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Abstract
Latent space models (LSMs) provide a princi-
pled and effective way to extract hidden patterns
from observed data. To cope with two challenges
in LSMs: (1) how to capture infrequent pat-
terns when pattern frequency is imbalanced and
(2) how to reduce model size without sacrificing
their expressiveness, several studies have been
proposed to “diversify” LSMs, which design reg-
ularizers to encourage the components therein to
be “diverse”. In light of the limitations of ex-
isting approaches, we design a new diversity-
promoting regularizer by considering two fac-
tors: uncorrelation and evenness, which encour-
age the components to be uncorrelated and to
play equally important roles in modeling data.
Formally, this amounts to encouraging the co-
variance matrix of the components to have more
uniform eigenvalues. We apply the regularizer
to two LSMs and develop an efficient optimiza-
tion algorithm. Experiments on healthcare, im-
age and text data demonstrate the effectiveness
of the regularizer.

1. Introduction
A fundamental task in machine learning (ML) is to discover
latent patterns underlying data, for instance, extracting top-
ics from documents and communities from social networks.
Latent space models (Bishop, 1998; Knott & Bartholomew,
1999; Blei, 2014) are effective tools to accomplish this
task. An LSM contains a collection of learnable compo-
nents such as hidden units in neural networks and factors in
factor analysis (Harman, 1960). Each component is aimed
at capturing a hidden pattern. In most LSMs, components
are parameterized by vectors.

Among the many challenges encountered in latent space
modeling, two of them are of particular interest to us.
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First, under many circumstances, the frequency of patterns
is highly imbalanced. Some patterns have very high fre-
quency while others occur less frequently. As a typical ex-
ample, in a news corpus, politics and economics are fre-
quent topics (patterns) while furniture and gardening are
infrequent. Classic LSMs are sensitive to the skewness
of pattern frequency and less capable of capturing the in-
frequent patterns (Wang et al., 2014). Second, when us-
ing LSMs, one needs to carefully balance the tradeoff be-
tween model size (precisely, the number of components)
and modeling power (Xie, 2015). Larger-sized LSMs are
more expressive, but incur higher computational complex-
ity. It is desirable but challenging to achieve sufficient mod-
eling power with a small number of components.

To address these two challenges, recent studies (Zou &
Adams, 2012; Cogswell et al., 2015; Xie et al., 2015; 2016)
investigate a “diversification” strategy which encourages
the components in LSMs to be mutually different, either
through frequentist-style regularization (Zou & Adams,
2012; Cogswell et al., 2015; Xie et al., 2015) or Bayesian
learning (Xie et al., 2016). They conjecture that: (1)
through “diversification”, some components that are orig-
inally aggregated around frequent patterns can be pushed
apart to cover infrequent patterns; (2) “diversified” compo-
nents bear less redundancy and are mutually complemen-
tary; a small number of such components are sufficient to
model data well.

Along this line of research, several diversity-promoting
regularizers have been proposed, based upon determinan-
tal point process (Kulesza & Taskar, 2012; Zou & Adams,
2012), cosine similarity (Yu et al., 2011; Bao et al., 2013;
Xie et al., 2015) and covariance (Malkin & Bilmes, 2008;
Cogswell et al., 2015). While these regularizers demon-
strate notable efficacy, they have certain limitations, such
as sensitivity to vector scaling (Zou & Adams, 2012;
Malkin & Bilmes, 2008), inability to measure diversity
in a global manner (Yu et al., 2011; Bao et al., 2013;
Xie et al., 2015) and computational inefficiency (Cogswell
et al., 2015). To address these limitations, we propose
a new diversity-promoting regularizer gaining inspiration
from principal component analysis (Jolliffe, 2002), bio-
logical diversity (Magurran, 2013) and information theory
(Cover & Thomas, 2012).
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We characterize “diversity” by considering two factors:
uncorrelation and evenness. Uncorrelation (Cogswell
et al., 2015) encourages the components to be uncorre-
lated, such that each component can independently capture
a unique pattern. Evenness is inspired from biological di-
versity (Magurran, 2013) where an ecosystem is deemed
to be more diverse if different species contribute equally to
the maintenance of biological balance. Analogously, when
measuring component diversity, we assign an “importance”
score to each component and encourage these scores to be
even. In the context of latent space modeling, evenness
ensures each component plays a significant role in pattern
discovery rather than being dominated by others.

We study uncorrelation and evenness from a statistical per-
spective. The components are considered as random vari-
ables and the eigenvalues of their covariance matrix can
be leveraged to characterize these two factors. First, ac-
cording to Principle Component Analysis (Jolliffe, 2002),
the disparity of eigenvalues reflects the correlation among
components: the more uniform the eigenvalues, the less
correlated the components. Second, eigenvalues represent
the variance along principal directions and can be used to
measure the “importance” of components. Promoting uni-
form importance amounts to encouraging evenness among
eigenvalues.

To promote uniformity among the eigenvalues, we encour-
age the discrete distribution parametrized by the normal-
ized eigenvalues to have small Kullback-Leibler divergence
with the uniform distribution, based on which, we define
a uniform eigenvalue regularizer (UER) and make a con-
nection with the von Neumann entropy (Bengtsson & Zy-
czkowski, 2007) and with the von Neumann divergence
(Kulis et al., 2009). We apply UER to two LSMs – distance
metric learning (DML) (Xing et al., 2002) and long short-
term memory (LSTM) network (Hochreiter & Schmidhu-
ber, 1997) – to encourage their components to be diverse
and develop an efficient optimization algorithm. Experi-
ments on healthcare, image and text data demonstrate that
UER (1) greatly improves the performance of LSMs; (2)
better captures infrequent patterns; (3) reduces model size
without sacrificing modeling power; (4) outperforms other
diversity-promoting regularizers.

