APPROSSIMATING PERMANENTS AND
HAFNIANS OF POSITIVE MATRICES

ALEXANDER BARVINOK

January 2016

Abstract. For any $0 < \delta \leq 1$, we present a deterministic algorithm, which, given an $n \times n$ real matrix A with entries between δ and 1 and an $0 < \epsilon < 1$ approximates the permanent of A within a relative error ϵ in $n^{O(\ln n - \ln \epsilon)}$ time. A similar algorithm is constructed to approximate the hafnian of a symmetric matrix with entries between δ and 1. In particular, we prove that $\ln \per A$ and $\ln \haf A$ are approximated within error ϵ by a polynomial of degree $O(\ln n - \ln \epsilon)$ in the entries of A.

1. Introduction and the main results

(1.1) Permanents. Let $A = (a_{ij})$ be an $n \times n$ real or complex matrix. The permanent of A is defined as

$$
\per A = \sum_{\sigma \in S_n} \prod_{i=1}^{n} a_{i\sigma(i)},
$$

where S_n is the symmetric group of permutations of the set $\{1, \ldots, n\}$. It is a $\#P$-hard problem to compute the permanent of a given 0-1 matrix A exactly [Va79], although a fully polynomial randomized approximation scheme is constructed for non-negative matrices [J+04]. In this paper, we are interested in deterministic algorithms to approximate per A for a positive matrix A. The permanent of an $n \times n$ non-negative matrix A can be approximated within a factor of e^n in deterministic polynomial time [L+00] and the factor was improved to 2^n in [GS14] (with a conjectured improvement to $2^{n/2}$). If one assumes that the entries of A are separated from 0, that is, if

$$\delta \leq a_{ij} \leq 1 \quad \text{for all} \quad i, j$$

1991 Mathematics Subject Classification. 15A15, 68C25, 68W25.
Key words and phrases. permanent, hafnian, algorithm.

This research was partially supported by NSF Grant DMS 1361541.

Typeset by AMSTeX
and some $0 < \delta \leq 1$ fixed in advance, then the polynomial algorithm of [L+00] actually results in an approximation factor of $n^{O(1)}$, where the implied constant in the “O” notation depends on δ, see also [BS11]. Apart from that, deterministic polynomial time algorithms are known for special classes of matrices. For example, in [GK10], for any $\epsilon > 0$, fixed in advance, a polynomial time algorithm is constructed to approximate per A within a factor of $(1 + \epsilon)^n$ if A is the adjacency matrix of a constant degree expander.

In this paper, we present a quasi-polynomial deterministic algorithm, which, given an $n \times n$ matrix $A = (a_{ij})$ satisfying (1.1.1) with some $0 < \delta \leq 1$, fixed in advance, and an $\epsilon > 0$ approximates per A within a relative error ϵ in $n^{O(\ln n - \ln \epsilon)}$ time. The implicit constant in the “O” notation depends on δ.

More precisely, we prove the following result.

\textbf{(1.2) Theorem.} For any $0 < \delta \leq 1$ there exists $\gamma(\delta) > 0$ such that for any positive integer n and any $0 < \epsilon < 1$ there exists a polynomial $p = p_{n,\delta,\epsilon}$ of degree $p \leq \gamma(\delta) (\ln n - \ln \epsilon)$ in the entries a_{ij} of an $n \times n$ matrix A such that

$$|\ln \text{per } A - p(A)| \leq \epsilon$$

for all $n \times n$ matrices $A = (a_{ij})$ satisfying

$$\delta \leq a_{ij} \leq 1 \text{ for all } i, j.$$

We show that the polynomial p can be computed in quasi-polynomial time.

Our approach continues a line of work started in [B15+], see also [Mc14], and continued in [Ba15], [BS16] and [Re15]. The main idea is to relate approximability of a polynomial with its complex zeros. For a complex number $z = a + ib$, we denote by $\Re z = a$ and $\Im z = b$, the real and imaginary parts of z correspondingly. We deduce Theorem 1.2 from the following result.

