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Abstract: Time series models based on an artificial neural network (ANN) and support vector machine
(SVM) were designed to predict the temporal variation of the upper and lower freshwater-saltwater
interface level (FSL) at a groundwater observatory on Jeju Island, South Korea. Input variables
included past measurement data of tide level (T), rainfall (R), groundwater level (G) and interface
level (F). The T-R-G-F type ANN and SVM models were selected as the best performance model
for the direct prediction of the upper and lower FSL, respectively. The recursive prediction ability
of the T-R-G type SVM model was best for both upper and lower FSL. The average values of the
performance criteria and the analysis of error ratio of recursive prediction to direct prediction (RP-DP
ratio) show that the SVM-based time series model of the FSL prediction is more accurate and stable
than the ANN at the study site.

Keywords: artificial neural network; support vector machine; time series model; freshwater-saltwater
interface; direct prediction; recursive prediction

1. Introduction

Monitoring and forecasting of temporal changes of the freshwater-saltwater interface level (FSL)
in coastal areas is necessary for the early detection of saltwater intrusion and the management of
coastal aquifers. To measure the location and variation of FSL, the geophysical well logging technique
to capture the vertical profile of electrical conductivity or salinity has been traditionally employed [1,2].
Recently, research has been conducted on the development of an interface egg device to monitor the
temporal variation of FSL [3].

For the simulation or prediction of saltwater intrusion into aquifers, physics-based numerical
models have been developed and applied to various field sites; Gingerich and Voss [4] applied
3D-SUTRA model to a coastal aquifer in Hawaii for the simulation of the saltwater intrusion; Werner
and Gallagher [5] characterized seawater intrusion in coastal aquifers of the Pioneer Valley, Australia
using MODHMS model; Guo and Langevin [6] developed SEAWAT, a variable-density finite-difference
groundwater flow mode and Rozell and Wong [7] applied it to Shelter Island, USA for assessing effects
of climate change on the groundwater resources; Yechieli et al. [8] examined the response of the
Mediterranean and Dead Sea coastal aquifers using FEFLOW model. Physics-based numerical models
are powerful tools for the simulation or prediction of temporal and spatial variation of FSL in a given
domain. However, they require a large quantity of precise data related to the physical properties of
the domain, a lack of which can cause severe deterioration in the accuracy and reliability of their
results [9,10]. Time series modeling can be an effective alternative approach for predicting saltwater
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intrusion where geological and geophysical surveys are limited and monitoring data of temporal
variation related to saltwater intrusion are available.

Recently, in the field of hydrology and hydrogeology, research on the application of time series
models—based on machine learning techniques such as an artificial neural network (ANN) and
a support vector machine (SVM) to prediction of water resources variations—have been increased;
Zealand et al. [11] utilized the ANN for forecasting short term stream flow of the Winnipeg River system
in Canada; Akhtar et al. [12] applied ANN to river flow forecasting at Ganges river; Hu et al. [13]
explored new measures for improving the generalization ability of the ANN for the prediction of the
rainfall-runoff; Coulibaly et al. [14] and Mohanty et al. [15] examined the performance of ANN for
the prediction of groundwater level (GWL) fluctuations; Coppola et al. [16] used the ANN for the
prediction of GWL under variable pumping conditions; Liong and Sivapragasam [17], and Yu et al. [18]
employed the SVM for the prediction of the flood stage; Asefa et al. [19] used the SVM for designing
GWL monitoring networks; Gill et al. [20] assessed the effect of missing data on the performance of ANN
and SVM models for GWL prediction; Yoon et al. [21] used ANN and SVM for long-term GWL forecast.

For coastal aquifer management, time series models have been developed to predict groundwater
level (GWL) fluctuations using machine learning methods [22–24]. In the domain of saltwater intrusion,
recent studies have used a time series modeling approach [25,26]; however, their target was to predict
salinity at coastal rivers rather than FSL change in coastal aquifers.

In this study, we monitored temporal variations of the upper and lower FSL of a groundwater
observatory at Jeju Island in South Korea. Using the observed FSL data, we designed time series models
based on artificial neural networks and support vector machines for the prediction of FSL fluctuations.
The prediction accuracy of FSL was estimated with different structures of models. The paper is
organized as follows: Section 2 describes the study site and FSL monitoring data. Section 3 describes
the development of the time series models for FSL prediction based on artificial neural networks and
the support vector machines. The FSL prediction results are described and discussed in Section 4,
and conclusions are drawn in Section 5.

