Structural and Vibrational studies (FT-IR, FT-Raman) of Voglibose using DFT calculation

R. Solaichamy^a, J. Karpagam^a*

^aDepartment of Physics (Engg.), Annamalai University, Annamalainagar-608 002, Tamil Nadu,

India.

*Corresponding author

E-mail address: karaviram@rediffmail.com

Keywords: FT-IR; FT-Raman; NBO; UV-Vis; NMR; TED.

ABSTRACT. In the present study, we report on the Molecular structure and infrared (IR) and FT-Raman studies of Voglibose (VGB) as well as by calculations based on the density functional theory (DFT) approach; utilizing B3LYP/6-31G(d,p) basis set. The targeted interpretation of the vibrational spectra intended to the basis of calculated potential energy distribution matrix (PED) utilizing VEDA4 program. Stability of the molecule arising from hyperconjugative interactions and charge delocalization was studied using natural bond orbital (NBO) analysis. The results show that change in electron density in the σ^* and π^* antibonding orbitals and E² energies confirm the occurrence of intramolecular charge transfer within the molecule. The UV-Visible and NMR spectral analysis were reported by using TD-DFT and gauge GIAO approach respectively and their chemical shifts related to TMS were compared. The lowering of HOMO and LUMO energy gap appears to be the cause for its enhanced charge transfer interactions. Besides, molecular electrostatic potential (MEP) analysis was reported. Due to different potent biological properties, the molecular docking results are also reported.

1. INTRODUCTION

Voglibose is a new and potent in-hibitor of α -glucosidases and is used for the treatment of diabetes mellitus. Voglibose is chemically known as 3,4-Dideoxy-4-[2-hydroxy-1-(hydroxyl methyl) ethyl]amino-2-c-(hydroxymethyl)-D-epinositol has attracted considerable interests due to its wide range of therapeutic and pharma-cological properties, including its excellent inhibitory activity against α -glucosidase and its action against hyperglycemia and various disorders caused by hyper-glycemia [1]. Voglibose obtained from organic synthesis processes is similar to structurally related carbohydrates found naturally [2, 3] and has the empirical formula C₁₀H₂₁NO₇. For the treatment of diabetes. It is specifically used for lowering postprandial blood glucose levels thereby reducing the risk of macrovascular complications.

Recently, Iwamoto et al reported [4] Efficacy and safety of vildagliptin and voglibose in Japanese patients with type 2 diabetes: a 12-week, randomized, double-blind, active-controlled study. Mallikarjuna Rao et al [1] presented RP-HPLC method development and validation for estimation of Voglibose in bulk and tablet dosage forms. Determination of voglibose in pharmaceutical formulations by high performance liquid chromatography using refractive index detection given by Karunanidhi Lakshmi et al [5]. Hong Zhang et al [2] reported ¹H and ¹³C NMR analysis of Voglibose and its derivatives. A Comparative Study of Acarbose and Voglibose on Postprandial Hyperglycemia and serum lipids in Type 2 Diabetic patients reported by P. Revathi et al [6].

With the guide of above seen written works, it is clear that there is no quantum mechanical study on this VGB molecule which has propelled to do a definite quantum mechanical investigation for comprehension the vibrational modes, UV-Visible, chemical shifts, HOMO-LUMO, MEP. In this commitment, the structural and vibrational investigations of a basic VGB molecule was introduced and talked about. In the present work we want to focus on vibrational spectrum of the title compound inclusive its interpretation based on the theoretical spectrum calculated by means of

density functional theory (DFT). The redistribution of electron density (ED) in various bonding, antibonding orbitals and $E^{(2)}$ energies have been calculated by natural bond orbital (NBO) analysis to give clear evidence of stabilization originating from the hyperconjugation of various intramolecular interactions.

2. MATERIALS AND METHODS

2.1. FT-IR, FT-Raman and UV-Vis analysis

The compound Voglibose was purchased from Aldrich chemicals, USA and used as such to record the FT-IR and FT-Raman, UV spectra. Bruker IFS 66 V spectrometer was used to record the FT-IR spectrum by KBr pellet method on a equipped with a Globar source, Ge/KBr beam splitter, and a TGS detector in the range of 4000–400 cm⁻¹. The spectral resolution was 2 cm⁻¹. The FT-Raman spectrum was obtained on a Bruker RFS 100/s, Germany and the excitation of the spectrum is with the emission of Nd:YAG laser with a wavelength of 1064 nm, maximal power 150 mW. Cary 500 UV-VIS-NIR spectrometer was used to record the UV absorption spectra associated with Voglibose were examined with the range 200-800 nm. The UV pattern is usually acknowledged from the 10⁻⁵ molar solution connected with VGB, dissolved with ethanol solvent.

3. COMPUTATIONAL DETAILS

Calculations of the title compound were carried out with the Gaussian 03W program [7] using B3LYP/6-31G(d,p) basis set to predict the molecular structure and vibrational wave numbers and a scaling factor of 0.9608 is used for obtaining a considerably better agreement with experimental data [8,9]. The assignments of the calculated wave numbers are aided by the animation option of the VEDA4 [10] program. The atomic charges, distribution of electron density (ED) in various bonding and antibonding orbitals and stabilization energies, $E^{(2)}$ have been calculated by natural bond orbital (NBO) analysis were performed using NBO 3.1 program [11] as implemented in the Gaussian 03W [7] package at the DFT/B3LYP level of calculation. UV–Visible spectra, electronic transitions, vertical excitation energies and oscillator strengths were computed with the time-dependent DFT method with 6-31G(d,p) basis set in gas phase and using ethanol as solvent. The ¹H and ¹³C NMR isotropic shielding were calculated with the GIAO method [12] using the optimized parameters obtained from B3LYP/6-31G(d,p) method.

3.1. Prediction of Raman intensities

The Raman activities (S_{Ra}) calculated with Gaussian 03W program [7] converted to relative Raman intensities (I_{Ra}) using the following relationship derived from the intensity theory of Raman scattering [13,14]

$$I_{i} = \frac{f(v_{o} - v_{i})^{4} S_{i}}{v_{i} [1 - \exp(-hcv_{i} / kt)]}$$

Where, v_0 is the laser exciting wavenumber in cm⁻¹ (in this work, we have used the excitation wavenumber $v_0 = 9398.5$ cm⁻¹, which corresponds to the wavelength of 1064 nm of a Nd-YAG laser), v_i the vibrational wavenumber of the ith normal mode (cm⁻¹) while S_i is the Raman scattering activity of the normal mode v_i [15].

4. RESULTS AND DISCUSSIONS

4.1. Conformational stability

In order to describe conformational flexibility of the title molecule, the energy profile as a function of N13–C15–C16–O17 torsion angle was achieved with B3LYP/6-31G(d,p) level of calculation as shown in **Fig. 1**. All the geometrical parameters were simultaneously relaxed during the calculations while the N13–C15–C16–O17 torsional angle was varied in steps of 10°, 20°, 30°... 360°. The energy values obtained from the scan output show that, the structure has a minimum energy (-974.609 Hartree), when the dihedral angle N13–C15–C16–O17 is 0° or 360° (global minimum) and -974.994 Hartree (local minimum) when the dihedral angle N13–C15–C16–O17 is

160°. Therefore, in the present work we have focused on the most stable form of VGB molecule to clarify molecular structure and assignments of vibrational spectra.

Fig. 1. Dihedral angle-relative energy curves of the Voglibose by B3LYP/6-31G (d,p) level of theory

4.2. Molecular geometry

The optimized geometrical parameters such as bond length, bond angles and dihedral angles calculated by B3LYP/6-31G(d,p) level of calculation using Gaussian 03W program package. To the best of our knowledge, the experimental data on geometric structure of VGB is not available in the literature. Therefore, the theoretical results of VGB have been compared together with closely 1-Cyclohexylmethoxymethyl-5-[2-hydroxy-1-(hydroxymethyl) related molecule ethylamino] cyclohexane-1, 2, 3, 4-tetraol [16] as given in Table 1. The C-C bond length of the cyclohexane ring varies from 1.534 Å-1.565 Å. Due to the O-H group substitution on the C1, C2, C3 and C4th position of the cyclohexane ring, the C-C bond lengths are not same for example C1-C2=1.565 Å, C1-C6=1.536 Å, C2-C3=1.544 Å, C3-C4=1.538 Å calculated by DFT method. The C-O bond length on the cyclohexane ring varies from 1.416 Å -1.429 Å by DFT method is good agreement with experimental value 1.429 Å -1.439 Å. The N13-H32 bond length is 1019 Å calculated by DFT method. N-C bond lengths are C5-N13=1.481 Å / 1.480 Å, N13-C15=1.480 Å /1.467 Å calculated by DFT/XRD respectively, this result shows good agreement between Theoretical and experimental values. The C-H bond lengths of ethyl alcohol (CH2OH) group is C11-H29=1.100 Å, C11-H30=1.094 Å and C14-H33=1.092 Å, C14-H34=1.096 Å calculated by DFT method.

As shown in **Fig. 2**, the molecular structure of title compound contains one six-membered ring this ring (from C-1 to C-6) adopt chair conformations. The cyclohexane ring is disordered, with three of the C atoms distributed on two sites with approximately equal occupancy. In addition, one of the hydroxymethyl groups attached to C1 is disordered over the positions. The bond angle at point on the substitution is C2-C1-C6=110.9 °/109.0 ° calculated by DFT/XRD respectively. The unit -N13-C15-C16-O17- connected with C5 by the way of an equatorial bond, and the angles of N13-C5-H22 show 110.9 ° (DFT), C6-C5-N13 show 112.0 ° (DFT), 110.9 ° (XRD) and C4-C5-N13 show 106.2 ° (DFT), 108.9 ° (XRD). The N13-C15-C16 was like a bridge that aligned with cyclohexane ring and CH₂OH.