\textbf{(1.3) Theorem.} Let us fix a real $0 < \delta \leq 1$ and a real $\tau \geq 0$ such that

$$\tau \leq \delta \sin \left(\frac{\pi}{4} - \frac{1}{2} \arccos \delta^2 \right).$$

Let $Z = (z_{ij})$ be an $n \times n$ complex matrix such that

$$\delta \leq \Re z_{ij} \leq 1 \text{ and } |\Im z_{ij}| \leq \tau \text{ for all } 1 \leq i, j \leq n.$$

Then

$$\text{per } Z \neq 0.$$

In particular, the conclusion of the theorem holds if

$$\tau \leq \frac{1}{2} \delta^3.$$
since
\[
\frac{1}{2} \delta^3 \leq \delta \sin \left(\frac{\pi}{4} - \frac{1}{2} \arccos \delta^2 \right) \quad \text{for} \quad 0 \leq \delta \leq 1.
\]

In [B15+] we prove that for some absolute constant \(\delta_0 > 0\) we have \(\text{per} Z \neq 0\) for any \(n \times n\) complex matrix \(Z = (z_{ij})\) such that \(|1 - z_{ij}| \leq \delta_0\) for all \(i, j\). In [B15+] it is shown that one can choose \(\delta_0 = 0.195\), but the value can be improved to \(\delta_0 = 0.275\) using a slight modification of the argument, cf. [Ba15] and [BS16]. The best value of \(\delta_0\) is not known although one can show that \(\delta_0 < 0.708\). It is then shown in [B15+] that for any \(0 < \delta < \delta_0\), fixed in advance, there is a quasi-polynomial algorithm approximating the permanent of an \(n \times n\) real or complex matrix \(Z = (z_{ij})\) satisfying \(|1 - z_{ij}| \leq \delta\) for all \(i, j\) within a relative error \(\epsilon > 0\) in time \(n^{O(\ln n - \ln \epsilon)}\). This appears to be a fairly general phenomenon, which extends to other partition functions, including multi-dimensional permanents [B15+], partition functions enumerating dense subgraphs [Ba15], graph homomorphisms [BS16] and edge-coloring models [Re15] (for each partition function there is its own value of \(\delta_0\)).

Theorem 1.3 is of a somewhat different nature: here we allow the entries \(a_{ij}\) to be arbitrarily close to 0 but insist that the imaginary part of \(a_{ij}\) gets smaller as \(a_{ij}\) approaches 0. At the moment, it is not clear whether the approach can be generalized to other partition functions, and indeed there is a computational complexity obstacle of the P=NP type for extending it, for example, to the partition function of graph homomorphisms, cf. [BS16]. The only immediate extension appears to be from permanents to hafnians.

1.4 Hafnian. Let \(A = (a_{ij})\) be a \(2n \times 2n\) symmetric real or complex matrix. The hafnian of \(A\) is defined as
\[
\text{haf} A = \sum_{\{i_1, j_1\}, \ldots, \{i_n, j_n\}} a_{i_1,j_1} \cdots a_{i_n,j_n},
\]
where the sum is taken over \((2n)!/2^n n!\) unordered partitions of the set \(\{1, \ldots, 2n\}\) into \(n\) pairwise disjoint unordered pairs \(\{i_1, j_1\}, \ldots, \{i_n, j_n\}\), see for example, Section 8.2 of [Mi78]. Just as the permanent of the biadjacency matrix of a bipartite graph enumerates the perfect matchings in the graph, the hafnian of the adjacency matrix of a graph enumerates the perfect matchings in the graph. In fact, for any \(n \times n\) matrix \(A\) we have
\[
\text{haf} \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix} = \text{per} A,
\]
and hence computing the permanent of an \(n \times n\) matrix reduces to computing the hafnian of a symmetric \(2n \times 2n\) matrix.

Computationally, the hafnian appears to be a more complicated object than the permanent. No fully polynomial (randomized or deterministic) approximation scheme is known to compute the hafnian of a non-negative symmetric matrix and
no deterministic polynomial time algorithm to approximate the hafnian of a $2n \times 2n$ non-negative matrix within an exponential factor of c^n for some absolute constant $c > 1$ is known (though there is a randomized polynomial time algorithm achieving such an approximation [Ba99]). On the other hand, if the entries a_{ij} of the matrix $A = (a_{ij})$ satisfy (1.1.1) for some $\delta > 0$, fixed in advance, there is a polynomial time algorithm approximating $\text{haf } A$ within a factor of $n^{O(1)}$, where the implicit constant in the “O” notation depends on δ [BS11].

In this paper, we prove the following versions of Theorem 1.2 and 1.3.

(1.5) Theorem. For any $0 < \delta \leq 1$ there exists $\gamma(\delta) > 0$ such that for any positive integer n and any $0 < \epsilon < 1$ there exists a polynomial $p = p_{n, \delta, \epsilon}$ of $\text{deg } p \leq \gamma(\delta) (\ln n - \ln \epsilon)$ in the entries a_{ij} of a $2n \times 2n$ symmetric matrix A such that

$$|\ln \text{haf } A - p(A)| \leq \epsilon$$

for all $2n \times 2n$ symmetric matrices $A = (a_{ij})$ satisfying

$$\delta \leq a_{ij} \leq 1 \quad \text{for all } i, j.$$

The polynomial $p_{n, \delta, \epsilon}$ can be computed in $n^{O(\ln n - \ln \epsilon)}$ time, where the implicit constant in the “O” notation depends on δ. Consequently, we obtain a deterministic quasi-polynomial algorithm to approximate the hafnian of a positive matrix $A = (a_{ij})$ satisfying (1.1.1) within any given relative error $\epsilon > 0$.