The major contributions of this paper are:
• We propose a new diversity-promoting regularizer

from the perspectives of uncorrelation and evenness.

• We propose to simultaneously promote uncorrelation
and evenness by encouraging uniformity among the
eigenvalues of the covariance matrix of components.

• We develop an efficient projected gradient descent al-
gorithm to solve UE regularized LSM problems.

• In experiments, we demonstrate the effectiveness of
this regularizer on two LSMs: DML and LSTM.

The rest of the paper is organized as follows. Section 2
reviews related works. Section 3 introduces the uniform
eigenvalue regularizer. Section 4 presents experimental re-
sults and Section 5 concludes the paper.

2. Related Works
Diversity promoting regularization has been widely used
in classification (Malkin & Bilmes, 2008), ensemble learn-
ing (Yu et al., 2011) and latent space modeling (Zou &
Adams, 2012; Xie et al., 2015; 2017). In the sequel,
we present a brief review of existing diversity-promoting
regularizers. Several regularizers (Yu et al., 2011; Bao
et al., 2013; Xie et al., 2015; 2017) are based on pair-
wise dissimilarity of components: if every two compo-
nents are dissimilar, then overall the set of components
are “diverse”. Given the weight vectors {aj}mj=1 of m
components, Yu et al. (2011) define the regularizer as∑

1≤j<k≤m(1−cjk), where cjk is the cosine similarity be-
tween component j and k. In (Bao et al., 2013), the score
is defined as − log( 1

m(m−1)
∑

1≤j<k≤m β|cjk|)
1
β where

β > 0. In (Xie et al., 2015), the score is defined as mean
of {arccos(|cjk|)} minus the variance of {arccos(|cjk|)},
where the variance term is utilized to encourage the dissim-
ilarity scores {arccos(|cjk|)} to be even. Xie et al. (2017)
define the regularizer as

∑
1≤i<j≤m k(ai,aj) where k(·, ·)

is a kernel function. These regularizers are applied to clas-
sifiers ensemble, neural network and restricted Boltzmann
machine. While these regularizers can capture pairwise
dissimilarities between components, they are unable to cap-
ture higher-order “diversity”.

Determinantal Point Process (DPP) (Kulesza & Taskar,
2012) was used by (Zou & Adams, 2012; Mariet & Sra,
2015) to encourage the topic vectors in Latent Dirichlet
Allocation (Blei et al., 2003), Gaussian mean vectors in
Gaussian Mixture Model and hidden units in neural net-
work to be “diverse”. The DPP regularizer is defined as
− log det(L), where L is a m × m kernel matrix and
det(·) denotes the determinant of the matrix. Lij equals
to k(ai,aj) and k(·, ·) is a kernel function. In geometry,
det(L) is the volume of the parallelepiped formed by vec-
tors in the feature space associated with kernel k. Vectors
that result in a larger volume are considered to be more
“diverse”. Since volume depends on all vectors simulta-
neously, DPP is able to measure diversity in a global way.
The drawback of DPP lies in its sensitivity to the scaling of
vectors. The volume increases with the `2 norm of vectors,
but “diversity” does not. Malkin & Bilmes (2008) propose
to promote diversity by maximizing the determinant of vec-
tors’ covariance matrix. Similar to DPP, this regularizer is
sensitive to vector scaling.

Unlike the aforementioned regularizers which are defined
directly on weight vectors, Cogswell et al. (2015) design a
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Figure 1. Two views of the component matrix

regularizer on hidden activations in the neural network and
influence the parameters indirectly. The number of hidden
activations could be much larger than that of weight param-
eters (like in a convolutional neural network), which may
render this regularizer to be computationally inefficient.

3. Method
In this section, we develop a uniform eigenvalue regularizer
and apply it to promote “diversity” in two LSMs.

3.1. Uniform Eigenvalue Regularizer

A latent space model (LSM) is equipped with a set of m
components and each component is represented with a vec-
tor a ∈ Rd. To achieve broader coverage of infrequent pat-
terns and reduce model size without sacrificing modeling
power, previous works (Zou & Adams, 2012; Xie et al.,
2015) propose to “diversify” the components by imposing
a regularizer over them.

As a subjective concept, “diversity” has been defined in
various ways as reviewed in Section 2. In this paper, we
define a new measure of “diversity” by taking two factors
into consideration: uncorrelation and evenness. Uncorrela-
tion is a measure of how uncorrelated the components are.
Literally, less correlation is equivalent to more diversity.
Evenness is borrowed from biological diversity (Magurran,
2013), which measures how equally important different
species are in maintaining the ecological balance within an
ecosystem. If no species dominates another, the ecosystem
is deemed as more diverse. Likewise, in latent space mod-
eling, we desire the components to play equally important
roles and no one dominates another, such that each compo-
nent contributes significantly to the modeling of data.