Dihedral angles of cyclohexane part are found as C1-C2-C3-C4=-50.92 °, C2-C3-C4-C5=53.78 °, C3-C4-C5-C6=-54.98 ° and C4-C5-C6-C1=54.89 °. In case of twist form, the N-atom with the attached carbon 5 was considered are twisted about N13-C5-C6-C1=173.04 ° and C3-C4-C5-N13=-176.63 °. Meanwhile in the molecule, hydrogen bonded N13–H32...O10 appeared in the crystal with a bond length 2.803 (2) Å and bond angle 117.3° [17]. From the theoretical values, we found the idea most of our optimized bond lengths are slightly larger than experimental values due

 $\begin{array}{c} & 29H \\ & 29H \\ & 34H \\ & 30H \\ & 32H \\ & 23H \\ & 23H \\ & 23H \\ & 22H \\ & 24H \\ & 5C \\ & 11H \\ & 15C \\ & 32H \\ & 35H \\ & 15C \\ & 32H \\ & 35H \\ & 15C \\ & 10H \\ & 32H \\ & 32H \\ & 3H \\ &$

Fig.2. Optimized Molecular structure and atomic numbering of Voglibose

Table 1. Comparison of experimental and theoretical optimized parameter values of the
Voglibose [bond length in (A°), angles in (°)]

Bond length	B3LYP	Exp ^a	Bond angle	B3LYP	B3LYP Exp ^a Dihedral angle		B3LYP	Exp ^a
C1-C2	1.565		C2-C1-C6	110.9	109.0	C6-C1-C2-C3	49.45	
C1-C6	1.536		C2-C1-O7	110.4	109.1	C6-C1-C2-O8	-74.16	
C1-O7	1.421	1.436	C2-C1-C11	111.1	106.2	C6-C1-C2-H19	168.77	
C1-C11	1.539		C6-C1-O7	104.7	110.9	O7-C1-C2-C3	165.13	
C2-C3	1.544		C6-C1-C11	112.0	112.1	O7-C1-C2-O8	41.51	
C2-O8	1.416	1.431	O7-C1-C11	107.3	108.8	O7-C1-C2-H19	-75.54	
C2-H19	1.094		C1-C2-C3	113.1		C11-C1-C2-C3	-75.82	
C3-C4	1.538		C1-C2-O8	112.0		C11-C1-C2-O8	160.55	
C3-O9	1.429	1.430	C1-C2-H19	107.8		C11-C1-C2-H19	43.48	
C3-H20	1.098		C3-C2-O8	108.8		C2-C1-C6-C5	-51.99	
C4-C5	1.540		C3-C2-H19	107.9		C2-C1-C6-H23	-176.27	
C4-O10	1.428	1.429	O8-C2-H19	106.6		C2-C1-C6-H24	69.08	
C4-H21	1.106		C2-C3-C4	111.9		O7-C1-C6-C5	-171.12	
C5-C6	1.534		C2-C3-O9	109.7		O7-C1-C6-H23	64.60	
C5-N13	1.481	1.480	C2-C3-H20	106.3		O7-C1-C6-H24	-50.04	
C5-H22	1.101		C4-C3-O9	109.8		C11-C1-C6-C5	72.77	
С6-Н23	1.094		C4-C3-H20	108.1		С11-С1-С6-Н23	-51.49	
C6-H24	1.094		O9-C3-H20	110.7		C11-C1-C6-H24	-166.14	
O7-H25	0.969		C3-C4-C5	112.4		С2-С1-О7-Н25	72.08	
O8-H26	0.971		C3-C4-O10	108.3		С6-С1-О7-Н25	-168.45	
O9-H27	0.965		C3-C4-H21	108.1		С11-С1-О7-Н25	-49.19	
O10-H28	0.973		C5-C4-O10	109.8		C2-C1-C11-O12	-66.01	
C11-O12	1.431	1.417	C5-C4-H21	108.5		C2-C1-C11-H29	175.37	
C11-H29	1.100		O10-C4-H21	109.4		C2-C1-C11-H30	54.96	
C11-H30	1.094		C4-C5-C6	110.4	110.2	C6-C1-C11-O12	169.32	
O12-H31	0.964		C4-C5-N13	106.2	108.9	C6-C1-C11-H29	50.71	
N13-C15	1.480	1.467	C4-C5-H22	107.7		C6-C1-C11-H30	-69.69	
N13-H32	1.019		C6-C5-N13	112.0	110.9	O7-C1-C11-O12	54.81	
C14-C15	1.533		C6-C5-H22	109.3		O7-C1-C11-H29	-63.79	
C14-O18	1.427		N13-C5-H22	110.9		O7-C1-C11-H30	175.79	
C14-H33	1.092		C1-C6-C5	114.0		C1-C2-C3-C4	-50.92	
C14-H34	1.096		C1-C6-H23	108.4		C1-C2-C3-O9	71.29	
C15-C16	1.548		C1-C6-H24	106.8		C1-C2-C3-H20	-168.86	
C15-H35	1.100		С5-С6-Н23	111.0		O8-C2-C3-C4	74.43	
C16-O17	1.411		С5-С6-Н24	109.4		O8-C2-C3-O9	-163.33	
C16-H36	1.101		H23-C6-H24	106.6		O8-C2-C3-H20	-43.50	
C16-H37	1.095		С1-О7-Н25	106.0		H19-C2-C3-C4	-170.15	
O17-H38	0.969		C2-O8-H26	107.0		H19-C2-C3-O9	-47.92	

to be able to fact that the theoretical calculations belong to be able to isolated molecules throughout gaseous phase as well as the experimental results belong for molecules in the solid state.

