Route Guidance: Bridging System and User Optimization in Traffic Assignment

Marin Lujaka, Stefano Giordanib, Sascha Ossowskia

aCETINIA, University King Juan Carlos, Madrid, Spain
bDip. Ingegneria dell'Impresa, University of Rome “Tor Vergata”, Rome, Italy
Overview

- Motivation
- User optimum issues
- System optimum
- Proposed model and coordination methods
- Experiment results
- Future work
Motivation

- Present route guidance systems (RGS):
 - Unsustainable assumptions on low percentage of vehicles following the routes
 - Not considering the effects of their own route recommendation
 - Based on user optimization, generally resulting in Wardrop equilibrium (user optimum) which can be arbitrarily more costly than the system optimum
 - Fair for the users of the same O-D pair, generally unfair for different O-D pairs

- Objective: bridge the system optimization which assumes collaborative road infrastructure users and user optimization which assumes selfish users in traffic assignment considering additional fairness and Social Welfare aspects.
User Optimum

- Selfish noncooperative network users
- Traffic routed on minimum-latency paths
- The outcome of selfish routing: Nash equilibrium
 - Traffic assignment is at Nash Equilibrium if no network user has an incentive to switch paths; this occurs when all traffic travels on minimum – latency paths
 - Nash equilibrium does not in general minimize the total latency
 - Price of anarchy – the worst possible ratio between the total latency of a Nash equilibrium and of an optimal routing of the traffic
 - The cost of anarchy can be generally arbitrarily large

- Can it work better?
System Optimum

- Minimize the overall system’s travel time
- Desirable from the traffic authority’s point of view
- Drawbacks:
 - Routing some of the drivers on unacceptably long paths in order to use shorter paths for many other drivers – unacceptable for many self-concerned drivers
 - Possible lack of fairness on the same and different O-D pairs
 - Constrained system optimum:
 - Fairness issues previously tackled by acceptable paths (within fixed factors of the optimal ones)
Proposed architecture

At the upper layer, we use a 4-level decomposition method to reach a subproblem which can be optimized individually locally by every O-D pair independently of other O-D pairs.

At the lower layer, we use Bertsekas’ auction algorithm with similar objects guaranteeing the achievement of an optimal solution.
Proposed: Nash social welfare optimization with the constraints on envy-free and fair O-D paths

we introduce a normalized mean path duration cost of agent $w \in W$,

$$
\gamma_w(x_w, \{x_l\}_{l \in M(W)}) = \left| P_w \right| \sqrt{\prod_{k \in P_w} f^k \cdot x^k}
$$

Furthermore, we propose the following envy criterion for O-D agents. An allocation is α-envy-free, where α is a maximum tolerance factor for non-enviousness such that $0 < \alpha < 1$ if:

$$
\gamma_w \geq \gamma_{w^\prime}^\alpha, \forall w, w^\prime \in W | w \neq w^\prime
$$
The balance between egalitarian and utilitarian social welfare is given by the maximization of the Nash product which is the product of the agents’ individual utilities.

\[
\max N(x_w) = \prod_{w \in W} 1/\gamma_w = -\sum_{w \in W} \log \gamma_w
\]

The non-easily decomposable mathematical programming model with included envy-freeness and fairness parameters is then:
Mathematical programming model

Objective function

\[\min z(x_w) = \sum_{w \in W} \log \gamma_w = \sum_{w \in W} \log \left[\frac{|P_w|}{\prod_{k \in P_w} \sum_{a \in A} f_a(x_a) \cdot \phi_{ak} x_k} \right] \]

subject to:

\[\sum_{w \in W} \sum_{k \in P_w} \phi_{ak} \cdot x_k \leq u_a, \forall a \in A \]

\[\gamma_w \geq \gamma_{w^*}^\alpha, \forall w, w^* \in W | w \neq w^* \]

\[\sum_{k \in P_w} \psi_{wk} \cdot x^k = R_w, \forall w \in W \]

\[x_k \geq 0, \forall k \in P_w, w \in W \]
Figure 1. Distributed dual decomposition structure of our network utility maximization problem
Lower layer path assignment auction algorithm

- Each vehicle agent \(a \) is described by the tuple
 \[a = \{ w_a, p_a, S_a, c_a \} \]

- Vehicle Satisfaction
 \[S_a = \gamma \cdot S_a(t) + (1 - \gamma) \cdot S_a(t-1), \gamma \in [0; 1] \]
 \[S_a(t) = 1 - \frac{f_a(t)}{f_{sp}^{w}(t)} \]

- The auction algorithm applied to vehicles:
 - A modification of Bertsekas auction algorithm for similar objects,
 - runs in iterations,
 - each iteration composed of a bidding and the assignment phase,
 - the bids of vehicles are modified by the vehicles' satisfaction values,
 - The bids are compared in respect to the O-D pair total flow,
 - performed in parallel for all O-D pairs.
Simulation experiments

- 10 graphs with 50 nodes with the total demand of 2500 O-D pairs.
Experiment results

![Graph showing experiment results](image)

- **Mean path duration cost vs. Origin agents**
- Blue line: User optimization
- Red line: System Optimization
- Green line: Social Welfare concerned Optimization

Axes:
- Y-axis: Mean path duration cost C_p [h]
- X-axis: Origin agents (ordered in nondecreasing order of path costs)

ITSC 2014 10/10/2014
Future work

- Efficient incentives to the drivers on the worst-off O-D pairs
- Application to the air and rail transport
- Integration with signaling infrastructure on road networks,
- Simulation on real road networks with available historical data
Thank you on your attention!