As is the case with permanents, we deduce Theorem 1.5 from the result on the complex zeros of the hafnian.

(1.6) Theorem. Let us fix a real $0 < \delta \leq 1$ and a real $\tau \geq 0$ such that

$$\tau \leq \delta \sin \left(\frac{\pi}{4} - \frac{1}{2} \arccos \delta^2\right).$$

Let $Z = (z_{ij})$ be an $2n \times 2n$ symmetric complex matrix such that

$$\delta \leq \Re z_{ij} \leq 1 \quad \text{and} \quad |\Im z_{ij}| \leq \tau \quad \text{for all } 1 \leq i, j \leq n.$$

Then

$$\text{haf } Z \neq 0.$$

We prove Theorem 1.3 and Theorem 1.6 in Section 2 and in Section 3 we prove Theorem 1.2 and Theorem 1.5.

2. Proofs of Theorems 1.3 and 1.6

We start with a couple of simple geometric arguments regarding angles between non-zero complex numbers. We identify $\mathbb{C} = \mathbb{R}^2$, thus identifying complex numbers with vectors in the plane. We denote by $\langle \cdot, \cdot \rangle$ the standard inner product in \mathbb{R}^2 and by $|\cdot|$ the corresponding Euclidean norm (the modulus of a complex number).
(2.1) Lemma.

(1) Let us fix a real $0 < \delta \leq 1$. Let $u_1, \ldots, u_n \in \mathbb{R}^2$ be non-zero vectors such that the angle between any two u_i and u_j does not exceed $\pi/2$, let

$$\delta \leq \alpha_i, \beta_i \leq 1 \quad \text{for} \quad i = 1, \ldots, n$$

be reals and let

$$v = \sum_{i=1}^{n} \alpha_i u_i \quad \text{and} \quad w = \sum_{i=1}^{n} \beta_i u_i.$$

Then $v \neq 0$, $w \neq 0$ and the angle between v and w does not exceed $\arccos \delta^2$.

(2) Let $u, w \in \mathbb{R}^2$ be vectors such that $u \neq 0$ and $|w| < |u|$. Then $u + w \neq 0$ and the angle between $u + w$ and u does not exceed

$$\arcsin \frac{|w|}{|u|}.$$

Proof. To prove Part (1), let

$$u = \sum_{i=1}^{n} u_i.$$

Since

$$\langle u_i, u_j \rangle \geq 0 \quad \text{for all} \quad i, j,$$

we have

$$\langle v, w \rangle = \sum_{1 \leq i, j \leq n} \alpha_i \beta_j \langle u_i, u_j \rangle \geq \delta^2 \sum_{1 \leq i, j \leq n} \langle u_i, u_j \rangle = \delta^2 \langle u, u \rangle = \delta^2 |u|^2$$

(hence, in particular, $v \neq 0$ and $w \neq 0$). Similarly, for any real $-1 \leq \gamma_1, \ldots, \gamma_n \leq 1$ and $x = \gamma_1 u_1 + \ldots + \gamma_n u_n$, we have

$$\langle x, x \rangle = \sum_{1 \leq i, j \leq n} \gamma_i \gamma_j \langle u_i, u_j \rangle \leq \sum_{1 \leq i, j \leq n} \langle u_i, u_j \rangle = \langle u, u \rangle,$$

so that $|x| \leq |u|$. In particular,

$$|v||w| \leq |u||u| = |u|^2.$$

Denoting by ω the angle between u and v, we obtain

$$\cos \omega = \frac{\langle v, w \rangle}{|v||w|} \geq \delta^2,$$

as required.

To prove Part (2), we notice that clearly $u + w \neq 0$. If we fix $|u|$ and $|w|$, we observe that the angle between u and $u + w$ is the largest when w is orthogonal to $u + w$, in which case the angle is $\arcsin(|w|/|u|)$. \qed
(2.2) Lemma. Let us fix real $0 < \delta \leq 1$ and $0 < \tau \leq 1$. Let $u_1, \ldots, u_n \in \mathbb{C}$ be non-zero complex numbers such that the angle between any two u_i, u_j does not exceed $\pi/2$. Let ξ_1, \ldots, ξ_n and η_1, \ldots, η_n be complex numbers such that

$$\delta \leq \Re \xi_j, \Re \eta_j \leq 1$$

and let

$$v = \sum_{j=1}^{n} \xi_j u_j \quad \text{and} \quad w = \sum_{j=1}^{n} \eta_j u_j.$$

If

$$\tau \leq \delta \sin \left(\frac{\pi}{4} - \frac{1}{2} \arccos \delta^2 \right)$$

then $v \neq 0$, $w \neq 0$ and the angle between v and w does not exceed $\pi/2$.