018-H39 0.968 C3-09-H27 107.9 H19-C2-C3-H20 71.90 C4-010-H28 104.5 C1-C2-08-H26 -4.6.11 C1-C11-H29 106.1 C3-C2-08-H26 -4.6.11 C1-C11-H30 111.6 C2-C3-C4-C5 53.78 O12-C11-H30 110.9 C2-C3-C4-C5 -68.40 C11-012-H31 108.6 09-C3-C4-C5 -68.40 C11-012-H31 108.6 09-C3-C4-C5 -68.40 C11-012-H31 108.6 09-C3-C4-C5 -68.40 C11-012-H31 108.6 09-C3-C4-C1 173.64 H29-C11-H30 109.4 09-C3-C4-C5 -170.61 C5-N13-H32 106.5 H20-C3-C4-D1 49.03 C15-C14-018 111.3 H20-C3-C4-H21 51.44 C5-N13-H32 106.5 H20-C3-C4-D1 49.03 C15-C14-H33 109.3 C2-C3-09-H27 163.46 C15-C14-H33 109.3 C2-C3-09-H27 163.46 C15-C14-H33 106.1 C3-C4-C5-N13 -176.63 H33-C14-H34 110.5 H20-C3-C4-D1 49.03 C15-C14-H34 100.5 C3-C4-C5-N13 -176.63 H33-C14-H34 108.0 C3-C4-C5-N13 -177.64 H35-C15-C16 107.9 O10-C4-C5-N13 -55.92 N13-C15-C16 107.9 O10-C4-C5-N13 -55.92 N13-C15-C16-H37 109.5 H21-C4-O10-H28 48.38 C15-C16-H37 109.5 H21-C4-O10-H28 -84.29 O17-C16-H36 110.9 C4-C5-C6-C1 173.04 C14-C15-C16-H37 107.0 C4-C5-C6-C1 173.04 C14-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H36 11.9 H35-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H36 158.19 H35-C15-C16-H36 158.19 H35-C15-C16-H36 158.19 H35-C15-C16-H36 158.19 H35-C15-C16-H36 158.19 H35-C15-C16-H36 158.19 H35-C15-C16-H36 158.19 H35-C15-C16-							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O18-H39	0.968	C3-O9-H27	1079		H19-C2-C3-H20	71 90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0101109	0.900	C4-O10-H28	104.5		С1-С2-О8-Н26	79.87
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C1-C11-O12	106.1		C3-C2-O8-H26	-46.11
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C1-C11-H29	108.0		H19-C2-O8-H26	-162.36
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C1-C11-H30	111.6		C2-C3-C4-C5	53 78
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			012-C11-H29	110.5		$C_2 - C_3 - C_4 - O_10$	-67 79
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			012-C11-H30	110.5		$C_2 - C_3 - C_4 - H_{21}$	173.64
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			H29_C11_H30	100.7		09-03-04-05	-68.40
$\begin{array}{c} C1N13-C15 & 117.3 & 115.1 & 09-C3-C4-H21 & 51.44 \\ C5-N13-H32 & 106.5 & H20-C3-C4-H21 & 51.44 \\ C5-N13-H32 & 107.9 & H20-C3-C4-C5 & 170.61 \\ C15-N13-H32 & 107.9 & H20-C3-C4-H21 & e9.52 \\ C15-C14-H33 & 109.3 & C2-C3-09-H27 & 46.37 \\ O18-C14-H34 & 110.5 & H20-C3-O9-H27 & 46.37 \\ O18-C14-H34 & 110.5 & H20-C3-O9-H27 & 46.37 \\ O18-C14-H34 & 111.1 & C3-C4-C5-N13 & -176.63 \\ H33-C14-H34 & 108.0 & C3-C4-C5-H22 & e6.37 \\ N13-C15-C14 & 111.0 & O10-C4-C5-C6 & e5.72 \\ N13-C15-C16 & 107.9 & O10-C4-C5-H22 & -174.91 \\ C14-C15-C16 & 109.9 & H21-C4-C5-N13 & -176.63 \\ N13-C15-H35 & 110.9 & O10-C4-C5-H22 & -174.91 \\ C14-C15-H35 & 108.7 & H21-C4-C5-N13 & e1.77 \\ C16-C15-H35 & 108.7 & H21-C4-C5-N13 & e1.77 \\ C16-C15-H35 & 108.7 & H21-C4-C5-N13 & e1.77 \\ C16-C15-H35 & 108.7 & H21-C4-C5-N13 & e1.88.01 \\ C15-C16-H37 & 109.5 & H21-C4-O10-H28 & 158.01 \\ C15-C16-H37 & 109.5 & H21-C4-O10-H28 & 158.01 \\ C15-C16-H37 & 107.4 & C4-C5-C6-H23 & 177.74 \\ H36-C16-H37 & 107.4 & C4-C5-C6-H23 & 177.74 \\ H36-C16-H37 & 107.4 & C4-C5-C6-H23 & 177.74 \\ H22-C5-C6-H24 & 56.41.0 \\ N13-C5-C6-H24 & 57.41 \\ H22-C5-C6-H24 & 57.81 \\ H25-C15-C16-H37 & 17.93 \\ H35-C15-C16-H37 & 17.93 \\ H35-C15-C16-H37 & 17.93 \\ H35-C15-C16-H37 & 14.11 \\ C15-C16-O17-H38 & 47.23 \\ H35-C$			C11-O12-H31	109.4		09-C3-C4-010	170.01
$\begin{array}{c} \text{CS-N13-H32} & 106.5 & 1120-C3-C4-C5 & 170.61 \\ \text{C15-N13-H32} & 107.9 & H20-C3-C4-C5 & 170.61 \\ \text{C15-C14-N13} & 110.1 & H20-C3-C4-H21 & -69.52 \\ \text{C15-C14-H33} & 109.3 & \text{C2-C3-O9-H27} & 163.46 \\ \text{C15-C14-H33} & 100.5 & H20-C3-O9-H27 & 46.37 \\ \text{O18-C14-H33} & 106.1 & C3-C4-C5-C6 & -54.98 \\ \text{O18-C14-H34} & 111.1 & C3-C4-C5-N13 & -176.63 \\ \text{H33-C14-H34} & 108.0 & \text{C3-C4-C5-N13} & -176.63 \\ \text{H33-C14-H34} & 108.0 & \text{C3-C4-C5-N13} & -176.63 \\ \text{H33-C15-C16} & 107.9 & \text{O10-C4-C5-C6} & 65.72 \\ \text{N13-C15-C16} & 107.9 & \text{O10-C4-C5-N13} & -55.92 \\ \text{N13-C15-C16} & 107.9 & \text{O10-C4-C5-N13} & -55.92 \\ \text{N13-C15-C16} & 109.9 & \text{H21-C4-C5-N13} & -63.77 \\ \text{C14-C15-H35} & 108.2 & \text{H21-C4-C5-N13} & 63.77 \\ \text{C14-C15-H35} & 108.2 & \text{H21-C4-C5-N13} & 63.77 \\ \text{C16-C15-H35} & 108.2 & \text{H21-C4-C5-N13} & 63.77 \\ \text{C16-C15-H35} & 108.7 & \text{H21-C4-C5-N13} & 63.77 \\ \text{C16-C15-H35} & 108.0 & \text{C5-C4-O10-H28} & 158.01 \\ \text{C15-C16-H37} & 107.0 & \text{C4-C5-C6-H23} & 177.74 \\ \text{H36-C16-H37} & 107.0 & \text{C4-C5-C6-H23} & -77.94 \\ \text{C16-O17-H38} & 105.6 & \text{N13-C5-C6-C1} & 73.04 \\ \text{C16-O17-H38} & 105.6 & \text{N13-C5-C6-C1} & 73.04 \\ \text{C14-O18-H39} & 105.9 & \text{N13-C5-C6-H24} & -56.91 \\ \text{C4-C5-N13-H32} & -177.53 \\ \text{N13-C15-C16-H37} & 79.02 \\ \text{C14-C15-C16-H37} & 179.02 \\ \text{C14-C15-C16-H37} & 19.73 \\ \text{H35-C15-C16-H37} & 41.41 \\ \text{C15-C16-H37} & 157.3 \\ \text{H35-C15-C16-H37} & 47.23 \\ \text{H35-C15-C16-H37}$			C5-N13-C15	117.3	115 1	09-C3-C4-H21	51 44
$\begin{array}{c} C15 + N13 + H32 & 107.3 & H20 + C3 + C4 + 10.61 \\ C15 + N13 + H32 & 107.9 & H20 + C3 + C4 + 10.61 \\ C15 + C14 + H33 & 109.3 & C2 + C3 + 0.9 + 127 & 46.37 \\ C15 + C14 + H34 & 110.5 & H20 + C3 + 0.9 + 127 & 46.37 \\ O18 + C14 + H34 & 106.1 & C3 + C4 + C5 + N13 & -176.63 \\ H33 + C14 + H34 & 108.0 & C3 + C4 + C5 + N13 & -176.63 \\ H33 + C14 + H34 & 108.0 & C3 + C4 + C5 + N13 & -176.63 \\ H33 + C14 + H34 & 108.0 & C3 + C4 + C5 + N13 & -176.63 \\ H33 + C15 + C16 & 107.9 & O10 + C4 + C5 + H22 & -174.91 \\ C14 + C15 + C16 & 107.9 & O10 + C4 + C5 + H22 & -174.91 \\ C14 + C15 + C16 & 109.9 & H21 + C4 + C5 + H22 & -174.91 \\ C14 + C15 + H35 & 108.2 & H21 + C4 + C5 + H22 & -55.21 \\ C15 + C16 + H35 & 108.7 & H21 + C4 + C5 + H22 & -55.21 \\ C15 + C16 + H37 & 107.8 & C3 + C4 + O10 + H28 & -184.83 \\ C15 + C16 + H37 & 107.0 & C4 + C5 + C6 + H23 & -177.74 \\ H36 + C16 + H37 & 107.0 & C4 + C5 + C6 + H23 & -177.74 \\ H36 + C16 + H37 & 107.4 & C4 + C5 + C6 + H23 & -177.74 \\ H36 + C16 + H37 & 107.4 & C4 + C5 + C6 + H23 & -177.74 \\ H36 + C16 + H37 & 107.4 & C4 + C5 + C6 + H23 & -177.74 \\ H36 + C16 + H37 & 107.4 & C4 + C5 + C6 + H23 & -56.91 \\ C14 + C15 + H39 & 105.9 & N13 + C5 + C6 + H24 & -53.41 \\ H22 + C5 + C6 + H24 & -53.41 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H22 + C5 + C6 + H24 & -54.19 \\ H25 + C16 + H37 & -177.98 \\ H25 + C16 + H37 & -177.98 \\ H25 + C16 + H37 & -177.98 \\ H25 + C16 + H37 & -177.18 \\ H35 + C15 + C16 + H37 & -177.18 \\ H35 + C15 + C16 + H37 & -177.18 \\ H35 + C15 + C16 + H37 & -177.18 \\ H35 + C15 + C16 + H37 & -177.18 \\ H35 + C15 + C16 + H37 & -177.18 \\ H35 + C15 + C16 + H37 & -177.18 \\ H35 + C15 + C16 + H37 & -177.18 \\ H35 + C15 + C16 + H37 & -177.18 \\ H35 +$			C5 N13 H22	106.5	115.1	$H_{20} C_{2} C_{4} C_{5}$	170.61
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C15-N13-H32	100.5		H20-C3-C4-O10	10.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C15-C14-O18	111.3		H20-C3-C4-H21	-69.52
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C15-C14-H33	100.3		$C_2 C_3 O_2 H_{27}$	163.46
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C15-C14-II55	109.5		U2-U3-09-1127 U20 C3 00 U27	163.40