We characterize the uncorrelation among components from
a statistical perspective: treating the components as random
variables and measuring their covariance which is propor-
tional to their correlation. Let A ∈ Rd×m denote the com-
ponent matrix where in the k-th column is the parameter
vector ak of component k. Alternatively, we can take a
row view (Figure 1(b)) of A: each component is treated as
a random variable and each row vector ã>i can be seen as
a sample drawn from the random vector formed by the m
components. Let µ = 1

d

∑d
i=1 ãi = 1

dA>1 be the sample
mean, where the elements of 1 ∈ Rd are all 1. We compute
the empirical covariance matrix of the components as

G = 1
d

∑d
i=1(ãi − µ)(ãi − µ)>

= 1
dA>A− ( 1

dA>1)( 1
dA>1)>

(1)

(a)  λ1 > λ2 (b)  λ1   λ2
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Figure 2. When the principal directions (u1 and u2) are not
aligned with the coordinate axis, the level of disparity between the
eigenvalues (λ1 and λ2) indicates the correlation between random
variables (components).
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Figure 3. When the principal directions (u1 and u2) are aligned
with the coordinate axis, the magnitude of eigenvalues represents
the importance of components.

Imposing the constraint A>1 = 0, we have G = 1
dA>A.

Suppose A is a full rank matrix and m < d, then G is a
full-rank matrix with rank m.

For the next step, we show that the eigenvalues of G
play important roles in characterizing the uncorrelation and
evenness of components. We start with uncorrelation. Let
G =

∑m
k=1 λkuku

>
k be the eigendecomposition where λk

is an eigenvalue and uk is the associated eigenvector. As
is well known in Principle Component Analysis (Jolliffe,
2002), an eigenvector uk of the covariance matrix G rep-
resents a principal direction of the data points and the as-
sociated eigenvalue λk tells the variability of points along
that direction. As shown in Figure 2(a), the larger λk is, the
more spread out the points along the direction uk. When
the eigenvectors (principal directions) are not aligned with
coordinate axis (as shown in Figure 2), the level of disparity
among eigenvalues indicates the level of correlation among
the m components (random variables). The more different
the eigenvalues are, the higher the correlation is. As shown
in Figure 2(a), λ1 is about three times larger than λ2 and
there is a high correlation along the direction u1. On the
other hand, in Figure 2(b), the two eigenvalues are close to
each other and the points evenly spread out in both direc-
tions with negligible correlation. In light of this, we would
utilize the uniformity among eigenvalues of G to measure
how uncorrelated the components are.

Secondly, we relate the eigenvalues with the other factor
of diversity: evenness. When the eigenvectors are aligned
with the coordinate axis (as shown in Figure 3(a)), the com-
ponents are uncorrelated. In this case, we bring in evenness
to measure diversity. As stated earlier, we first need to as-
sign each component an importance score. Since the eigen-
vectors are in parallel to the coordinate axis, the eigenval-
ues reflect the variance of components. Analogous to PCA
which posits that random variables with larger variance are
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more important, we use variance to measure importance.
As shown in Figure 3(a), component 1 has a larger eigen-
value λ1 and accordingly larger variability, hence is more
important than component 2. According to the evenness
criteria, the components are more diverse if their impor-
tance match, which motivates us to encourage the eigen-
values to be uniform. As shown in Figure 3(b), the two
eigenvalues are close and the two components have roughly
the same variability, hence are similarly important.

To sum up, we desire to encourage the eigenvalues to be
even in both cases: (1) when the eigenvectors are not
aligned with the coordinate axis, they are preferred to be
even to reduce the correlation of components; (2) when the
eigenvectors are aligned with the coordinate axis, they are
encouraged to be even such that different components con-
tribute equally in modeling data. Previously, encouraging
evenness among variances (eigenvalues) is investigated in
other problems, such as learning compact representations
for efficient hashing (Kong & Li, 2012; Ge et al., 2013).

Next, we discuss how to promote uniformity among eigen-
values. The basic idea is: we normalize the eigenvalues
into a probability simplex and encourage the discrete
distribution parameterized by the normalized eigenval-
ues to have small Kullback-Leibler (KL) divergence
with the uniform distribution. Given the eigenvalues
{λk}mk=1, we first normalize them into a probability
simplex λ̂k = λk∑m

j=1 λj
based on which we define a

distribution on a discrete random variable X = 1, · · · ,m
where p(X = k) = λ̂k. In addition, to guarantee the
eigenvalues are strictly positive, we require A>A to be
positive definite. To encourage {λ̂k}mk=1 to be uniform,
we encourage the distribution p(X) to be “close” to
a uniform distribution q(X = k) = 1

m , where the
“closeness” is measured using KL divergence KL(p||q):∑m
k=1 λ̂k log λ̂k

1/m =
∑m
k=1 λk log λk∑m

j=1 λj
−log

∑m
j=1 λj+logm.

In this equation,
∑m
k=1 λk log λk is equivalent to

tr(( 1
dA>A)log( 1

dA>A)), where log(·) denotes ma-
trix logarithm. To show this, note that log( 1

dA>A) =∑m
k=1 log(λk)uku

>
k , according to the property of matrix

logarithm. Then we have tr(( 1
dA>A) log( 1

dA>A)) equals
to tr((

∑m
k=1 λkuku

>
k )(

∑m
k=1 log(λk)uku

>
k )) which

equals to
∑m
k=1 λk log λk. According to the property

of trace, we have tr( 1
dA>A) =

∑m
k=1 λk. Then the

KL divergence can be turned into a diversity-promoting
uniform eigenvalue regularizer (UER):

tr(( 1
dA>A) log( 1

dA>A))

tr( 1
dA>A)