Proof. Let us write

$$\xi_j = \alpha_j' + i\alpha_j'' \quad \text{and} \quad \eta_j = \beta_j' + i\beta_j''$$

where

$$\alpha_j' = \Re \xi_j, \quad \alpha_j'' = \Im \xi_j, \quad \beta_j' = \Re \eta_j \quad \text{and} \quad \beta_j'' = \Im \eta_j \quad \text{for} \quad j = 1, \ldots, n.$$

Let

$$v' = \sum_{j=1}^{n} \alpha_j' u_j, \quad v'' = i \sum_{j=1}^{n} \alpha_j'' u_j,$$

$$w' = \sum_{j=1}^{n} \beta_j' u_j, \quad w'' = i \sum_{j=1}^{n} \beta_j'' u_j,$$

so that $v = v' + v''$ and $w = w' + w''$. By Part (1) of Lemma 2.1, we have $v' \neq 0$, $w' \neq 0$ and the angle ω between v' and w' does not exceed $\arccos \delta^2$. As in the proof of Lemma 2.1, let

$$u = \sum_{j=1}^{n} u_j,$$

so that

$$|v'|, |v'| \geq \delta |u| \quad \text{and} \quad |v''|, |w''| \leq \tau |u|.$$

Since $\tau < \delta$, by Part (2) of Lemma 2.1, we have $v = v' + v'' \neq 0$, $w = w' + w'' \neq 0$ and the angle between v and v' as well as the angle between w and w' do not exceed

$$\theta = \arcsin \frac{\tau}{\delta}.$$

Hence the angle between v and w does not exceed

$$\omega + 2\theta = \arccos \delta^2 + 2 \arcsin \frac{\tau}{\delta} \leq \frac{\pi}{2}.$$

□

6
Proof of Theorem 1.3. For a positive integer \(n \), let \(\mathcal{U}_n \) be the set of \(n \times n \) complex matrices \(Z = (z_{ij}) \) such that

\[
(2.3.1) \quad \delta \leq \Re z_{ij} \leq 1 \quad \text{and} \quad |\Im z_{ij}| \leq \tau \quad \text{for all} \quad i, j.
\]

We prove by induction on \(n \) a more general statement:

For any \(Z \in \mathcal{U}_n \) we have \(\text{per} \, Z \neq 0 \) and, moreover, if \(A, B \in \mathcal{U}_n \) are two matrices that differ in one row (or in one column) only, then the angle between non-zero complex numbers \(\text{per} \, A \) and \(\text{per} \, B \) does not exceed \(\pi/2 \).

Since \(\tau < \delta \), the statement holds for \(n = 1 \). Assuming that the statement holds for matrices in \(\mathcal{U}_{n-1} \) with \(n \geq 2 \), let us consider two matrices \(A, B \in \mathcal{U}_n \) that differ in one row or in one column only. Since the permanent of a matrix does not change when the rows or columns of the matrix are permuted or when the matrix is transposed, without loss of generality we assume that \(B \) is obtained from \(A \) by replacing the entries \(a_{1j} \) of the first row by complex numbers \(b_{1j} \) for \(j = 1, \ldots, n \).

Let \(A_j \) be the \((n-1) \times (n-1)\) matrix obtained from \(A \) by crossing out the first row and the \(j \)-th column. Then

\[
(2.3.2) \quad \text{per} \, A = \sum_{j=1}^{n} a_{1j} \text{per} \, A_j \quad \text{and} \quad \text{per} \, B = \sum_{j=1}^{n} b_{1j} \text{per} \, A_j.
\]

We observe that \(A_j \in \mathcal{U}_{n-1} \) for \(j = 1, \ldots, n \) and, moreover, any two matrices \(A_{j1}, A_{j2} \) after a suitable permutation of columns differ in one column only. Hence by the induction hypothesis, we have \(\text{per} \, A_j \neq 0 \) for \(j = 1, \ldots, n \) and the angle between any two non-zero complex numbers \(\text{per} \, A_{j1} \) and \(\text{per} \, A_{j2} \) does not exceed \(\pi/2 \). Applying Lemma 2.2 with \(u_j = \text{per} \, A_j, \quad \xi_j = a_{1j} \quad \text{and} \quad \eta_j = b_{1j} \quad \text{for} \quad j = 1, \ldots, n, \) we conclude that \(\text{per} \, A \neq 0, \, \text{per} \, B \neq 0 \) and that the angle between non-zero complex numbers \(\text{per} \, A \) and \(\text{per} \, B \) does not exceed \(\pi/2 \), which completes the induction. \(\square \)