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			O18-C14-H33	10.5		1120-0.3-0.9-1127	-54.98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			018-C14-H34	111 1		$C_3 - C_4 - C_5 - N_{13}$	-176.63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			H33_C14_H34	108.0		$C_3 = C_4 = C_5 = H_{22}$	-170.03
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			N13-C15-C14	111.0		010-C4-C5-C6	65 72
N13-C15-C16 107 010-C4-C5-H2 -174.91 N13-C15-H35 110.9 010-C4-C5-H2 -174.91 C14-C15-H35 108.2 H21-C4-C5-C6 -174.57 C14-C15-H35 108.2 H21-C4-C5-H2 -55.21 C15-C16-O17 113.5 C3-C4-O10-H28 158.01 C15-C16-H36 108.0 C5-C4-O10-H28 34.83 C15-C16-H37 109.5 H21-C4-O10-H28 -84.29 O17-C16-H36 110.9 C4-C5-C6-C1 54.89 O17-C16-H37 107.4 C4-C5-C6-H23 177.74 H36-C16-H37 107.4 C4-C5-C6-H24 -64.74 C16-O17-H38 105.6 N13-C5-C6-C1 173.04 C14-O18-H39 105.9 N13-C5-C6-H24 53.41 H22-C5-C6-H24 53.41 H22-C5-C6-H24 59.35 H22-C5-C6-H24 59.35 H25-C16-C15 177.98 C4-C5-N13-H32 -56.91 C6-C5-N13-H32 -57.92 C1-C15-C16-H37 +17.93 H35-C15-C16-H37 +17.93 H35-C15-C16-H36 +158.19 H35-C15-C16-H36 +158.19 H35-C15-C16-H36 +158.19 H35-C15-C16-H36 +158.19 H35-C15-C16-H36 +158.19 H35-C15-C16-H37 +1.41 C15-C16-O17-H38 +9.73 H35-C15-C16-O17-H38 +9.73 H35-C15-C16-O17-H38 +9.73 H35-C15-C16-O17-H38 +9.73 H35-C15-C16-O17-H38 +9.73 H35-C15-C16-O17-H38 +9.73 H35-C15-C16-O17-H38 +9.73 H35-C15-C16-O17-H38 +9.73 H35-C15-C16-O17-H38 +9.73 H35-C15-C16-O17-H3			N13-C15-C14	107.0		010-C4-C5-N13	-55.92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			N13-C15-H35	110.9		010-C4-C5-H22	-174 91
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C14-C15-C16	100.9		H21_C4_C5_C6	-174.57
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C14-C15-H35	109.9		H21-C4-C5-N13	63 77
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C16-C15-H35	108.2		H21-C4-C5-H22	-55.21
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C15-C16-O17	113.5		C3-C4-O10-H28	158.01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C15-C16-H36	108.0		C5-C4-O10-H28	34.83
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			C15-C16-H37	100.0		H21_C4_O10_H28	-84 29
O17-C16-H37 107.0 C4-C5-C6-H23 177.74 H36-C16-H37 107.4 C4-C5-C6-H24 -64.74 C16-O17-H38 105.6 N13-C5-C6-C1 173.04 C14-O18-H39 105.9 N13-C5-C6-H23 -64.10 N13-C5-C6-H24 53.41 H22-C5-C6-C1 -63.49 H22-C5-C6-H23 59.35 H22-C5-C6-H24 177.98 C4-C5-N13-C15 -177.98 C4-C5-N13-C15 -177.98 C4-C5-N13-H32 -56.91 C6-C5-N13-H32 -177.53 N13-C15-C16-H37 79.02 C14-C15-C16-H37 79.02 C14-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H37 41.41 C15-C16-H37 49.73 H35-C15-C16-H37 49.73 H35-C15-C16-H37 49.73 H35-C16-O17-H38 49.73 H37-C16-O17-H38 49.73			017-C16-H36	110.9		C4-C5-C6-C1	54.89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			017-C16-H37	107.0		C4-C5-C6-H23	177 74
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			H36-C16-H37	107.4		C4-C5-C6-H24	-64 74
C14-O18-H39 105.9 N13-C5-C6-H23 -64.10 N13-C5-C6-H24 53.41 H22-C5-C6-C1 -63.49 H22-C5-C6-H23 59.35 H22-C5-C6-H24 176.86 C4-C5-N13-C15 -177.98 C4-C5-N13-H32 -56.91 C6-C5-N13-H32 -56.91 C6-C5-N13-H32 -56.91 C6-C5-N13-H32 -177.53 N13-C15-C16-H37 79.02 C14-C15-C16-H37 79.02 C14-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68			C16-O17-H38	105.6		N13-C5-C6-C1	173.04
N13-C5-C6-H24 53.41 H22-C5-C6-C1 -63.49 H22-C5-C6-H23 59.35 H22-C5-C6-H24 176.86 C4-C5-N13-C15 -177.98 C4-C5-N13-H32 -56.91 C6-C5-N13-H32 -56.91 C6-C5-N13-H32 -177.53 N13-C15-C16-H37 -79.02 C14-C15-C16-H37 -79.02 C14-C15-C16-H37 -79.02 C14-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68			C14-O18-H39	105.9		N13-C5-C6-H23	-64 10
$\begin{array}{ccccc} H22-C5-C6-C1 & -63.49 \\ H22-C5-C6-H23 & 59.35 \\ H22-C5-C6-H24 & 176.86 \\ C4-C5-N13-C15 & -177.98 \\ C4-C5-N13-H32 & -56.91 \\ C6-C5-N13-H32 & -56.91 \\ C6-C5-N13-H32 & -177.53 \\ N13-C15-C16-H37 & -79.02 \\ C14-C15-C16-H37 & -79.02 \\ C14-C15-C16-H37 & -79.02 \\ C14-C15-C16-H36 & -83.48 \\ C14-C15-C16-H37 & 159.73 \\ H35-C15-C16-H37 & 159.73 \\ H35-C15-C16-H36 & 158.19 \\ H35-C15-C16-H37 & 41.41 \\ C15-C16-O17-H38 & -72.23 \\ H36-C16-O17-H38 & 49.73 \\ H37-C16-O17-H38 & 166.68 \\ \end{array}$						N13-C5-C6-H24	53.41
H22-C5-C6-H23 59.35 H22-C5-C6-H24 176.86 C4-C5-N13-C15 -177.98 C4-C5-N13-H32 -56.91 C6-C5-N13-H32 -177.53 N13-C15-C16-H37 -79.02 C14-C15-C16-H37 -79.02 C14-C15-C16-H37 40.10 C14-C15-C16-H36 -83.48 C14-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H37 41.41 C15-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						H22-C5-C6-C1	-63 49
$\begin{array}{cccccc} H22-C5-C6-H24 & 176.86\\ C4-C5-N13-C15 & -177.98\\ C4-C5-N13-H32 & -56.91\\ C6-C5-N13-H32 & -177.53\\ N13-C15-C16-H37 & -79.02\\ C14-C15-C16-H37 & -79.02\\ C14-C15-C16-H37 & -79.02\\ C14-C15-C16-H36 & -83.48\\ C14-C15-C16-H37 & 159.73\\ H35-C15-C16-O17 & -78.21\\ H35-C15-C16-H36 & 158.19\\ H35-C15-C16-H37 & 41.41\\ C15-C16-O17-H38 & -72.23\\ H36-C16-O17-H38 & 49.73\\ H37-C16-O17-H38 & 166.68\\ \end{array}$						H22-C5-C6-H23	59.35
C4-C5-N13-C15 -177.98 C4-C5-N13-H32 -56.91 C6-C5-N13-C15 61.40 C6-C5-N13-H32 -177.53 N13-C15-C16-H37 -79.02 C14-C15-C16-H37 -79.02 C14-C15-C16-H36 -83.48 C14-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-017-H38 -72.23 H36-C16-017-H38 49.73 H37-C16-017-H38 166.68						H22-C5-C6-H24	176.86
C4-C5-N13-H32 -56.91 C6-C5-N13-C15 61.40 C6-C5-N13-H32 -177.53 N13-C15-C16-H37 -79.02 C14-C15-C16-O17 40.10 C14-C15-C16-H36 -83.48 C14-C15-C16-H37 159.73 H35-C15-C16-H37 159.73 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						C4-C5-N13-C15	-177.98
C6-C5-N13-C15 61.40 C6-C5-N13-H32 -177.53 N13-C15-C16-H37 -79.02 C14-C15-C16-O17 40.10 C14-C15-C16-H36 -83.48 C14-C15-C16-H37 159.73 H35-C15-C16-O17 -78.21 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						C4-C5-N13-H32	-56.91
C6-C5-N13-H32 -177.53 N13-C15-C16-H37 -79.02 C14-C15-C16-O17 40.10 C14-C15-C16-H36 -83.48 C14-C15-C16-H37 159.73 H35-C15-C16-O17 -78.21 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						C6-C5-N13-C15	61.40
N13-C15-C16-H37 -79.02 C14-C15-C16-O17 40.10 C14-C15-C16-H36 -83.48 C14-C15-C16-H37 159.73 H35-C15-C16-O17 -78.21 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						C6-C5-N13-H32	-177.53
C14-C15-C16-O17 40.10 C14-C15-C16-H36 -83.48 C14-C15-C16-H37 159.73 H35-C15-C16-O17 -78.21 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						N13-C15-C16-H37	-79.02
C14-C15-C16-H36 -83.48 C14-C15-C16-H37 159.73 H35-C15-C16-O17 -78.21 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						C14-C15-C16-O17	40.10
C14-C15-C16-H37 159.73 H35-C15-C16-O17 -78.21 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						C14-C15-C16-H36	-83.48
H35-C15-C16-O17 -78.21 H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						C14-C15-C16-H37	159.73
H35-C15-C16-H36 158.19 H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						H35-C15-C16-O17	-78.21
H35-C15-C16-H37 41.41 C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						H35-C15-C16-H36	158.19
C15-C16-O17-H38 -72.23 H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						H35-C15-C16-H37	41.41
H36-C16-O17-H38 49.73 H37-C16-O17-H38 166.68						С15-С16-О17-Н38	-72.23
Н37-С16-О17-Н38 166.68						H36-C16-O17-H38	49.73
						H37-C16-O17-H38	166.68