− log tr(
1

d
A>A) (2)

subject to A>A � 0 and A>1 = 0. Compared with pre-
vious diversity-promoting regularizers, UER has the fol-
lowing benefits: (1) It measures the diversity of all com-
ponents in a holistic way, rather than reducing to pairwise

dissimilarities as other regularizers (Yu et al., 2011; Bao
et al., 2013; Xie et al., 2015) do. This enables UER to
capture global relations among components. (2) Unlike
determinant-based regularizers (Malkin & Bilmes, 2008;
Zou & Adams, 2012) that are sensitive to vector scal-
ing, UER is derived from normalized eigenvalues where
the normalization effectively removes scaling. (3) UER is
amenable for computation. First, unlike DoCev (Cogswell
et al., 2015) that is defined over data-dependent interme-
diate variables incurring computational inefficiency, UER
is directly defined on model parameters independent of
data. Second, unlike the regularizers proposed in (Bao
et al., 2013; Xie et al., 2015) that are non-smooth, UER
is a smooth function. The dominating computation in UER
is the matrix logarithm. It does not substantially increase
computational overhead as long as the number of compo-
nents is not too large (e.g., less than 1000).

We apply UER to promote diversity in LSMs. Let L(A)
denote the objective function of an LSM, then an UE-
regularized LSM problem can be defined as

minA L(A) + λ(
tr(( 1

dA
>A) log( 1

dA
>A))

tr( 1
dA

>A)
− log tr( 1

dA>A))

s.t. A>1 = 0, A>A � 0

where λ is the regularization parameter. Similar to other
diversity-promoting regularizers, UER is non-convex.
Since L(A) in most LSMs is non-convex, adding UER
does not substantially increase difficulty for optimization.

Connection with von Neumann Entropy In this sec-
tion, we make a connection between UER and von Neu-
mann entropy. A matrix M is referred to as a density
matrix (Bengtsson & Zyczkowski, 2007) if its eigenvalues
are strictly positive and sum to one, equivalently, M � 0
and tr(M) = 1. The von Neumann entropy (Bengts-
son & Zyczkowski, 2007) of M is defined as S(M) =
−tr(M log M), which is essentially the Shannon entropy
of its eigenvalues. If the covariance matrix G of compo-
nents is a density matrix, then we can use its von Neumann
entropy to define a UER. To encourage the eigenvalues
{λk}mk=1 of G to be even, we directly encourage the KL
divergence between the distribution parameterized by the
eigenvalues (without normalization) and the uniform distri-
bution to be small:

∑m
k=1 λk log λk

1/m =
∑m
k=1 λk log λk+

logm, which is equivalent to encouraging the Shannon en-
tropy of the eigenvalues −

∑m
k=1 λk log λk, i.e., the von

Neumann entropy of G to be large. Then a new UER can
be defined as the negative von Neumann entropy of G:
tr(( 1

dA>A) log( 1
dA>A)), subject to the constraints: (1)

A>A � 0; (2) tr( 1
dA>A) = 1; (3) A>1 = 0. This new

UER is a special case of the previous one (Eq.(2)).

Connection with von Neumann Divergence Next we
make a connection between the UER and von Neumann
divergence (Kulis et al., 2009). Given two positive defi-
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nite matrices X and Y, their von Neumann divergence is
defined as tr(X log X −X log Y −X + Y), which mea-
sures the closeness between the two matrices. Given two
vectors x,y ∈ Rm, their generalized KL divergence can be
defined as

∑m
k=1 xk log(xkyk )− (xk − yk), which measures

the closeness between two vectors. To encourage unifor-
mity among the eigenvalues of the covariance matrix G,
we can decrease the generalized KL divergence between
these eigenvalues and an all-1 vector:∑m

k=1 λk log(λk1 )− (λk − 1)
= tr(( 1

dA>A) log( 1
dA>A))− tr( 1

dA>A)) +m
(3)

which is the von Neumann divergence between G and an
identity matrix. Hence, encouraging uniformity among
eigenvalues can be achieved by making G to be close to
an identity matrix based on the von Neumann divergence.

3.2. Case Studies

In this section, we apply the uniform eigenvalue regular-
izer to promote diversity in two latent space models: DML
and LSTM. We also applied it to latent Dirichlet alloca-
tion (Blei et al., 2003) and classifier ensemble (Yu et al.,
2011). Due to space limit, the results of the latter two are
deferred to the supplements.

Distance Metric Learning (DML) Given data pairs ei-
ther labeled as “similar” or “dissimilar”, DML (Xing et al.,
2002; Davis et al., 2007; Guillaumin et al., 2009) aims to
learn a distance metric under which similar pairs would be
placed close to each other and dissimilar pairs are sepa-
rated apart. The learned distance can benefit a wide range
of tasks, including retrieval, clustering and classification.
Following (Weinberger & Saul, 2009), we define the dis-
tance metric between x,y ∈ Rd as ‖A>x−A>y‖22 where
A ∈ Rd×m is a parameter matrix whose column vec-
tors are components. Built upon the DML formulation
in (Xie, 2015), an uniform-eigenvalue regularized DML
(DML-UE) problem can be formulated as

minA
∑

(x,y)∈S
‖A>x−A>y‖22

+
∑

(x,y)∈D
max(0, 1− ‖A>x−A>y‖22)

+λ(
tr(( 1

dA
>A) log( 1

dA
>A))

tr( 1
dA

>A)
− log tr( 1

dA>A))

s.t. A>1 = 0, A>A � 0
(4)

where S and D are the set of similar and dissimilar pairs
respectively. The first and second term in the objective
function encourage similar pairs to have small distance and
dissimilar pairs to have large distance respectively. The
learned metrics are applied for information retrieval.