Proof of Theorem 1.6. The proof is very similar to that of Section 2.3. For a positive integer \(n \), we define \(\mathcal{U}_n \) as the set of \(2n \times 2n \) symmetric complex matrices \(Z = (z_{ij}) \) satisfying (2.3.1) and we prove by induction on \(n \) that for any \(Z \in \mathcal{U}_n \) we have \(\text{haf} \, Z \neq 0 \) and if \(A, B \in \mathcal{U}_n \) are two matrices that differ only in the \(k \)-th row and in the \(k \)-th column for some unique \(k \) then the angle between non-zero complex numbers \(\text{haf} \, A \) and \(\text{haf} \, B \) does not exceed \(\pi/2 \). Instead of the Laplace expansion (2.3.2) we use the recurrence

\[
\text{haf} \, A = \sum_{j=2}^{2n} a_{1j} \text{haf} \, A_j,
\]

where \(A_j \) is the \((2n-2) \times (2n-2)\) matrix obtained from \(A \) by crossing out the first row and the first column and the \(j \)-th row and the \(j \)-th column. We observe that, up to a simultaneous permutation of rows and columns (which does not change the hafnian), any two matrices \(A_{j1}, A_{j2} \) differ only in the \(k \)-th row and \(k \)-th column for some \(k \) and the induction proceeds as in Section 2.3. \(\square \)
3. Proofs of Theorems 1.2 and 1.5

The following simple result was obtained in [B15+], we give its proof here for completeness.

(3.1) Lemma. Let \(s : \mathbb{C} \rightarrow \mathbb{C} \) be a polynomial and let \(\beta > 1 \) be real such that \(s(z) \neq 0 \) for all \(|z| \leq \beta \). Let us choose a branch of

\[
 f(z) = \ln s(z) \quad \text{for} \quad |z| \leq 1
\]

and let

\[
 T_m(z) = f(0) + \sum_{k=1}^{m} \left(\frac{d^k}{dz^k} f(z) \bigg|_{z=0} \right) \frac{z^k}{k!}
\]

be the Taylor polynomial of \(f(z) \) of degree \(m \) computed at \(z = 0 \). Then

\[
 |f(1) - T_m(1)| \leq \frac{\deg s}{(m + 1)\beta^m(\beta - 1)}.
\]

Proof. Without loss of generality, we assume that \(n = \deg s > 0 \). Let \(z_1, \ldots, z_n \in \mathbb{C} \) be the roots of \(s \). Hence we can write

\[
 s(z) = s(0) \prod_{j=1}^{n} \left(1 - \frac{z}{z_j} \right) \quad \text{where} \quad |z_j| > \beta \quad \text{for} \quad j = 1, \ldots, n
\]

and

\[
 f(z) = f(0) + \sum_{j=1}^{n} \ln \left(1 - \frac{z}{z_j} \right) \quad \text{for all} \quad |z| \leq 1.
\]

Using the Taylor series expansion for the logarithm, we obtain

\[
 \ln \left(1 - \frac{1}{z_j} \right) = -\sum_{k=1}^{m} \frac{1}{k z_j^k} + \xi_j
\]

where

\[
 |\xi_j| = \left| -\sum_{k=m+1}^{+\infty} \frac{1}{k z_j^k} \right| \leq \frac{1}{(m + 1)\beta^m(\beta - 1)}.
\]

Since

\[
 T_m(1) = f(0) - \sum_{j=1}^{n} \sum_{k=1}^{m} \frac{1}{k z_j^k},
\]

the proof follows. \(\square \)
Computing the derivatives. As is discussed in [B15+], the computation of the first m derivatives $f^{(1)}(0), \ldots, f^{(m)}(0)$ of $f(z) = \ln s(z)$ reduces to the computation of the first m derivatives $s^{(1)}(0), \ldots, s^{(m)}(0)$ of s. Indeed,

$$
f^{(1)}(z) = \frac{s^{(1)}(z)}{s(z)} \quad \text{and hence} \quad s^{(1)}(z) = f^{(1)}(z)s(z)
$$

and

(3.2.1) $$s^{(k)}(0) = \sum_{j=0}^{k-1} \binom{k-1}{j} s^{(j)}(0)f^{(k-j)}(0)$$

where $s^{(0)}(0) = s(0) \neq 0$. Writing equations (3.2.1) for $k = 1, \ldots, m$ we obtain a non-singular triangular system of linear equations (with numbers $s(0) \neq 0$ on the diagonal) from which the values of $f^{(1)}(0), \ldots, f^{(m)}(0)$ can be computed in $O(m^2)$ time from the values of $s(0), s^{(1)}(0), \ldots, s^{(m)}(0)$.