4.3. Vibrational assignments

The Voglibose molecule consists of 39 atoms, which undergoes 111 normal modes of vibrations. The molecule belongs to C_1 point group symmetry. On the assumption of C_1 group of symmetry, the 111 fundamental vibrations of the molecule can be distributed as 38 stretching, 75 in-plane bending and 26 out-of plane bending modes. The calculated wavenumbers, observed IR, Raman bands and assignments are given in **Table 2** and their experimental and simulated spectra of IR and Raman are plotted in the **Fig. 3** and **Fig. 4**, respectively.

4.3.1. Cyclohexane ring vibrations

The C-C stretching vibration of the Cyclohexane ring observed the FTIR band at 1070, 892 cm⁻¹ and FT-Raman band at 698 cm⁻¹ and the computed scaled wavenumbers at 1397, 1070, 895, 698 cm⁻¹ by DFT method. These modes are good agreement with literature [18,19]. Guirgis et al.,2012 [20] assigned C-C-C in-plane bending vibration at 450, 349, 354 cm⁻¹ by DFT method. In our present work C-C-C in-plane bending vibration observed at 937, 426, 421 cm⁻¹ in FTIR spectrum and 440 cm⁻¹ in FT-Raman spectrum and theoretically predicted wavenumbers at 939, 444 and 416 cm⁻¹ by DFT method, which is good agreement with Cyclohexane derivatives [18,19,20].

The heteroaromatic structure shows the presence of C–H stretching vibration in the region $3100-3000 \text{ cm}^{-1}$ which is the characteristics region for the ready identification of C–H stretching vibration [21]. In our present work C-H symmetric and anti symmetric stretching vibrations in ring CH₂ identified at 2988 and 2976 cm⁻¹ by DFT calculation. The ring CH₂ anti symmetric stretching vibration observed at 2979 cm⁻¹ in FT-Raman spectrum. The computed wavenumbers at 2970, 2948, 2917 and 2816 cm⁻¹ by DFT method have been identified as C2-H19, C5-H22, C3-H20 and C4-H21 stretching vibrations respectively. The FTIR band at 1436 and 1233 cm⁻¹ have been identified as scissoring and twisting type CH₂ inplane bending vibration in ring respectively and computed wavenumbers at 1449 and 1216 cm⁻¹ for this mode. The C–H in-plane bending frequencies occur in the region 1300–1000 cm⁻¹. The out-of-plane bending vibrations are strongly coupled vibration and occur in the region 1000–750 cm⁻¹ [22]. In our present work C-C-H in-plane bending vibrations observed at 1263 cm⁻¹ in FT-Raman spectrum and the predicted wavenumbers at 1356, 1287, 1286 and 1260cm⁻¹ by DFT method. Mode.nos 78 and 93 has been identified as CH out-of plane bending vibration, which is good agreement with expected values [22].

4.3.2. O-H vibrations

Hydrogen bonding alerts the frequencies of the stretching and bending vibrations. The O–H stretching bands move to lower frequencies usually with increase intensity and band broadening in the hydrogen bonded species. Hydrogen bonding present in five or six member ring system would reduce the O–H stretching bands to 3550 to 3200 cm⁻¹ region [23]. Our title molecule contains six O-H groups, so we expect six O-H stretching vibrations. From the Table 2 which is evident that the mode no: 1-7 has been identified as O-H stretching vibrations, these are pure modes and the PED exactly contributes to 100%. The O–H in-plane-bending vibration in phenol, in general, lies in the region 1250 to 1150 cm⁻¹. In our present work, C-O-H in-plane bending vibrations observed at 1070 cm⁻¹ in FT-IR spectrum and 1411, 1377 cm⁻¹ in FT-Raman spectrum. The calculated wavenumbers at 1415, 1382, 1374, 1371, 1360, 1179, 1168 and 1156 cm⁻¹ by DFT method has been identified as C-O-H in-plane bending vibrations. The OH out-of-plane deformation vibration for phenol lies in the 290 to 320 cm⁻¹ region for free OH [21]. In our work 4 OH groups directly attached to the Cyclohexane ring. The computed wavenumbers at 463, 438, 279 and 234 cm⁻¹ by DFT method has been identified as been identified as the O-H out-of plane bending vibrations. Mode no: 63, 66, 68, 70 and 73 has been identified as the O-H out-of plane bending vibrations of the CH₂OH group.

4.3.3. Methylene group vibrations

For the assignments of CH₂ group frequencies, basically six fundamentals vibration can be associated to each CH₂ group namely, CH₂ symmetric stretch, antisymmetric stretch, scissoring and rocking modes, which belong to polarized in-plane vibrations . In addition to that, wagging and twisting mode of CH₂ group would be expected to be depolarized for out-of-plane bending vibration. The asymmetric CH₂ stretching vibration generally observed in the region 3000–2900 cm⁻¹, while the CH₂ symmetric stretch will appear between 2900 cm⁻¹ and 2800 cm⁻¹ [24]. For title molecule CH₂ anti symmetric and symmetric stretching vibrations observed at 2979, 2889 cm⁻¹ and 2895 cm⁻¹ in FT-Raman and FT-IR spectrum respectively. The computed wavenumbers at 3001, 2976 and 2963 cm⁻¹ and 2988, 2888, 2882 and 2876 cm⁻¹ are assigned as CH₂ anti symmetric and symmetric stretching vibrations appear normally in the region 1490–

4.3.4. N-H and C-N vibrations

The N-H stretching vibrations generally give rise to bands at 3500–3400 cm⁻¹ [27]. For title molecule N-H stretching vibration observed at 3254 cm⁻¹ in FT-Raman spectrum and computed at 3334 cm⁻¹ by DFT method. The observed FT-Raman band at 3254 cm⁻¹ and calculated scaled wavenumber at 3334 is cm⁻¹ is red shifted by 146 cm⁻¹ and 66 cm⁻¹ respectively. The reason for this long deviation is due to presence of the N13–H32...O10 intra molecular interaction. This red shifting is got enhanced by the reduction in the N-H bond values occurring in the hydrogen bonding interactions. The CNH vibration where N and H atoms move in the same direction relative to the carbon atom gives rise to a weaker band [25] near 1250 cm⁻¹. In our present study the theoretically predicted wave number at 1458 cm⁻¹ gives the CNH in-plane bending vibration.

Silverstein et al., [26] assigned the C-N stretching absorption in the region 1382 to 1286 cm⁻¹ for aromatic amines. For title molecule C-N stretching vibration observed at 1134 cm⁻¹ in FT-IR spectrum and 1136 and 1086 cm⁻¹ in FT-Raman spectrum. The calculated wave numbers at 1135 and 1087 cm⁻¹ has been identified as C-N stretching vibration, which is good agreement with experimental values. The calculated scaled wavenumber at 505 cm⁻¹ by DFT method gives CNC inplane bending vibrations. The observed FT-Raman band at 377 cm⁻¹ and computed wave number at 379 cm⁻¹ by DFT method has been identified as CCNC out-of plane bending vibration.

4.3.5. C-O vibrations

The C–O stretching vibration in phenol occurs as a strongest band in the region 1300 to 1200 cm⁻¹ [28]. For title molecule C-O stretching vibration observed at 1026 cm⁻¹ in FT-IR spectrum and 1047 cm⁻¹ in FT-Raman spectrum. The calculated wavenumbers by DFT method at 1100, 1063, 1057, 1049, 1045, 1032 and 1008 cm⁻¹ are assigned C-O stretching vibrations. The observed FT-Raman band at 630 cm⁻¹ and theoretically predicted wavenumbers at 649, 629, 333, 331, 316 and 234 cm⁻¹ are identified as C-C-O in-plane bending vibrations. The C-C-C-O out-of plane bending vibration observed at 397 cm⁻¹ in FT-Raman band and calculated wavenumbers at 398, 339, and 251 cm⁻¹ by DFT calculation. Mode nos: 105-109 has been identified as C-C-C-O torsional modes.