Long Short-Term Memory (LSTM) Network LSTM
(Hochreiter & Schmidhuber, 1997) is a type of recurrent
neural network, that is better at capturing long-term depen-
dency in sequential modeling. At each time step t where

the input is xt, there is an input gate it, a forget gate ft, an
output gate ot, a memory cell ct and a hidden state ht. The
transition equations among them are

it = σ(W(i)xt + U(i)ht−1 + b(i))
ft = σ(W(f)xt + U(f)ht−1 + b(f))
ot = σ(W(o)xt + U(o)ht−1 + b(o))
ct = it � tanh(W(c)xt + U(c)ht−1 + b(c)) + ft � ct−1
ht = ot � tanh(ct)

where W = {W(s)|s ∈ S = {i, f, o, c}} and U =
{U(s)|s ∈ S} are gate-specific weight matrices and B =
{b(s)|s ∈ S} are bias vectors. The row vectors in W and
U are treated as components. Let L(W,U ,B) denote the
loss function of an LSTM network and R(·) denote the
UER (including constraints), then a UE-regularized LSTM
problem can be defined as

minW,U,B L(W,U ,B) + λ
∑
s∈S(R(W(s)) +R(U(s)))

(5)
The LSTM network is applied for cloze-style reading com-
prehension (CSRC). The network architecture follows that
in (Seo et al., 2017), which achieves the state of the art per-
formance on CSRC.

3.3. Algorithm

We develop a projected gradient descent (PGD) algorithm
to solve the UE-regularized LSM problem in Eq.(5). The
constraint A>A � 0 ensures the eigenvalues of A>A are
positive, such that log(A>A) is well-defined. However,
it makes optimization very nasty. To address this issue,
we add a small perturbation εI over A>A where ε is a
close-to-zero positive scalar and I is an identity matrix, to
ensure log(A>A + εI) is always well-defined. Accord-
ingly, the constraint A>A � 0 can be eliminated. The
PGD algorithm iteratively performs three steps: (1) com-
pute (sub)gradient 4A of the objective function; (2) up-
date A using gradient descent: Ã ← A − η 4 A; (3)
project Ã to the constraint set {A|A>1 = 0}. In step
(1), the derivative of tr(( 1

dA>A + εI) log( 1
dA>A + εI))

is 2
dA(log( 1

dA>A + εI) + I). To compute the logarithm
of 1

dA>A + εI, we perform an eigen-decomposition of
this matrix into UΛU>, transform Λ into another diag-
onal matrix Λ̃ where Λ̃jj = log(Λjj) and then compute
log( 1

dA>A + εI) as UΛ̃U>. The complexity of eigen-
decomposing this m-by-m matrix is O(m3). In our ap-
plications, m is no more than 500, so O(m3) is not a big
bottleneck. In addition, this matrix is symmetric and the
symmetry can be leveraged for fast eigen-decomposition.
In implementation, we use the MAGMA library that sup-
ports efficient eigen-decomposition of symmetric matri-
ces on both CPUs and GPUs. In step (3), the projec-
tion operation amounts to solving the following problem:
minA

1
2‖A − Ã‖2F subject to A>1 = 0. According to

KKT conditions (Boyd & Vandenberghe, 2004), we have
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#Train #Test Dim. #Class
MIMIC 40K 18K 7207 2833
Cars 8144 8041 4096 196
Birds 9000 2788 4096 200
CNN 380K 3198 – –
DailyMail 879K 53K – –

Table 1. Dataset Statistics

A− Ã + 1λ> = 0 and A>1 = 0. Solving this system of
equations, we get A = (I − 1

d11>)Ã, which centers the
row vectors in Ã to have zero mean.

4. Experiments
In this section, we present experimental results.

Dataset We used five datasets in the experiments: an
electronic health record dataset MIMIC-III (Johnson et al.,
2016); two image datasets Stanford-Cars (Krause et al.,
2013) and Caltech-UCSD-Birds (Welinder et al., 2010);
two question answering (QA) datasets CNN and Daily-
Mail (Hermann et al., 2015). The first three were used
for DML and the last two for LSTM. Their statistics are
summarized in Table 1. MIMIC-III contains hospital ad-
missions of patients. The class label of each admission is
the primarily diagnosed disease. For Stanford-Cars, CNN
and DailyMail, we use a single train/test split specified by
the data providers; for the other two, five random splits are
performed and the results are averaged over the five runs.
For the MIMIC-III dataset, we extract 7207-dimensional
features: (1) 2 dimensions from demographics, including
age and gender; (2) 5300 dimensions from clinical notes,
including 5000-dimensional bag-of-words (weighted us-
ing tf-idf) and 300-dimensional Word2Vec (Mikolov et al.,
2013); (3) 1905-dimensions from lab tests where the zero-
order, first-order and second-order temporal features are
extracted for each of the 635 lab items. For bag-of-words,
we remove stop words, then select the 5000 words with
largest document frequency. For Word2Vec, we train 300-
dimensional embeddings for each word; to represent a doc-
ument, we average the embeddings of all words in this doc-
ument. For the two image datasets, we use the VGG16 (Si-
monyan & Zisserman, 2014) convolutional neural network
trained on the ImageNet (Deng et al., 2009) dataset to ex-
tract features, which are the 4096-dimensional outputs of
the second fully-connected layer. In the two QA datasets,
each instance consists of a passage, a question and an an-
swer. The question is a cloze-style task where an entity is
replaced by a placeholder and the goal is to infer this miss-
ing entity (answer) from all the possible entities appearing
in the passage.