It follows from Lemma 3.1 that as long as the roots of a polynomial $s(z)$ stay at least distance β away from 0 for some fixed $\beta > 1$ then to approximate $s(1)$ within a relative error ϵ, we can use the Taylor polynomial of $f(z) = \ln s(z)$ at $s = 0$ of degree $m = O(\ln \deg s - \ln \epsilon)$, where the implicit constant in the “O” notation depends on β only. In view of Theorems 1.3 and 1.6, we would like to approximate $s(1)$ under a weaker assumption that there are no roots of s in an ϵ-neighborhood of the interval $[0, 1] \subset \mathbb{C}$. We do that by constructing a polynomial $q : \mathbb{C} \rightarrow \mathbb{C}$ which maps the disk $\{z : |z| \leq \beta\}$ into an ϵ-neighborhood of $[0, 1]$ while satisfying the constraints $q(0) = 0$ and $q(1) = 1$. We then apply Lemma 3.1 to the composition $s(q(z))$. We construct the polynomial q in two steps, first constructing an analytic function F with similar properties and then approximating F by a polynomial.

(3.3) Lemma. For a $\rho > 0$, let us define $\mathbb{D}_\rho \subset \mathbb{C}$ by

$$\mathbb{D}_\rho = \left\{ z : |z| \leq 1 - \exp \left\{ -1 - \frac{1}{\rho} \right\} \right\}$$

and let $F_\rho : \mathbb{D}_\rho \rightarrow \mathbb{C}$ be the function

$$F_\rho(z) = \rho \ln \frac{1}{1 - z},$$

where we consider the branch of $\ln w$ in the halfplane $\Re w > 0$ that is 0 at $w = 0$. Then

1. We have

$$-\rho \ln 2 \leq \Re F_\rho(z) \leq 1 + \rho \quad \text{and} \quad |\Im F_\rho(z)| \leq \frac{\pi \rho}{2}.$$
for all \(z \in \mathbb{D}_\rho \);

(2) We have \(F_\rho(0) = 0 \);

(3) We have \(F_\rho(\alpha_\rho) = 1 \) where \(\alpha_\rho = 1 - \exp \left\{-\frac{1}{\rho} \right\}, \ z_\rho \in \mathbb{D}_\rho \).

Proof. Since \(\Re (1 - z) > 0 \) for all \(z \in \mathbb{D}_\rho \), we have

\[
\Re \frac{1}{1 - z} > 0 \quad \text{for all} \quad z \in \mathbb{D}_\rho
\]

and hence the branch of \(\ln \frac{1}{1 - z} \) is well-defined for all \(z \in \mathbb{D}_\rho \) and, moreover,

\[
-\frac{\pi}{2} \leq \Im \ln \frac{1}{1 - z} \leq \frac{\pi}{2} \quad \text{for all} \quad z \in \mathbb{D}_\rho.
\]

It follows that

\[
|\Im F_\rho(z)| \leq \frac{\pi \rho}{2} \quad \text{for all} \quad z \in \mathbb{D}_\rho.
\]

Since

\[
\exp \left\{-1 - \frac{1}{\rho} \right\} \leq |1 - z| < 2 \quad \text{for all} \quad z \in \mathbb{D}_\rho,
\]

we have

\[
-\ln 2 \leq \Re \ln \frac{1}{1 - z} = -\ln |1 - z| \leq 1 + \frac{1}{\rho}
\]

and the inequality

\[
-\rho \ln 2 \leq \Re F_\rho(z) \leq 1 + \rho \quad \text{for all} \quad z \in \mathbb{D}_\rho
\]

follows, which concludes the proof of Part (1).