2. FSL Monitoring

2.1. Study Area

The study site is a groundwater observatory (HD2) located at the north-eastern part of Jeju Island
in South Korea (Figure 1). Jeju Island is the largest volcanic island in South Korea with an area of
1849 km2, where the mean annual air temperature is 16.2 ◦C and total annual precipitation is 1710 mm.
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Perennial rivers are scarce on Jeju Island, so groundwater is a main water source for domestic,
agricultural or industrial uses, as well as a main source of drinking water, therefore, the groundwater
has been systematically managed with a saltwater intrusion monitoring network by the local
government. The HD2 groundwater observatory (one of the saltwater intrusion monitoring networks),
is located 2.3 km from the coast-line and 42.73 m (above mean sea level: AMSL). Rainfall and tide
level monitoring stations are located near the north-eastern shoreline at a distance of 6.1 km and
12.3 km from HD2, respectively. A geophysical survey was conducted to measure the vertical profile
of electrical conductivity in HD2. The results show that the freshwater-saltwater interface appears
between −49.0 m and −62.0 m (AMSL) where the electrical conductivities are 16.2 mS/cm and
40.7 mS/cm, respectively (Figure 2).
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Figure 2. Vertical profile of electrical conductivity at the HD2 observatory.

2.2. Monitoring Device and Data

We utilized the interface egg developed by Kim et al. [3] to monitor the temporal variation of FSL
at the HD2 observatory. The interface egg is a monitoring probe designed to have a specific density of
the value between freshwater and saltwater, which enables it to float on the FSL based on the concept
of neutral buoyancy. Using the measured pressure data of the interface egg, and a pressure sensor at
a fixed depth, the position of the FSL at time t is estimated as follows (Figure 3):

FSL(t) = EL − (b − a(t) + c(t)) (1)

where EL is an elevation of a top of well casing; a(t) is the pressure value measured at fixed depth b;
and c(t) is the pressure value measured at the interface egg.
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Figure 3. Schematic diagram of the freshwater-saltwater interface level (FSL) monitoring system using
the interface egg (modified from Kim et al. [3]).

Taking into account the vertical profile of electrical conductivity, we installed two interface eggs
at around −49.0 m and −62.0 m (AMSL) which corresponded to the upper and lower boundaries of
the freshwater-saltwater interface at the HD2 observatory. We additionally installed a pressure sensor
at a fixed depth to monitor the GWL fluctuations. Hourly measured data of GWL, upper and lower
FSLs, rainfall and tide level from 15 September–5 October 2014, are shown in Figure 4.
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Figure 4. Time series data of groundwater level (GWL), upper and lower FSL, rainfall and tide level at
the HD2 observatory.

The result of cross correlation analyses between the time series data at the HD2 observatory shows
that the correlation of upper FSL with tide and GWL is much higher than of the lower FSL (Table 1).
The maximum correlation coefficient between GWL and upper FSL is the highest: 0.97 at a lag time of
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0 h, which indicates that the movement of the upper FSL is strongly and immediately influenced by
GWL. Furthermore, the maximum correlation coefficient of tide–GWL and tide–upper FSL are as high
as 0.85 and 0.83 at a lag time of 2 h, respectively. The correlation of rainfall with GWL and FSL is not
significant for this study.

Table 1. Results of cross correlation analysis for measured time series data at the HD2 observatory.

Variables Max. Correlation Coefficient Lag Time (Hour)

T-G 0.85 2
R-G 0.14 43

T-F (upper) 0.83 2
R-F (upper) 0.11 47
G-F (upper) 0.97 0
T-F (Lower) 0.56 6
R-F (Lower) 0.27 19
G-F (Lower) 0.54 4

Notes: Where T: tide; R: rainfall; G: groundwater level; F: interface level.

3. FSL Prediction Model Development

We employed artificial neural network (ANN) and support vector machine (SVM) techniques to
construct time series models for the prediction of the upper and lower FSL fluctuations. Theoretical
backgrounds of the ANN, SVM, and time series modeling process are described below.

3.1. Aritificial Neural Network (ANN)

The ANN is a mathematical framework patterned after the parallel processing sequence of
the human brain. A feedforward network (FFN), one of the most common structures of the ANN,
is generally composed of three layers of input, hidden and output (Figure 5a). Each layer of the ANN
has a certain number of nodes and each node in a layer is connected to other nodes in the next layer
with a specific weight and bias. The mathematical expression of the calculation process in the FFN is
as follows:

xj = f

(
n

∑
i=1

wijxi + bj

)
(2)

where the subscript i and j denote the previous and present layer, respectively; x is the nodal value;
w and b are weight and bias values, respectively; n is the number of nodes in the previous layer; and f
denotes a transfer function of the present layer. Log-sigmoid and linear functions were allocated to
hidden and output layers, respectively, which are known to be an effective combination for enhancing
the extrapolation ability of the ANN [27,28].