Fig. 3. Comparison of experimental and theoretical B3LYP/6-31G(d,p) FT-IR spectrum for Voglibose

Fig.4. Comparison of experimental and theoretical B3LYP/6-31G(d,p) FT-Raman spectrum for Voglibose

No FT-1R F	Experimental Mode numbers/cr		ental wave ers/cm ⁻¹	Theore	etical wave	numbers/o	Theoretical wave numbers/cm ⁻¹			
PT-Bas Raman Uncerted l_{u}^{c} l_{u}^{c} l_{u}^{c} l_{u}^{c} 2 3846 3695 44.46 3.09 Vol2101 (00) 3 3754 3636 31.97 1.67 Vol2101 (00) 4 3779 3631 51.69 2.82 Vol2101 (00) 5 3775 3627 49.99 1.87 Vol180(00) 6 3730 3584 72.26 1.33 Vol180(00) 7 3664 3340 93.29 2.85 Vol180(00) in sign (01) 10 2110 2970 3462 4.93 Vol180(00) in sign (01) 12 3097 2976 34.82 3.00 Vol180(00) in sign (01) 13 3055 2935 49.46 3.39 Vol180(00) in sign (01) 14 2951 3066 2888 49.19 2.89 Vol180(00) in min 16 2917 48.4 5.43 Vol180(00) in min C12 17	No	FT ID	FT-]	B3LYP/6-3	1G(d,p)		(≥10%)		
1 3846 3695 44.46 3.09 VolENT(00) 2 3816 3566 3339 2.82 VolENT(00) 3 3775 3627 49.99 1.87 VolENT(00) 6 3730 3584 72.26 1.33 VolENT(00) 6 3730 3584 72.26 1.33 VolENT(00) 7 3684 3400 9.59 2.65 VolENT(00) 8 3254 3470 3334 4.93 2.95 VolENT(00) 10 3110 2988 32.98 2.82 VolENT(00) VolENT(00) 11 2973 3091 2970 34.62 4.93 VolENT(00) VolENT(00) 12 3006 2888 49.19 2.89 VolENT(00) Immediate 13 3068 2945 4.62 VolENT(00) Immediate 14 2951 3066 2888 49.19 2.89 VolENT(00) Immediate		Г І-ІК	Raman	Unscaled	scaled	I _{IR} ^a	I _{Ra} ^b			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1			3846	3695	44.46	3.09	V _{O12H31 (100)}		
3 3784 3636 31.97 1.67 Youstrayton 4 3775 3627 49.99 1.87 Youttastron 5 3730 3584 3540 90.59 2.65 Youstron 7 3684 3540 90.59 2.65 Youstron 8 3254 3470 3334 4.93 2.95 Yuistrayton 10 3110 2988 32.28 2.82 Youttastron Yuistrayton Yuistrayton 11 2979 3107 2276 3.48 3.00 Yuistrayton Yuistrayton Yuistrayton 12 3068 2948 40.31 5.38 Yuistrayton Yuistray	2			3816	3666	33.39	2.82	V _{O9H27(100)}		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3			3784	3636	31.97	1.67	V _{O18H39(100)}		
5 3775 3627 49.99 1.87 VD17084000 6 3730 3584 72.26 1.33 VD180900 7 3684 3440 90.59 2.65 VD17070600 8 3254 3470 3334 4.93 2.95 VD180300 9 3110 2988 32.98 2.82 VD17070600 VD17070600 11 2979 3097 2976 34.87 3.00 VD17084000 VD1707070 12 3091 2970 34.62 4.93 VD17084000 VD1707070 13 3068 2948 40.31 5.38 VD1707010 mm VD1707070 14 2951 3005 2988 49.19 2.89 VD17070000 VD170700000 17 2895 2889 3000 2882 54.89 4.02 VD17090000 VD17000000 18 3000 2882 54.89 4.02 VD11900100000000000000000000000000000000	4			3779	3631	51.69	2.45	V _{O7H25(100)}		
	5			3775	3627	49.99	1.87	V _{O17H38(100)}		
7	6			3730	3584	72.26	1.33	V _{O18H39(100)}		
8 3254 3470 3334 4.93 2.95 VR1012080 9 3110 2988 32.98 VC10120409 autsym C12 10 3110 2988 32.98 VC10120409 autsym C12 11 2979 3091 2970 34.62 4.93 VC10120409 autsym C12 12 3091 2970 34.62 4.93 VC10120409 autsym C12 14 2951 3064 2944 40.31 5.54 VC10120409 im img <c12< td=""> 15 3055 2935 49.46 3.39 VC10120401 im img 102 16 2912 3036 2917 48.4 5.54 VC10120401 im img 102 17 2895 2889 3006 2882 54.89 4.62 VC101400130 im img 102 20 2931 2816 47.69 4.55 VC10100130 im img 102 21 2931 2816 14.45 12.85 VC10100130 im img 102 22 1524<td>7</td><td></td><td></td><td>3684</td><td>3540</td><td>90.59</td><td>2.65</td><td>V_{O8H26(100)}</td></c12<>	7			3684	3540	90.59	2.65	V _{O8H26(100)}		
9 3123 3001 37.79 5.89 Vc(111306) ants.opt(12) 10 2976 33.48 3.00 Vc(311430ps) mmg.C12 11 2979 3097 2976 33.48 3.00 Vc(311430ps) mmg.C12 12 3091 2970 34.62 49.3 Vc(311430ps) mmg.C12 13 3084 2963 45.7 4.22 Vc(311430ps) mmg.C12 14 2951 3068 2948 40.31 5.38 Vc(312460ms) mmg.C12 15 3055 2935 49.46 3.79 Vc(311460ms) mmg.C12 16 2912 3036 2917 48.4 5.54 Vc(1314601) spm ac(12) 17 2895 2868 47.69 4.62 Vc(1314601) spm ac(12) 20 2985 2868 47.69 4.85 Vc(131800) 21 1524 1464 2.43 5.48 6.36132(1413469) 22 1523 1464 17.22 5.98 6.36102(1619766) 2	8		3254	3470	3334	4.93	2.95	V _{N13H32(98)}		
	9			3123	3001	37.79	3.89	VC14H33(96) anti.sym CH2		
	10		2070	3110	2988	32.98	2.82	VC6H23(64)sym in ring CH2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11		2979	3097	2976	33.48	3.00	VC6H24(32)ant.sym in ring CH2		
	12			3091	2970	34.62	4.93	V _{C2H19(93)}		
	13	2051		3084	2963	45.7	4.22	V _{C11H29} (68)ant.sym in CH2		
15 3053 2933 49.46 3.39 VESIE2480 16 2912 3036 2917 48.4 5.54 VESIE20310 mm 17 2895 2889 3006 2888 49.19 2.89 VESIE20310 mm VESIE20430 mm 18 3000 2882 54.89 4.62 VESIE20490 mm VESIE204490 mm VESIE20490 mm VESIE20490	14	2951		3068	2948	40.31	5.38	VC5H22(47) in ring		
	15		2012	3055	2935	49.46	3.39	$V_{C5H22(46)}$ in ring		
	16	2905	2912	3036	291/	48.4	5.54	VC3H20(73) in ring		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	l /	2895	2889	3006	2888	49.19	2.89	V _{C16H36(91)} sym in CH2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18			3000	2882	54.89	4.62	VC11H9(95)sym in CH2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	19			2993	28/6	44.4	3.03	VC14H34(91)sym in CH2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20			2985	2808	4/.09	4.85	VC15H35(93)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21			2931	2810	/1.28	5.55	V _{C4H21(93)} in ring		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22			1525	1405	18.85	4.95	O _{sciH36C16H37(56)}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23			1524	1404	22.43	5.48 2.61	O _{sciH33C14H34(56)}		
$\begin{array}{ccccccccc} 2.5 & 1430 & 1510 & 1437 & 20.99 & 7.64 & 0 \\ 26 & 1436 & 1508 & 1449 & 17.22 & 5.98 & \delta_{sciH32G0E12(85)} & \delta_{sciH32G0E12(85)} & \gamma_{C1C1012H30(42)} \\ 27 & 1411 & 1473 & 1415 & 58.17 & 4.35 & \delta_{H2300C2(35)} & \gamma_{C1C200H21(28)} \\ 28 & 1458 & 1401 & 21.16 & 4.65 & \delta_{H2300C2(21)} & \gamma_{C1C400H20(10)} \\ 29 & 1454 & 1397 & 52.62 & 4.47 & \nabla_{C2C(11)} & in ing: \delta_{H2700C3(14)} \\ 30 & 1438 & 1382 & 46.56 & 3.83 & \delta_{H2307(121)} & \gamma_{C1H33C1SH42(0)} \\ 1438 & 1372 & 43.12 & 2.51 & \delta_{H30017C16(32)} & \gamma_{C1H33C1SH42(0)} \\ 31 & 1377 & 1430 & 1374 & 43.12 & 2.51 & \delta_{H30017C16(32)} & \gamma_{C1H33C1SH42(0)} \\ 32 & 1428 & 1372 & 52.23 & 7.79 & \delta_{H30017C16(32)} & \gamma_{C1H33C1SH42(0)} \\ 33 & 1419 & 1363 & 45.79 & 4.09 & \delta_{H30017C16(32)} \\ 34 & 1416 & 1360 & 35.84 & 4.04 & \delta_{H327C309(45)} \\ 35 & 1411 & 1356 & 33.92 & 4.11 & \delta_{H227C30(45)} \\ 36 & 1399 & 1344 & 39.13 & 4.85 & \delta_{H20C1012(35)} \\ 37 & 1329 & 1334 & 1388 & 1334 & 27.87 & 7.85 & \delta_{H20C309(37)} & \gamma_{C15C16N13H35(30)} \\ 38 & 1368 & 1314 & 40.48 & 3.71 & \delta_{H2207C1(29)} & \gamma_{C3C6N13H22(36)} \\ 40 & 1339 & 1287 & 29.93 & 7.98 & \delta_{H21C4C5(37)} \\ 41 & 1338 & 1286 & 48.2 & 6.00 & \delta_{H22C56C(13)} & \gamma_{C15C6N13H22(36)} \\ 42 & 1326 & 1274 & 35.09 & 6.99 & \tau_{C2H008H26(40)} \\ 43 & 1263 & 1301 & 1250 & 20.21 & 11.09 & \gamma_{C3C6013H22(10)} & \tau_{H24C6C5C4(13)} \\ 44 & 1307 & 1256 & 17.37 & 9.09 & \delta_{H22C1H30(33)} & \delta_{wisH23C0H24(43)} & n ing \\ 45 & 1301 & 1250 & 20.21 & 11.09 & \gamma_{C3C00H21(4)} \\ 46 & 1233 & 1266 & 1188 & 47.36 & 7.95 & \delta_{H32C3C0(13)} & \delta_{wisH23C0H24(43)} & n ing \\ 47 & 1244 & 1195 & 51.12 & 5.88 & \delta_{H13CC3C3(20)} & \gamma_{C3C00H21(4)} \\ 48 & 1185 & 1236 & 1188 & 47.36 & 7.95 & \delta_{H33C10H3(3)} & \delta_{wisH23C0H24(43)} & n ing \\ 51 & 1203 & 1156 & 48.55 & 8.98 & \delta_{H33C10102(59)} \\ 52 & 1134 & 1136 & 1181 & 1135 & 10.62 & 9.19 & \text{VMISC(11)} \\ 53 & 1169 & 1122 & 25.65 & 7.53 & \delta_{H33C10102(59)} \\ 54 & 1145 & 1100 & 37.97 & 4.75 & \nabla_{D0C(C11)} \\ 57 & 0_{D12} & 0_{D12} & 0_{D12} & 0_{D12} & 0_{D12} & 0_{D12} \\ 57 & 0_{D12} & 0_{D12} & 0_{D12} & 0_{D12} & 0_{D$	24		1460	1518	1458	29.11	3.01 7.64	O _{H32N13C15(63)}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1426	1400	1510	1437	20.99	7.04	O _{sciH36C16H37(56)}		
$\begin{array}{cccccccc} 2.7 & 1411 & 1413 & 1413 & 36.17 & 4.53 & 01280104(25)* fC4C5010121(28) \\ 28 & 1458 & 1401 & 21.16 & 4.65 & 01280082(20)* fC3C4091120(10) \\ 29 & 1454 & 1397 & 52.62 & 4.47 & VC23(11) in ring* 0127082(14) \\ 30 & 1438 & 1382 & 46.56 & 3.83 & 012507(12)* fC14B33C15H34220) \\ 31 & 1377 & 1430 & 1374 & 43.12 & 2.51 & 0138017C16(32)* fC16C15017H36(11)+ \\ TH37C16C15C14(14) & TH37C16C15C14(14) \\ 32 & 1428 & 1372 & 52.23 & 7.79 & 0H36C16032* fC16C15017H36(11)+ \\ TH37C16C15C14(14) & 01363 & 45.79 & 4.09 & 0H38017C16(20) \\ 34 & 1416 & 1360 & 35.84 & 4.04 & 0127C309(45) \\ 35 & 1411 & 1356 & 33.92 & 4.11 & 0122C3C6(24) \\ 36 & 1399 & 1344 & 39.13 & 4.85 & 0H29C11012(35) \\ 37 & 1329 & 1334 & 1388 & 1334 & 27.87 & 7.85 & 0H29C11012(35) \\ 38 & 1368 & 1314 & 40.48 & 3.71 & 012507C1(29)* fC3C6N13H23(30) \\ 40 & 1339 & 1358 & 1305 & 51.23 & 3.73 & 012507C1(29)* fC3C6N13H22(36) \\ 40 & 1339 & 1287 & 29.93 & 7.98 & 0H20C30(37) & fC3C6N13H22(36) \\ 41 & 1338 & 1286 & 48.2 & 6.00 & 0H22C3C6(11) * fC3C6N13H22(36) \\ 42 & 1326 & 1274 & 35.09 & 6.99 & tC2H908H22(10)* TH24C6C5C4(13) \\ 42 & 1326 & 1274 & 35.09 & 6.99 & tC2H908H22(10)* TH24C6C5C4(13) \\ 44 & 1307 & 1256 & 17.37 & 9.09 & 0H22C1H30(43) \\ 45 & 1301 & 1250 & 20.21 & 11.09 & fC3C00H21(14) \\ 46 & 1233 & 1266 & 1216 & 32.67 & 9.10 & 01xH23C(10)* fC3C60H24(43) in ring \\ 47 & 1244 & 1195 & 51.12 & 5.88 & 0H92C3(20)* fC4C500H21(14) \\ 48 & 1185 & 1236 & 1188 & 47.36 & 7.99 & 0H32C3(10)* fC4C50H24(43) in ring \\ 47 & 1244 & 1195 & 51.12 & 5.88 & 0H92C3(20)* fC4C50H24(43) in ring \\ 47 & 1244 & 1195 & 51.12 & 5.88 & 0H93C3(15)* fC3C40H24(43) in ring \\ 47 & 1244 & 1195 & 51.12 & 5.88 & 0H3C3(15)* fC3C40H24(43) in ring \\ 47 & 1244 & 1195 & 51.12 & 5.88 & 0H3C3(15)* fC3C40H24(43) in ring \\ 47 & 1244 & 1195 & 51.12 & 5.88 & 0H3C3(10013)* 0rvisH22C6H24(43) in ring \\ 47 & 1244 & 1195 & 51.12 & 5.88 & 0H3C3(10013)* 0rvisH23C6H24(43) in ring \\ 47 & 1246 & 1181 & 1135 & 10.02 & 9.19 & 0N13C3(11) \\ 50 & 1216 & 1168 & 33.03 & 7.59 & 0H3C3(15) \\ 51 & 1203 & 1156 & 48.55 & 8.98 & 0H3(11012(59)$	20	1430	1/11	1308	1449	17.22 59.17	J.90 1 25	$\sigma_{sciH23C6H24(84) in Ring+} \gamma_{C11C1O12H30(42)}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27		1411	1475	1413	20.17 21.16	4.55	$\delta_{H28010C4(55)+\gamma C4C5010H21(28)}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20			1456	1401	21.10 52.62	4.03	$O_{H26O8C2(20)+} \gamma_{C3C4O9H20(10)}$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29			1434	1397	52.02 16.56	3.83	$\delta = \frac{1}{2} \nabla C_{2}C_{3}(11) \text{ in ring} + O_{H2}O_{9}C_{3}(14)$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	50			1430	1382	40.50	5.85	δH25O7C1(21)+ γC14H33C15H34(20)		
$\begin{array}{cccccccc} & & & & & & & & & & & & & & & $	31		1377	1430	1374	43.12	2.51	$\sigma_{\rm H38017C16(32)+\gamma C16C15017H36(11)+}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32			1428	1372	52.23	7 79	•H37C16C15C14(14)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33			1420	1363	45 79	4 09	0H36C16017(41)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34			1416	1360	35.84	4.02	δH3801/C16(20)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35			1411	1356	33.92	4 11	$\delta_{\text{H22CSOV(24)}}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36			1399	1344	39.13	4 85	δH22C3C6(24)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1329	1334	1388	1334	27.87	7.85	$\delta_{\text{H29C10(2(35))}}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	10_2	100.	1368	1314	40.48	3.71	$\delta_{H2507C1(20)+} \gamma_{C5C6N12H22(26)}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39			1358	1305	51.23	3.73	$\delta_{\text{H2507C1(29)+}} \gamma_{\text{C5C6N13H22(36)}}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40			1339	1287	29.93	7.98	$\delta_{\text{H21C4C5(37)}}$		
$\begin{array}{ccccccc} 42 & & & 1326 & 1274 & 35.09 & 6.99 & \end{tabular} & tabula$	41			1338	1286	48.2	6.00	$\delta_{\text{H22C5C6(11)}} = \gamma_{\text{C5C6N13H22(10)}} + \tau_{\text{H24C6C5C4(13)}}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42			1326	1274	35.09	6.99	τ _{C2H19O8H26(40)}		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43		1263	1311	1260	37.6	6.66	$\delta_{\text{H22C5C6(13)}}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44			1307	1256	17.37	9.09	$\delta_{\text{H29C11H30(43)}}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45			1301	1250	20.21	11.09	$\gamma_{C4C5O10H21(14)}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	1233		1266	1216	32.67	9 10	δ		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	1235		1244	1195	51.12	5 88	$\delta_{\text{H10C2C2(20)}+} \gamma_{\text{CAC5O10H21(11)}}$		
$\begin{array}{cccccc} 49 & & 1227 & 1179 & 15.77 & 4.51 & \delta_{H39O18C14(15)} \\ 50 & & 1216 & 1168 & 33.03 & 7.59 & \delta_{H33C14O18(39)} \\ 51 & & 1203 & 1156 & 48.55 & 8.98 & \delta_{H31C11012(59)} \\ 52 & 1134 & 1136 & 1181 & 1135 & 10.62 & 9.19 & v_{N13C5(11)} \\ 53 & & & 1169 & 1123 & 25.65 & 7.53 & \delta_{rockH29C11H30(59)} \\ 54 & & & 1145 & 1100 & 37.97 & 4.75 & v_{O10C4(11)} \end{array}$	48	1185		1236	1188	47.36	7.95	$\delta_{\text{H}_{22}\text{C}_{23}\text{C}_{1}(15)\pm}\gamma_{C_{22}\text{C}_{4}\text{C}_{3}\text{C}_{1}(15)\pm}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49			1227	1179	15.77	4.51	- 1123CUC1(13)+ 7C3C4O9H20(10) δH39O18C14(15)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50			1216	1168	33.03	7.59	δμ33C14(13)		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51			1203	1156	48.55	8.98	δμ31(11012(59)		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	52	1134	1136	1181	1135	10.62	9.19	VN13C5(11)		
54 1145 1100 37.97 4.75 $v_{O10C4(11)}$	53			1169	1123	25.65	7.53	$\delta_{\text{rock}H29C11H30(59)}$		
0100 0111	54			1145	1100	37.97	4.75	V _{010C4(11)}		