Parts (2) and (3) are immediate. \(\square \)

(3.4) Lemma. For \(0 < \rho \leq 1 \), let

\[
N = N_\rho \geq 50
\]

and let us define a polynomial \(q_\rho : \mathbb{C} \longrightarrow \mathbb{C} \) of degree \(N \) by

\[
q_\rho(z) = \frac{1}{\sigma_\rho} \sum_{m=1}^{N} \frac{\alpha_m}{m} z^m \quad \text{where}
\]

\[
\alpha_\rho = 1 - \exp \left\{-\frac{1}{\rho} \right\} < 1 \quad \text{and} \quad \sigma_\rho = \sum_{m=1}^{N} \frac{\alpha_m}{m}.
\]
Then

(1)
\[q_\rho(0) = 0 \] \quad \text{and} \quad \[q_\rho(1) = 1; \]

(2)
\[|\Im q_\rho(z)| \leq 1.7\rho \quad \text{and} \quad -0.75\rho \leq \Re q_\rho(z) \leq 1 + 1.05\rho \]

provided

\[|z| \leq \beta_\rho \quad \text{where} \quad \beta_\rho = \frac{1 - \exp\left\{-1 - \frac{1}{\rho}\right\}}{1 - \exp\left\{-\frac{1}{\rho}\right\}} > 1. \]

Proof. Part (1) is immediate, it remains to prove Part (2). Let

\[P_n(z) = \sum_{m=1}^{n} \frac{z^m}{m}. \]

Then

\[
\left| \ln \frac{1}{1-z} - P_n(z) \right| = \left| \sum_{m=n+1}^{\infty} \frac{z^m}{m} \right| \leq \frac{|z|^{n+1}}{(n+1)(1-|z|)} \quad \text{provided} \quad |z| < 1.
\]

In particular,

\[
\left| \ln \frac{1}{1-\alpha_\rho z} - P_N(\alpha_\rho z) \right|
\]

\[
\leq \frac{1}{N+1} \exp\left\{1 + \frac{1}{\rho}\right\} \left(1 - \exp\left\{-1 - \frac{1}{\rho}\right\}\right)^{N+1}
\]

\[
\leq \frac{1}{N+1} \quad \text{provided} \quad |z| \leq \beta_\rho.
\]

Let

\[F_\rho(z) = \rho \ln \frac{1}{1-z} \]

be the function of Lemma 3.3. From (3.4.1), we obtain

\[
|F_\rho(\alpha_\rho z) - \rho P_N(\alpha_\rho z)| \leq \frac{\rho}{N+1} \leq \frac{\rho}{50} \quad \text{provided} \quad |z| \leq \beta_\rho.
\]

Since \(F_\rho(\alpha_\rho) = 1 \) and \(\sigma_\rho = P_N(1) \), from (3.4.2) we conclude that

\[
|1 - \rho \sigma_\rho| \leq 0.02\rho.
\]
From Part (1) of Lemma 3.3 and (3.4.2), we conclude that

\begin{equation}
-0.72\rho \leq \Re \rho P_N(z) \leq 1 + 1.02\rho \quad \text{and} \quad |\Im \rho P_N(z)| \leq 1.6\rho \quad \text{provided} \quad |z| \leq \beta \rho.
\end{equation}

Now,

\[q_\rho(z) = \frac{1}{\sigma_\rho} P_N(\alpha_\rho z). \]

Combining (3.4.3) and (3.4.4), we conclude that

\[-0.75\rho \leq \Re q_\rho(z) \leq 1 + 1.05\rho \]

and

\[|\Im q_\rho(z)| \leq 1.7\rho, \]

as required. \(\square\)

(3.5) Proof of Theorem 1.2. Let \(A = (a_{ij}) \) be an \(n \times n \) matrix satisfying

\[\delta \leq a_{ij} \leq 1 \quad \text{for all} \quad i, j, \]

let \(J = J_n \) be the \(n \times n \) matrix filled with 1s and let us define a univariate polynomial

\[r(z) = \per (J + z(A - J)) \quad \text{for} \quad z \in \mathbb{C}, \]

so that \(r(0) = \per J = n! \), \(r(1) = \per A \) and \(\deg r \leq n \). For the \(k \)-th derivative of \(r(z) \) at \(z = 0 \) we have

\[r^{(k)}(0) = \frac{d^k}{dz^k} \sum_{\sigma \in S_n} \prod_{i=1}^n (1 + z(a_{i\sigma(i)} - 1)) \bigg|_{z=0} = \sum_{\sigma \in S_n} \sum_{1 \leq i_1, \ldots, i_k \leq n} (a_{i_1\sigma(i_1)} - 1) \cdots (a_{i_k\sigma(i_k)} - 1) = (n - k)! \sum_{1 \leq i_1, \ldots, i_k \leq n} (a_{i_1j_1} - 1) \cdots (a_{i_kj_k} - 1), \]

where the last sum is taken over all pairs of ordered \(k \)-subsets \((i_1, \ldots, i_k) \) and \((j_1, \ldots, j_k) \) of the set \(\{1, \ldots, n\} \). Hence \(r^{(k)}(0) \) is a polynomial of degree at most \(k \) in the entries \(a_{ij} \) of the matrix \(A \) computable in \(n^{O(k)} \) time (where the implied constant in the “\(O \)” notation is absolute).

