such that:

minimize T
(7,9)
subject to  1'g < w

g=>0

. Q¢
Q¢ Mdiag(g)MT| ="

Incidence matrix



Unstructured Normed-Bounded Uncertainty

E={(eR||¢]2<2, & =1}



Unstructured Normed-Bounded Uncertainty

E={(eR||¢]2<2, & =1}

Robust LP Hierarchies

Level  in Hierarchy

0 1 2 3 4

Lower Bound (O)
Upper Bound | (I77)
Upper Bound Il (T7*)

Comparisons :
 Ben-Tal et. al ['00] — (Optimal Value to Robust SDP)

2.37



Unstructured Normed-Bounded Uncertainty

E={(eR||¢]2<2, & =1}

Robust LP Hierarchies

Level  in Hierarchy

1 2 3 4

0
Lower Bound (O) 0
Upper Bound | (I77) o0
Upper Bound Il (T7*) o0

Comparisons :
 Ben-Tal et. al ['00] — (Optimal Value to Robust SDP)

2.37



Unstructured Normed-Bounded Uncertainty

E={(eR||¢]2<2, & =1}

Robust LP Hierarchies

Level  in Hierarchy

0 1 2 3 4
Lower Bound (O) 0 0
Upper Bound | (I77) 00 4.75
Upper Bound II ( I:}) 00 6.72

Comparisons :
 Ben-Tal et. al ['00] — (Optimal Value to Robust SDP)

2.37



Unstructured Normed-Bounded Uncertainty

E={(eR||¢]2<2, & =1}

Robust LP Hierarchies

Level  in Hierarchy

0 1 2 3 4
Lower Bound (O) 0 0 2.25
Upper Bound | (I77) 00 4.75 3.15
Upper Bound Il (T7*) o0 6.72 4.94

Comparisons :
 Ben-Tal et. al ['00] — (Optimal Value to Robust SDP)

2.37



Unstructured Normed-Bounded Uncertainty

E={(eR||¢]2<2, & =1}

Robust LP Hierarchies

Level  in Hierarchy

0 1 2 3 4
Lower Bound (O) 0 0 2.25 2.34 2.36
Upper Bound | (I77) 00 4.75 3.15 comp. expensive
Upper Bound Il (T7*) 00 6.72 4.94 4.56 4 .55

Comparisons :
 Ben-Tal et. al ['00] — (Optimal Value to Robust SDP)

2.37



Structured Normed-Bounded Uncertainty

== {6 S R6 | H(€27£3)||2 < 17 ||(£47€57£6)||2 < 17 Sl — 1}



Structured Normed-Bounded Uncertainty

E={{eR’||(&&)ll2 <1, I(6,&5.86)ll2 < 1, & =1}

Robust LP Hierarchies

Level  in Hierarchy

0
Lower Bound (O) 0
Upper Bound | (I77) o0
Upper Bound Il (T7*) o0

1 2 3 4
1.65 3.60 4.19 4.24
6.35 5.26 comp. expensive

3.02 6.80 6.61 6.51

Comparisons :

* Ben-Tal et. al ['00] — (Upper Bound to Robust SDP)

O

* Scherer, Hol ['06] — (Upper Bound to Robust SDP)

4.27



Polytopic Uncertainty

E={cR®| |||l <1, LE> 0, & =1}



Polytopic Uncertainty

E={cR®| |||l <1, LE> 0, & =1}

Robust LP Hierarchies

Level  in Hierarchy

0
Lower Bound (O) 0
Upper Bound | (I77) o0
Upper Bound Il (T7*) o0

1 2 3 4
3.40 8.17 8.17 8.17
8.96 8.44 comp. expensive

3.96 3.44 3.34 8.26

Comparisons :

* Nemirovski, EI-Ghaoui [‘00] — (Not Applicable)

* Scherer, Hol ['06] — (Upper Bound to Robust SDP)

3.22



Summary and Future Research

 Developed computationally tractable inner and outer hierarchies
to robust SDPs that are exact in the [Iimit

* Approach: Developed inner and outer

polyhedral hierarchies to S%

* Challenges: Impractical for moderate

levels In the hierarchy!

\

Robust SDP



Summary and Future Research

 Developed computationally tractable inner and outer hierarchies
to robust SDPs that are exact in the [Iimit

* Approach: Developed inner and outer

polyhedral hierarchies to S%

* Challenges: Impractical for moderate

levels In the hierarchy!

\

Robust SDP

Future Research

* Adaptively improve the polyhedral approx. of S% by using the
guidance of the objective function!



Questions?

Thank you!
Raphael Louca
e-mail: rI5530@cornell.edu