Table 2. Comparison of the experimental and calculated vibrational spectra and proposedassignments of Voglibose

55		1087	1131	1087	59.4	6.92	V _{N13C5(23)}
56	1070		1114	1070	42.99	7.10	$v_{C2C3(16)+} \delta_{H31O12C11(11)}$
57			1106	1063	69.69	11.34	V _{O17C16(61)}
58			1100	1057	56.01	10.12	V _{O7C1(14)}
59			1092	1049	61.85	6.56	V _{O12C11(13)}
60		1047	1088	1045	75.34	4.86	V _{O9C3(46)}
61			1075	1033	23.11	5.88	V _{O8C2(30)}
62	1026		1074	1032	100	4.33	V _{O8C2(21)}
63			1063	1021	97.92	5.42	V _{O18C14(16)} + γ _{C14C15O18H33}
64			1049	1008	39.34	3.56	V _{O12C11(16)}
65	978		1024	984	26.31	6.52	V _{O10C4(21)}
66	~~-	950	986	947	19.54	10.86	γC16C15O17H36(28)
67	937	014	977	939	31.25	7.71	δ _{C2C3C4(11)}
68		914	949	912	25	7.79	$v_{N13C15(10)+} \delta_{C2C3C4(20)+} \gamma_{C14C15O18H33(27)}$
69 70	892	074	931	895	37.29	12.21	VC4C5(12)
70	0.50	874	902	867	17.85	/.14	V _{O7C1(30)} + γ _{C11C1O12H30(16)}
71	850	850	885	850	29.51	13.00	V _{C14C15(10)} + γ _{N13C5C15H32(10)}
72		77(861	827	37.33	10.10	$\gamma_{N13C5C15H32(30)} + \nu_{C14C15(40)}$
73		//6	823	791	18.39	12.63	ν _{C14C15(38)+} γ _{N13C5C15H32(39)+} γ _{C16C15O17H36(10)}
74	151	(00	789	/58	44.32	11.32	V _{C1C11(22)}
75		698	710	682	22.84	15.04	V _{C4C5(20)}
76		(20)	675	649	46.35	8.51	ðC1C11012(21)
77	(17	630	655	629	46.57	20.00	ð _{C1C11012(31)}
78	617		641	616	94.83	10.36	γH23C6C5C4(12)
/9		550	634	609	33.63	14.5/	$ au_{ m H28O10C4C3(51)}$
81		553	5/1	549	35.45	18.29	τ _{H39O18C14C15(21)}
82			539	518	23.93	/.//	OC16C15N13(31)
83	400	175	526	505	24.88	9.01	$o_{C5N13C15(10)+} \tau_{H39O18C14C15(11)}$
84	480	4/5	499	4/9	13.98	16.75	γc11C2C6C1(11)
85	110	440	482	463	31.8	8.22	γH28O10C4C5(11)
80 97	440	440	462	444	05.70	20.07	O _{C2C1C6(11)}
0/	401		430	438	54.99	14.40	YH2507C1C6(11)
00 80	421	207	433	410	02.42	24.07	O _{C3C4C5(13)}
89 00		397 277	414	398	20.04	10.00	YC1C6C1107(21)
90		577	252	379	40.0	15.22	OC14C15N13(19)+ γC16C14N13C15(16)
02			333	339	15 18	19.55	C1C2O8(31)+ H31O12C11C1(73)+ γC1C6C11O7(11) δ
92			343	316	15.10	10.14 8 16	δ
93			308	296	24.68	18 60	8 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =
94			200	290	16 21	15.09	0C2C3O9(19)+ YC11C2C6C1(20)
96		257	270	27)	15.21	20.30	Y H27O9C3C2(58)
97		237	261	251	74 46	40.30	VC15C14018H39(46)
98			201	234	45 48	33.89	\mathcal{X}
99			235	226	11.65	15 78	VG116214018(16)+ 7 H2608C3C2(48)
100			233	218	20.99	16.53	δοκοιομ(20)
101			208	200	18 72	22.95	
102		178	182	175	12.38	11.85	TC1C2C209(13)+ C3C2C1C6(12)
103		170	157	151	54 09	34 87	
104			140	135	64 73	100.00	δο5Ν12015(20)
105			123	118	12.2	21.49	
106			98	94	13.97	24 33	TC14C15C14O18
107			95	91	15.09	17.58	TC14C15C18O30(49)
108		86	83	80	3,16	21.65	$T_{C14C15C16O17(28)}$
109		~ ~	75	72	8.34	46.95	Tc6c1c11012(55)
110			42	40	14.13	46.18	$\delta_{C5N13C15(15)+TC5N13C15C14(AA)}$
111			40	38	6.65	48.75	τρεσπιστιστιστιστιστιστιστιστιστιστιστιστιστι

11140386.0548./5 $\tau_{C6CSN13C15(57)}$ v-stretching; δ-in-plane-bending; γ-out-of-planebending; τ -torsion; w-weak; s-strong; vs-verystrong; vw-very weak; m-medium. $^{a}I_{IR}$ -IR Intensity (Kmmol⁻¹); $^{b}I_{Ra}$ -Raman intensity (Arb units) (intensity normalized to 100%).

4.4. NBO analysis

In the NBO analysis [29], all possible interactions between "filled" (donor) Lewis-type NBOs and "empty" (acceptor) non-Lewis NBOs were investigated. The energies of these interactions were calculated second-order perturbation theory. These interactions (or energetic stabilizations) are named as 'delocalization' corrections to the zeroth-order natural Lewis structure. For each donor NBO (i) and acceptor NBO (j); the stabilization energy E associated with $i \rightarrow j$ delocalization, is explicitly estimated by the following equation:

$$E_2 = \Delta E_{ij} = q_i \frac{F(i,j)^2}{\varepsilon_j - \varepsilon_i}$$

where q_i is the donor orbital occupancy, are ε_i and ε_j diagonal elements and F(i,j) is the off diagonal NBO Fock matrix element.

The interactions σ (C2-H19) $\rightarrow \sigma^*$ (C1-C6) and σ^* (C3-C4) having the stabilization energy is 3.08, 3.27 KJ mol⁻¹ and σ (C3-H20) $\rightarrow \sigma^*$ (C1-C2) having the stabilization energy is 3.24 KJ mol⁻¹ are responsible for conjugation of respective σ -bonds in Cyclohexane ring (**Table 3**). The intramolecular interaction is formed by the orbital overlap between LP(1)N13 $\rightarrow \pi^*$ (O10-H28) bond orbital, which results intramolecular charge transfer causing stabilization energy 4.86 KJ mol⁻¹ of the system. The energy contribution of LP(2)O17 $\rightarrow \pi^*$ (C15-C16), LP(2)O18 $\rightarrow \pi^*$ (C15-H35), LP(2)O10 $\rightarrow \pi^*$ (C4-H21) are 9.07, 6.38, 7.65 KJ mol⁻¹, respectively, and hence there is a possibility for delocalization of lone pair (LP) of electrons between O17 and C15-C16 and O10 and C4-H21.

Table 3. Second order Perturbation theory analysis of Fock Matrix in NBO basisforVoglibose.

Donor (i)	$E_{\rm p}(i)(e)$	Λ ccentor(i)	$E_{\rm p}(i)(e)$	$E^{(2)a}$ KJ	$E(j)-E(i)^{b}$	$F(i,j)^{c}$
Donor (I)	ED(I)(C)	Acceptor(j)	$\mathrm{ED}(\mathbf{j})(\mathbf{c})$	mol ⁻¹	a.u	a.u
σ (C2 H10)	1 073	σ* (C1-C6)	0.029	3.08	0.87	0.046
0 (02-1119)	1.975	σ* (C3-C4)	0.041	3.27	0.85	0.047
σ (C3-H20)	1.978	σ* (C1-C2)	0.070	3.24	0.86	0.048
LP(2)O7	1.947	$\pi^{*}(C1-C2)$	0.070	8.65	0.63	0.066
LP(1)O7	1.976	RY*(1)C1	0.008	4.29	1.52	0.072
LP(2)O7	1.947	$\pi^*(C1-C11)$	0.043	4.22	0.64	0.046
LP(1)O8	1.977	RY*(1)C2	0.007	3.36	1.38	0.061
LP(2)O8	1.946	$\pi^{*}(C1-C2)$	0.070	9.09	0.62	0.067
LP(2)O8	1.946	$\pi^{*}(C2-C3)$	0.015	3.86	0.63	0.044
LP(2)O9	1.957	$\pi^{*}(C3-C4)$	0.042	7.40	0.67	0.063
LP(2)O9	1.957	π*(C3-H20)	0.026	3.72	0.76	0.048
LP(1)O10	1.974	RY*(1)C4	0.007	3.13	1.49	0.061
LP(1)O10	1.974	$\pi^{*}(C4-C5)$	0.038	3.97	0.92	0.054
LP(2)O10	1.941	π*(C4-H21)	0.034	7.65	0.77	0.069
LP(2)O10	1.941	π*(O8-H26)	0.028	7.14	0.84	0.069
LP(2)O12	1.965	π*(C11-H29)	0.026	5.22	0.75	0.056
LP(2)O12	1.965	$\pi^*(C11-30)$	0.027	5.50	0.77	0.058
LP(1)N13	1.908	$\pi^{*}(C5-H22)$	0.032	6.31	0.76	0.063
LP(1)N13	1.908	π*(O10-H28)	0.027	4.86	0.76	0.055
LP(1)N13	1.908	$\pi^{*}(C14-C15)$	0.040	3.46	0.69	0.044
LP(1)N13	1.908	π*(C15-H35)	0.028	4.21	0.76	0.051
LP(2)O17	1.948	$\pi^{*}(C15-C16)$	0.039	9.07	0.65	0.069
LP(2)O17	1.948	π*(C16-H36)	0.028	4.43	0.72	0.051
LP(2)O18	1.954	π*(C14-H34)	0.023	4.83	0.67	0.051
LP(2)O18	1.954	π*(C15-H35)	0.028	6.38	0.77	0.063

4. 5. Electronic properties

4.5.1. UV-Visible spectral analysis

The experimental UV–Visible electronic absorption maxima (λmax) of Voglibose recorded in ethanol together with the theoretical results involving the vertical excitation energies, oscillator strength (f) and wavelength at maximum absorption calculated at B3LYP/ 6-31G(d,p) basis set in gas phase and in ethanol solvent are given in **Table 4**. The experimental UV-Vis spectrum of the title compound is shown in **Fig. 5**. Due to the Frank–Condon principle, the maximum absorption peak (λmax) in an UV–visible spectrum corresponds to vertical excitation. The B3LYP/6-31G(d,p) calculations (in ethanol) predict two intense electronic transitions at 7.2622 eV (270.73 nm) with an oscillator strength f = 0.0014 and other one 7.5971 eV (234.44 nm) with an oscillator strength f = 0.0103, which are in good agreement with the measured experimental data (261 and 227 nm).

Fig. 5. UV-Visible spectrum (Ethanol) of Voglibose

Table 4. The experimental and computed absorption wavelength λ (nm), excitation energies E (eV), absorbance and oscillator strengths (f) of Voglibose in Ethanol solution and gas phase

and gas phase								
Exp	erimental			TD-DFT/B3	LYP/6-31G(d,p)		
Ethanol		Ethanol			Gas			
λ(nm)	Abs.	λ(nm)	E(eV)	f(a.u)	λ(nm)	E(eV)	f(a.u)	
261	2.9868	270.73	7.2622	0.0163	268.84	6.9325	0.0014	
227	3.0363	223.20	7.5971	0.0006	234.44	7.1077	0.0103	
-	-	160.52	7.7240	0.0404	170.09	7.2894	0.0026	

4.5.2. HOMO-LUMO Analysis

The highest occupied molecular orbital (HOMO) is the orbital that primarily acts as an electron donor and the lowest unoccupied molecular orbital (LUMO) is the orbital that largely acts as the electron acceptor. The frontier orbital energy gap helps characterize the chemical reactivity

and kinetic stability of the molecule. According to **Fig. 6**, the HOMO is spread heavily over the Cyclohexane ring region and LUMO is spread over the entire molecule. For title molecule the calculated HOMO energy is -6.3460 eV and LUMO energy is 1.1263 eV and the HOMO-LUMO energy gap is 5.2179 eV.

LUMO = 1.1263 eV

HOMO = - 6.3460 eV

Fig.6. The atomic orbital compositions of the frontier molecular orbital for Voglibose

4.5.3. Molecular Electrostatic Potential (MEP) Analysis

In order to grasp the molecular interactions, the molecular electrostatic potentials (MEPs) are used. Recently, the MEPs have been used for interpreting and predicting relative reactivities sites for eletrophilic and nucleophilic attack, investigation of biological recognition, hydrogen bonding interactions, studies of molecular cluster, crystal behavior, correlation and prediction of a wide range of macroscopic properties [30]. The MEP diagram (front and back view) of the voglibose molecule is shown in **Fig. 7**. The color scheme for the MEP surface will be partially negative charge or maybe red-electron rich; partially positive charge or maybe blue-electron deficient; yellow slightly electron packed region; light blue-slightly electron deficient region, Additionally, green color parts represent also regions of zero potential respectively. For the title molecule yellow color represents the electron packed region which is mostly cover the oxygen atoms and also the positive region is actually over the NH group. Green color represents the zero potential regions mostly over the all protons.