Experimental Setup In DML experiments, two samples
are labeled as similar if belonging to the same class and
dissimilar otherwise. The learned distance metrics are ap-

MIMIC Cars Birds
DML 72.5 ± 0.3 53.1 ± 0.0 55.9 ± 0.5
EUC 58.3 ± 0.1 37.8 ± 0.0 43.2 ± 0.0
ITML 69.3 ± 0.4 50.1 ± 0.0 52.9 ± 0.3
LDML 70.9 ± 0.9 51.3 ± 0.0 52.1 ± 0.2
GMML 71.2 ± 0.3 54.2 ± 0.0 53.7 ± 0.6
DML-L2 72.9 ± 0.1 53.4 ± 0.0 57.1 ± 0.4
DML-L1 72.6 ± 0.6 53.7 ± 0.0 56.4 ± 0.2
DML-LowRank 72.5 ± 0.7 53.3 ± 0.0 56.1 ± 0.6
DML-Dropout 73.1 ± 0.3 53.5 ± 0.0 56.6 ± 0.3
DML-DC 73.7 ± 0.4 57.1 ± 0.0 56.5 ± 0.4
DML-CS 73.5 ± 0.5 55.7 ± 0.0 57.4 ± 0.2
DML-DPP 74.2 ± 0.3 55.9 ± 0.0 56.9 ± 0.7
DML-IC 74.3 ± 0.2 56.3 ± 0.0 57.8 ± 0.2
DML-MA 73.6 ± 0.4 55.8 ± 0.0 58.2 ± 0.1
DML-DeCov 72.6 ± 0.1 56.2 ± 0.0 56.2 ± 0.8
DML-UE 75.4 ± 0.3 58.2 ± 0.0 59.4 ± 0.2

Table 2. Precision@10 (%) on three datasets. The Cars dataset
has a single train/test split, hence the standard error is 0.

plied for retrieval whose performance is evaluated using
precision@K. We compare with two sets of regularizers:
(1) diversity-promoting regularizers based on determinant
of covariance (DC) (Malkin & Bilmes, 2008), cosine sim-
ilarity (CS) (Yu et al., 2011), determinantal point process
(DPP) (Kulesza & Taskar, 2012; Zou & Adams, 2012),
InCoherence (IC) (Bao et al., 2013), mutual angles (MA)
(Xie et al., 2015), and decorrelation (DeCov) (Cogswell
et al., 2015); (2) regularizers that are designed for other
purposes, including L2 norm for small norm, L1 norm for
sparsity, low-rankness (Recht et al., 2010) and Dropout
(Srivastava et al., 2014). All these regularizers are ap-
plied to the same DML formulation (Eq.(4) without the
regularizer). In addition, we compare with vanilla Eu-
clidean distance (EUC) and other distance learning meth-
ods including information theoretic metric learning (ITML)
(Davis et al., 2007), logistic discriminant metric learning
(LDML) (Guillaumin et al., 2009), and geometric mean
metric learning (GMML) (Zadeh et al., 2016). We use 5-
fold cross validation to tune the regularization parameter
in {10−5, 10−4, · · · , 105} and the number of components
in {50, 100, 200, · · · , 500}. The best tuned regularization
parameters of UER are: 0.001 for MIMIC, 0.01 for Cars
and Birds. The best tuned component numbers are: 200 for
MIMIC, 100 for Cars and 200 for Birds. The learning rate
of the PGD algorithm is set to 0.001.

In LSTM experiments, the model architecture and exper-
imental settings follow the Bidirectional Attention Flow
(BIDAF) (Seo et al., 2017) model, which consists of the
following layers: character embedding, word embedding,
contextual embedding, attention flow, modeling and out-
put. The contextual and modeling layers use long short-
term memory (LSTM) networks (Seo et al., 2017). In char-
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MIMIC Cars Birds Average
DML 300 300 500 367
DML-L2 300 300 500 367
DML-L1 300 300 500 367
DML-LowRank 400 300 400 367
DML-Dropout 300 300 400 333
DML-DC 200 400 400 333
DML-CS 300 100 300 233
DML-DPP 200 300 300 267
DML-IC 400 300 200 300
DML-MA 300 200 300 267
DML-DeCov 300 400 300 333
DML-UE 200 100 200 167

Table 3. Optimal number of components.

acter embedding based on convolutional neural network,
100 1D filters are used, each with a width of 5. The hidden
state size is set to 100. AdaDelta (Zeiler, 2012) is used for
optimization with a minibatch size of 48. Dropout (Srivas-
tava et al., 2014) with probability 0.2 is used for all LSTM
layers. The model is trained for 8 epochs with early stop
when the validation accuracy starts to drop. We compare
UER with other diversity-promoting regularizers including
DC, CS, DPP, IC, MA and DeCov.

Results Table 2 shows the retrieval precision (K = 10)
on three datasets, where we observe: (1) DML-UE achieves
much better precision than DML, proving that UER is
an effective regularizer in improving generalization per-
formance; (2) UER outperforms other diversity-promoting
regularizers possibly due to its capability to capture global
relations among all components and insensitivity to vector
scaling; (3) diversity-promoting regularizers perform bet-
ter than other types of regularizers such as L2, L1, low
rank and Dropout, corroborating the efficacy of inducing
diversity; (4) DML-UE outperforms other popular distance
learning methods such as ITML, LDML and GMML.