If \(\Re z \) lies in the interval \([-\delta, 1 + \delta]\), the real parts of the entries of the matrix \(J + z(A - J) \) lie in the interval \([\delta^2, 1 + \delta - \delta^2]\). Let

\[\tau = \frac{1}{2} \left(\frac{\delta^2}{1 + \delta - \delta^2} \right)^3. \]
If $|\Im z| \leq \tau$, the imaginary parts of the entries of the matrix $J + z(A - J)$ do not exceed $\tau(1 - \delta)$ in the absolute value. Using that the permanent is a homogeneous polynomial in the matrix entries, we conclude from Theorem 1.3 that

$$r(z) \neq 0 \text{ if } -\delta \leq \Re z \leq 1 + \delta \text{ and } |\Im z| \leq \tau.$$

(3.5.1)

Let us choose

$$\rho = \min \left\{ \frac{\delta}{1.05}, \frac{\tau}{1.7} \right\},$$

let $q(z) = q_\rho(z)$ be the polynomial of Lemma 3.4 and let

$$\beta = \beta_\rho = \frac{1 - \exp \left\{ -1 - \frac{1}{\rho} \right\}}{1 - \exp \left\{ -\frac{1}{\rho} \right\}} > 1.$$

Hence $q(z)$ is a univariate polynomial of some degree $N = N(\delta)$ such that $q(0) = 0$, $q(1) = 1$,

$$-\delta \leq \Re q(z) \leq 1 + \delta \text{ and } |\Im q(z)| \leq \tau \text{ provided } |z| \leq \beta.$$

(3.5.2)

Let

$$s(z) = r(q(z)) \text{ for } z \in \mathbb{C}.$$

Then $s(z)$ is a univariate polynomial such that $\deg s \leq Nn$,

$$s(0) = r(0) = \per J = n!, \quad s(1) = r(1) = \per A.$$

(3.5.3)

Since $q(0) = 0$, only monomials of degree not exceeding k in $r(z)$ and $q(z)$ contribute to the coefficient of z^k in the composition $s(z) = r(q(z))$. Consequently, the derivative $s^{(k)}(0)$ is a polynomial of degree at most k in the entries a_{ij} of A computable in $n^{O(k)}$ time (the implied constant in the “O” notation is absolute).

Combining (3.5.1) and (3.5.2) we conclude

$$s(z) \neq 0 \text{ for all } |z| \leq \beta.$$

(3.5.4)

Let $T_m(z)$ be the Taylor polynomial of $f(z) = \ln s(z)$ of degree m computed at $z = 0$. Applying Lemma 3.1, from (3.5.3) and (3.5.4) we conclude that

$$|\ln \per A - T_m(1)| \leq \frac{Nn}{(m + 1)\beta^m(\beta - 1)}.$$

In particular, for some

$$m = O \left(\ln n - \ln \epsilon \right)$$

(3.5.5)
we obtain

\[
(3.5.6) \quad |\ln \per A - T_m(1)| \leq \epsilon,
\]

where the implicit constant in the “O” notation depends on \(\delta \) alone.

We have

\[
(3.5.7) \quad T_m(1) = f(0) + \sum_{k=1}^{m} \frac{f^{(k)}(0)}{k!}.
\]

From the triangular system of linear equations (3.2.1) with \(s(0) = n! \), we conclude that \(f^{(k)}(0) \) is a polynomial of degree at most \(k \) in the matrix entries \(a_{ij} \), computable in \(n^{O(k)} \) time. Combining that with (3.5.5)–(3.5.7), we complete the proof. \(\square \)

(3.6) Proof of Theorem 1.5. We define the univariate polynomial \(r(z) \) by

\[
\frac{d^{k}}{dz^{k}} r(z) \bigg|_{z=0} = \frac{d^{k}}{dz^{k}} \sum_{\{i_1,j_1\}, \ldots, \{i_n,j_n\}} (1 + z(a_{i_1,j_1} - 1)) \cdots (1 + z(a_{i_1,j_1} - 1)) \bigg|_{z=0} = k! \frac{(2n-2k)!}{2^{n-k}(n-k)!} \sum_{\{i_1,j_1\}, \ldots, \{i_k,j_k\}} (a_{i_1,j_1} - 1) \cdots (a_{i_k,j_k} - 1),
\]

where the last sum is taken over all unordered collection of pairwise disjoint unordered pairs of indices \(1 \leq i_1, j_1, \ldots, i_k, j_k \leq 2n \). The proof then proceeds as in Section 3.5. \(\square \)

REFERENCES

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1043, USA

E-mail address: barvinok@umich.edu