Fig.7. a) Front view b) back view of Molecular electrostatic Potential map (MEP) for Voglibose

4.6. NMR spectral Analysis

NMR spectroscopy has proved to be an exceptional tool to elucidate structure and molecular conformation. The "gauge-independent atomic orbital" (GIAO) method [31] has proven to be quite accepted and accurate, in particular when applied in the context of highly correlated abinitio methods. The ¹H and ¹³C theoretical and experimental [2] (water solvent) chemical shifts, isotropic shielding constants and the assignments of voglibose are also given in the **Table 5**. Taking into account that the range of ¹³C NMR chemical shift for analogous organic molecules usually is >100 ppm [32]. The chemical shift of C1,C2,C3,C4 carbon peaks in the rings attached to oxygen atom are observed from 17.10 ppm to 76.28 ppm are calculated from 69.54 ppm to 70.59 ppm at B3LYP/6-31G(d,p) level of theory. For title molecule ¹³C chemical values of these carbon atoms are down shifted from the expected values. The reason for the down shift is due to the substitution of oxygen and carbon atoms for C1 atom and oxygen and hydrogen atoms for C2, C3, and C4 atom respectively. Due to the double proton substitution C6 atom get down shifted, the observed / calculated value is 29.34 ppm/28.96 ppm. Similarly, due to electro negative oxygen atom substitution causes C11, C14 and C16 atoms gets down shielding shown in Table 5.

Hydrogen attached or nearby electron donating atom or group increases the shielding and moves the resonance towards to a lower frequency. The chemical shifts obtained and calculated for the hydrogen atoms of methyl groups are quite low. All values are ≤ 3 ppm [33] due to shielding effect. In our present study ethylene group chemical shift values of protons H23 and H24 is 1.36/1.01, 1.89/1.48 (Experimental/calculated). Due to electro negative oxygen bonding causes H25-H28 have the low chemical shift values, which are calculated from 2.29-2.86 ppm by DFT method.

	¹³ C NMR			¹ H NMR	
Atom position	Experimental	B3LYP	Atom position	Experimental	B3LYP
C1	74.10	69.54	H19	3.67	3.69
C2	65.19	66.38	H20		4.01
C3	72.07	67.65	H21	3.48	3.38
C4	76.28	70.59	H22		2.82
C5	-	50.59	H23	1.36	1.01
C6	29.34	28.96	H24	1.89	1.48
C11	62.25	63.67	H25		2.29
C14	58.51	58.55	H26	2.70	2.68
C15	54.46	52.83	H27		0.69
C16	56.51	56.89	H28		2.86
			H29	3.23	3.21
			H30		4.19
			H31		0.44
			H32		-0.29
			H33	3.56	3.57
			H34	3.25	3.31
			H35		2.61
			H36		3.17
			H37	3.35	3.39
			H38		2.61
			H39		3.17

 Table 5. Table predicted ¹H and ¹³C NMR isotropic chemical shifts (with respect to TMS, all values in ppm) for Vogliboise

5. Conclusion

The optimized molecular structure, vibrational frequencies and corresponding vibrational assignments of Voglibose have been calculated using B3LYP level with 6-31G(d,p) basis set. Considering that experimental and the theoretical studies are performed in different phase, it can be said that there is a good agreement between the experimental and theoretical data. The reduction of N-H stretching wavenumber is attributed to the N-H...O hydrogen bonding interactions. NBO analysis clearly explains the formation of weak H bonded interaction between the LP(1)N13 and $\pi^*(O10-H28)$ antibonding orbitals and charge transfer causing stabilization of energy 4.86 KJmol⁻¹ the system. The energies of important MOs and the max of the compound were also evaluated from TD-DFT method. The ¹³C and ¹H NMR chemical shifts calculated by B3LYP/6-31G(d,p) are closer to the experimental values. Moreover, frontier molecular orbitals and molecular electrostatic potential were visualized. Electronic transition and energy band gap of the title molecule were investigated and interpreted.

References

- [1] N.Mallikarjuna Rao, Konda Ravi Kuma, J. Bagyalakshmi, T.K. Ravi, Ramakotaiah Mogili., "RP-HPLC method development and validation for estimation of Voglibose in bulk and tablet dosage forms" Int. J. Res. Pharm. Sci. Vol-1, Issue-2, (**2010**), 190-194.
- [2] Zhang, C.R. Sun, O. Ishurd, Y.J. Pan, L.S. Ding, "Determination of the structures of four new isomeric cyclitols" Carbo-hydr. Res. 339 (2004) 2027-2030.
- [3] X. Chen, Y. Zheng, Y.Shen, Curr. "Voglibose (Basen®, AO-128), one of the most important α-glucosidase inhibitors", Med. Chem. 13 (2006) 109-116.
- [4] Y. Iwamoto, A. Kashiwagi, N. Yamada, S. Terao, N. Mimori, M. Suzuki & H. Tachibana, "Efficacy and safety of vildagliptin and voglibose in Japanese patients with type 2 diabetes: a 12-week, randomized, double-blind, active-controlled study", Diabetes, Obesity and Metabolism 12, (2010), 700–708.
- [5] Karunanidhi Lakshmi and Tirumala Rajesh, "Determination of voglibose in pharmaceutical formulations by high performance liquid chromatography using refractive index detection" European Journal of Chemistry 1 (4) (**2010**) 262-265.
- [6] P. Revathi, T. Jeyaseelan Senthinath, K. Prakash Shyam, A Comparative Study of Acarbose and Voglibose on Postprandial Hyperglycemia and serum lipids in Type 2 Diabetic patients" Int J Med Res. 1(2), (2011) 121-129.
- [7] Gaussian 03 program, (Gaussian Inc, Wallingford CT), **2004**.
- [8] National Institute of Standards and Technology. Vibrational Frequency Scaling Factors on the Web. http://srdata.nist.gov/cccbdb/vsf.asp (accessed 24.09.07).
- [9] S.M. Islam, S.D. Huelin, M. Dawe, R.A. Poirier, "Comparison of the Standard 6-31G and Binning-Curtiss Basis Sets for Third Row Elements", J. Chem. Theory Comput. 4 (2008) 86–100.
- [10] M.H. Jamroz "Vibrational Enegy Distribution Analysis", VEDA 4 Computer Program", Poland, (2004).
- [11] E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, "NBO Version 3.1", TCI, University of Wisconsin, Madison, (1998).
- [12] R.Ditchfield, "Molecular orbital theory of magnetic shielding and magnetic susceptibility", J. Chem. Phys. 56 (**1972**) 5688–5691.

- [13] G. Kereztury, in: J.M. Chalmers, P.R. Griffith (Eds.), "Raman Spectroscopy: Theory, in Hand book of Vibrational Spectroscopy", vol. 1, John Wiley & Sons Ltd, New York, (2002).
- [14] L.E. Sutton, "Tables of Interatomic Distances, Chemical Society", London, 1958.
- [15] K. Govindarasu, E. Kavitha, "Vibrational spectra, molecular structure, NBO, NMR, UV, first order hyperpolarizability, analysis of (S)-(-)-N-(5-Nitro-2-pyridyl) alaninol by Density functional theory" Spectro.chim Acta A 127 (2014) 498–510.
- [16] Hong Zhang, Wei-Fen Li, Kui-Wu Wang and Yuan Jiang Pan, "1 Cyclohexylmethoxymethyl-5-[2-hydroxy-1-(hydroxymethyl) ethylamino] cyclohexane-1, 2, 3, 4-tetraol" Acta Cryst. (2004). E60, o299-o300.
- [17] J.F. Chiang, S.H. Bauer, "Molecular structure of cyclohexene", J. Am. Chem. Soc. 91 (8) (1969) 1898–1901.
- [18] N.H. Andersen, C. J. Nielsen, P.Klaeboe, G.A. Guirgis, J. S. Overby ,S.M. Askarian, "Infrared and Raman spectra, DFT-calculations and spectral assignments of 1,3,5trisilacyclohexane" J. Mol. Struct. 1076 (2014) 419–425.
- [19] G.A. Guirgis, H.W. Dukes, J.K. Wyatt, C.J. Nielsen, A. Horn, V. Aleksa P.Klaeboe "Vibrational spectra, quantum chemical calculations and spectral assignments of 1,1difluoro-1-silacyclohexane" Spectro chim. Acta A 136 (2015) 51–57.
- [20] G.A. Guirgis, J.K. Wyatt, C.J. Nielsen, A. Horn ,V. Aleksa P.Klaeboe,' "Infrared and Raman spectra, DFT-calculations and spectral assignments of silacyclohexane" J. Mol. Struct. 1023 (2012) 189–196.
- [21] G.Varsanyi, "Assignments for Vibrational Spectra of Seven Hundred Benzene Derivatives", vol. 1–2, Academic Kiaclo, Budapet, (1973).
- [22] M. Govindarajan, S. Periyandy, K. Carthigayen, "FT-IR and FT-Raman spectra, thermo dynamical behavior, HOMO and LUMO, UV, NLO properties, computed frequency estimation analysis and electronic structure calculations on α-bromotoluene" Spectrochim. Acta 97 (2012) 411–422.
- [23] V. Krishnakumar, M. Kumar, N. Prabavathi, R. Mathammal, "Molecular structure, spectroscopic studies (FTIR, FT-Raman and NMR) and HOMO–LUMO analysis of 6chloro-o-cresol and 4-chloro-3-methyl phenol by density functional theory" Spectrochim. Acta A97 (2012) 144–154.
- [24] D. Sajan, J. Binoy, B. Pradeep, K.V. Krishnan, V.B. Kartha, I.H. Joe, V.S. Jayakumar, "NIR-FT Raman and infrared spectra and ab initio computations of glycinium oxalate" Spectrochim. Acta A60 (2004) 173.
- [25] N.B.Colthup, L.H.Daly, S.E.Wiberly, "Introduction to Infrared and Raman Spectroscopy", 3rd ed., Academic Press, Boston (1990).
- [26] R.M.Silverstein, G.C. Bassler, T.C.Morril, "Spectrometric Identification of Organic Compounds", ed. 5, John Wiley and Sons, Inc., Singapore (**1991**).
- [27] K. Govindarasu, E. Kavitha, "Structural, vibrational spectroscopic studies and quantum chemicalcalculations of n-(2,4-dinitrophenyl)-L-alanine methyl ester by density functional theory" J. Mol. Struct. 1088 (2015) 70–84.
- [28] M. Jag, "Organic Spectroscopy-Principles and Application", second ed., Narosa Publishing House, New Delhi, (2001).
- [29] A.E. Reed, L.A. Curtiss, F. Weinhold, "Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint," Chem. Rev. 88 (**1988**) 899–926.

- [30] J.S. Murray, K.Sen, "Molecular Electrostatic Potential Concepts and Applications, Elsevier Science" B.V, Amsterdaam, The Netherlands (1996).
- [31] P.V.R. Schleyer, N.L. Allinger, T. Clark, J. Gasteiger, P.A. Kolmann, H.F. Schaefer, P.R. Schreiner, "The Encyclopedia of Computational Chemistry", John Wiley and Sons, Chichester, (1998).
- [32] H.O. Kalinowski, S. Berger, S. Braun, "Carbon-13 NMR Spectroscopy", John Wiley & Sons, Chichester, (1988).
- [33] F.A. Cotton, C.W. Wilkinson, "Advanced Inorganic Chemistry", 3rd ed., Interscience publisher, New York, (1972).