Table 3 shows the number of components that achieves
the precision in Table 2. Compared with DML, DML-
UE uses much fewer components to achieve better preci-
sion. For example, on the Cars dataset, DML-UE achieves
58.2% precision with 100 components. In contrast, with
more components (300), DML achieves a much lower pre-
cision (53.1%). This demonstrates that by encouraging the
components to be diverse, UER is able to reduce model
size without sacrificing modeling power. UER encour-
ages equal “importance” among components such that each
component plays a significant role in modeling data. As
a result, it suffices to use a small number of components
to achieve larger modeling power. Compared with other
diversity-promoting regularizers, UER achieves better pre-
cision with fewer components, demonstrating its ability to
better promote diversity.

Frequent Infrequent
DML 77.6 ± 0.2 64.2 ± 0.3
EUC 58.7 ± 0.1 57.6 ± 0.2
ITML 74.2 ± 0.6 61.3 ± 0.3
LDML 76.1 ± 0.8 62.3 ± 0.9
GMML 75.9 ± 0.1 63.5 ± 0.4
DML-L2 77.5 ± 0.3 65.4 ± 0.1
DML-L1 77.4 ± 0.5 64.8 ± 0.8
DML-LowRank 77.7 ± 0.5 64.0 ± 0.8
DML-Dropout 78.1 ± 0.2 64.9 ± 0.4
DML-DC 77.9 ± 0.4 66.8 ± 0.2
DML-CS 78.0 ± 0.5 66.2 ± 0.7
DML-DPP 77.3 ± 0.2 69.1 ± 0.5
DML-IC 78.5 ± 0.3 67.4 ± 0.2
DML-MA 76.8 ± 0.2 68.4 ± 0.4
DML-DeCov 77.1 ± 0.1 65.3 ± 0.1
DML-UE 78.3 ± 0.3 70.7 ± 0.4

Table 4. Precision@10 (%) on frequent and infrequent diseases
of the MIMIC-III dataset.

Next, we verify whether “diversifying” the components in
DML can better capture infrequent patterns. In the MIMIC-
III dataset, we consider diseases as patterns and consider a
disease as “frequent” if more than 1000 hospital admissions
are diagnosed with this disease and “infrequent” if other-
wise. Table 4 shows the retrieval precision on frequent dis-
eases and infrequent diseases. As can be seen, compared
with the baselines, DML-UE achieves more improvement
on infrequent diseases than on frequent diseases. This in-
dicates that by encouraging the components to diversely
spread out, UER is able to better capture infrequent patterns
(diseases in this case) without compromising the perfor-
mance on frequent patterns. On infrequent diseases, DML-
UE outperforms other diversity-promoting methods, show-
ing the advantage of UER over other diversity-promoting
regularizers. To further verify this, we select 3 most fre-
quent diseases (hypertension, AFib, CAD) and randomly
select 5 infrequent ones (helicobacter pylori, acute chole-
cystitis, joint pain-shlder, dysarthria, pressure ulcer), and
show the precision@10 on each individual disease in Ta-
ble 5. As can be seen, on the five infrequent diseases,
DML-UE achieves higher precision than baselines while
on the three frequent diseases, DML-UE achieves compa-
rable precision.

We empirically verify whether UER can promote uncorre-
lation and evenness. Givenm component vectors, we com-
pute the empirical correlation (cosine similarity) of every
two vectors, then average these pairwise correlation scores
to measure the overall correlation of m vectors. We per-
form the study by learning distance metrics that have 200
components, on the MIMIC-III dataset. The average corre-
lation under unregularized DML and DML-UE is 0.73 and
0.57 respectively. This shows that UER can reduce corre-
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1 (3566) 2 (3498) 3 (2757) 4 (204) 5 (176) 6 (148) 7 (131) 8 (121)
DML 80.2 ± 0.5 79.4 ± 0.8 80.9 ± 0.7 5.6 ± 1.6 6.1 ± 0.8 4.9 ± 0.8 4.3 ± 1.7 5.2 ± 0.6
EUC 66.4 ± 1.2 69.6 ± 1.2 61.8 ± 0.4 7.2 ± 1.0 6.9 ± 0.6 3.1 ± 1.4 6.8 ± 1.2 2.4 ± 0.7
ITML 75.4 ± 1.0 76.3 ± 0.9 79.3 ± 0.9 5.3 ± 1.2 3.7 ± 1.3 6.0 ± 0.9 3.3 ± 0.9 5.0 ± 1.0
LDML 77.0 ± 0.8 75.7 ± 1.0 78.1 ± 0.6 3.2 ± 1.3 5.6 ± 1.8 3.8 ± 1.1 6.7 ± 1.4 5.0 ± 1.3
GMML 76.3 ± 0.4 78.7 ± 0.8 79.8 ± 0.8 3.9 ± 1.8 5.9 ± 1.5 11.9 ± 1.4 6.1 ± 0.6 6.3 ± 1.5
DML-L2 81.0 ± 0.5 79.3 ± 0.8 77.6 ± 0.4 4.4 ± 1.1 5.6 ± 0.9 3.7 ± 0.9 4.9 ± 1.2 6.2 ± 1.1
DML-L1 78.2 ± 1.0 79.9 ± 1.1 80.8 ± 1.2 6.3 ± 1.9 4.8 ± 1.1 9.5 ± 1.0 7.7 ± 1.0 5.6 ± 1.7
DML-LowRank 79.6 ± 0.4 79.7 ± 0.5 75.4 ± 0.5 3.1 ± 1.0 9.2 ± 1.2 5.5 ± 1.4 4.8 ± 0.6 4.5 ± 1.5
DML-Dropout 81.6 ± 0.5 78.7 ± 0.7 80.7 ± 0.5 3.2 ± 1.5 4.2 ± 1.9 6.1 ± 0.9 4.2 ± 0.8 6.2 ± 1.9
DML-DC 77.9 ± 1.0 77.3 ± 0.9 80.3 ± 1.2 7.1 ± 0.8 8.9 ± 0.9 9.7 ± 1.4 11.9 ± 0.7 9.0 ± 1.6
DML-CS 80.0 ± 0.5 80.3 ± 0.7 80.8 ± 0.6 9.4 ± 1.3 4.8 ± 1.7 8.9 ± 1.9 9.7 ± 0.7 9.0 ± 1.0
DML-DPP 79.8 ± 0.8 77.6 ± 0.2 77.4 ± 0.7 10.1 ± 1.1 10.3 ± 0.8 8.8 ± 1.7 11.7 ± 1.2 8.4 ± 1.3
DML-IC 78.8 ± 1.3 79.2 ± 1.1 77.0 ± 0.8 11.8 ± 0.6 9.2 ± 1.4 5.7 ± 1.6 8.7 ± 1.4 9.6 ± 0.7
DML-MA 77.3 ± 1.1 80.1 ± 1.0 81.0 ± 0.7 11.5 ± 1.1 9.9 ± 1.1 4.9 ± 1.1 7.6 ± 1.2 10.4 ± 1.4
DML-DeCov 80.7 ± 0.5 78.8 ± 0.7 80.5 ± 1.1 10.5 ± 0.8 11.4 ± 1.2 9.2 ± 0.7 9.8 ± 1.2 10.4 ± 1.2
DML-UE 81.4 ± 0.9 82.4 ± 0.8 80.5 ± 0.4 14.3 ± 0.9 11.2 ± 1.3 10.7 ± 1.8 15.8 ± 1.4 13.2 ± 0.7

Table 5. Precision@10 (%) on three frequent and five infrequent diseases. The number next to a disease ID is its frequency.

MIMIC Cars Birds
DML 20.5 9.1 10.1
DML-DC 22.3 10.9 11.7
DML-CS 20.9 9.7 10.5
DML-DPP 22.6 10.6 11.2
DML-IC 21.1 9.7 10.5
DML-MA 21.3 9.4 10.6
DML-DeCov 21.7 10.1 10.8
DML-UE 22.8 10.5 11.5

Table 6. Average runtime (hours) of DML methods

lation. To measure evenness, we first measure the “impor-
tance” of components. For each component with parameter
vector a, we project the training examples {xi}Ni=1 onto a:
{x>i a}Ni=1, then use the variance of {x>i a}Ni=1 to measure
the importance of this component. After that, we map these
importance scores into a probabilistic simplex using soft-
max. Finally, the evenness is measured by the KL diver-
gence between the discrete distribution parameterized by
these probabilities and a uniform distribution. A smaller
KL divergence indicates larger evenness. On MIMIC-III
with 200 components, the KL divergence under unregular-
ized DML and DML-UE is 3.54 and 2.92 respectively. This
suggests that our regularizer is able to encourage evenness.

Table 6 shows the runtime taken by DML methods to reach
convergence. Compared with unregularized DML, DML-
UE does not increase the training time substantially. The
relative increase is 11.2% on MIMIC, 15.4% on Cars and
13.9% on Birds. The runtime of DML-UE is close to DML
regularized by other diversity-promoting regularizers.

In the LSTM experiments, Table 7 shows state of the art ac-
curacy on the two QA datasets. Compared with the original
BIDAF (Seo et al., 2017), our method BIDAF-UE achieves
better accuracy, further demonstrating UER’s ability to im-
prove generalization performance. Besides, UER outper-
forms other regularizers.

CNN DailyMail
Dev Test Dev Test

Kadlec et al. (2016) 68.6 69.5 75.0 73.9
Kobayashi et al. (2016) 71.3 72.9 – –
Sordoni et al. (2016) 72.6 73.3 – –
Trischler et al. (2016) 73.4 74.0 – –
Chen et al. (2016) 73.8 73.6 77.6 76.6
Dhingra et al. (2016) 73.0 73.8 76.7 75.7
Cui et al. (2016) 73.1 74.4 – –
Shen et al. (2016) 72.9 74.7 77.6 76.6
BIDAF 76.31 76.94 80.33 79.63
BIDAF-DC 76.36 76.98 80.51 79.68
BIDAF-CS 76.43 77.10 80.37 79.71
BIDAF-DPP 76.32 77.04 80.45 79.77
BIDAF-IC 76.41 77.21 80.49 79.83
BIDAF-MA 76.49 77.09 80.42 79.74
BIDAF-DeCov 76.35 77.15 80.38 79.67
BIDAF-UE 76.58 77.27 80.63 79.86
Dhingra et al. (2016) 77.9 77.9 81.5 80.9
Dhingra et al. (2017) 79.2 78.6 – –

Table 7. Accuracy (%) on the two QA datasets

5. Conclusions
We propose a new diversity-promoting regularizer from
the perspectives of uncorrelation which prefers the compo-
nents in LSMs to be uncorrelated and evenness which en-
courages the components to contribute equally to the mod-
eling of data. Gaining insight from PCA, promoting un-
correlation and evenness both amount to encouraging the
covariance matrix of components to have uniform eigen-
values, which leads to a uniform eigenvalue regularizer
(UER). The UER is applied to DML and LSTM. Experi-
mental studies reveal that UER greatly boosts the perfor-
mance of LSMs, better captures infrequent patterns, re-
duces model size without compromising modeling power
and outperforms other diversity-promoting regularizers.
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