The purpose of the ANN model building is to find the optimal values of weights and biases by
learning or training from the given input and output data. We employed a back-propagation algorithm
(BPA) with momentum suggested by Rumelhart and McClelland [29] for training the ANN. The weight
and bias update rule of the BPA can be expressed as follows:

En =
N

∑
k=1

(ŷn
k − yn

k )
2 (3)

∆wn = MM ∆wn−1 + (1−MM)LR
(
− ∂En

∂wn

)
(4)

∆bn = MM ∆bn−1 + (1−MM)LR
(
−∂En

∂bn

)
(5)
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where En is a sum of squared errors between observed (y) and estimated (ŷ) values at n-th weight and
bias update stage, MM and LR denote the momentum and learning rate values, respectively, and N is
the number of data allocated to the training stage. In this study, three model parameters; i.e., number
of hidden nodes (HN), MM and LR were determined by a grid search that is one of the trial and error
method. We took into account 6 values for every ANN model parameters: HN ∈ [2, 5, 10, 15, 20, 25],
MM ∈ [0.0, 0.1, 0.3, 0.5, 0.7, 0.9], and LR ∈ [0.001, 0.005, 0.01, 0.015, 0.02, 0.025], which composes 216
candidate groups of model parameters.

3.2. Suport Vector Machine (SVM)

The SVM, a relatively new machine learning method suggested by Vapnik [30], is based on the
structural risk minimization (SRM) rather than the empirical risk minimization (ERM) of the ANN.
From a data classification point of view, ERM based machine learning method is designed to minimize
the error of the estimated classifier for the data in the training stage. Therefore, the model update is
stopped when the error of the training stage data is zero or within a certain value of the tolerance.
The SRM based method, such as the SVM, is designed to maximize a margin between data groups to
be classified, which maximize the generalization ability of the model. The mathematical expression of
the output estimation of the SVM is as follows:

S(x) = w · φ(x) + b (6)

where S denotes an SVM estimator, w denotes a weight vector, φ is a nonlinear transfer function that
maps input vectors into a higher-dimensional feature space. Platt [31] introduced a convex optimization
problem with an ε-insensitivity loss function to find the solution of Equation (6) as follows:

minimize
w,b,ξ,ξ∗

1
2‖w‖

2 + C
N
∑

k=1

(
ξk + ξ∗k

)
subject to


yk −wTφ(xk)− b ≤ ε + ξk
wTφ(xk) + b− yk ≤ ε + ξ∗k

ξk, ξ∗k ≥ 0

 k = 1, 2, · · · , N
(7)

where ξ and ξ∗ are slack variables that penalize errors of estimated values over the error tolerance ε,
C is a trade-off parameter that controls the degree of the empirical error in the model building process,
and x is the input vector in the training stage. Equation (7) can be solved using Lagrangian multipliers
and the Karush-Kuhn-Tucker (KKT) optimality condition as follows:

maximize
α, α∗


− 1

2

N
∑

k,l=1

(
αk − α∗k

)(
αl − α∗l

)
K(xk, xl)

−ε
N
∑

k=1

(
αk + α∗k

)
+

N
∑

k=1
yk
(
αk − α∗k

)
subject to


N
∑

k=1

(
αk − α∗k

)
= 0

0 ≤ αk, α∗k ≤ C

to obtain F(x) =
n
∑

k=1

(
αk − α∗k

)
K(x, xk) + b

(8)

where α and α∗ are Lagrangian multipliers, K is a kernel function defined by an inner product of
the nonlinear transfer functions. A radial basis function with parameter σ is commonly used as the
kernel function:

K(x, xk) = exp

(
−‖x− xk‖2

2σ2

)
(9)
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We employed the sequential minimal optimization (SMO) algorithm [32] to solve Equation (8)
and construct the SVM model. The SMO minimizes a subset of target variables by two and finds an
analytical solution of the subset repeatedly, until all given input vectors satisfy the KKT conditions.
A detailed explanation of the SMO algorithm can be found in References [31,32]. The SVM model
parameters of C, ε, and σ were selected by the grid search method like the ANN. We took into account
six values for every SVM model parameters: C ∈ [0.5, 1.0, 3.0, 5.0, 7.0, 10.0], ε ∈ [0.01, 0.05, 0.1, 0.11,
0.12, 0.13], and σ ∈ [0.5, 1.0, 1.5, 2.0, 2.5, 3.0], which composes 216 candidate combinations of model
parameters. A schematic diagram of the SVM structure is shown in Figure 5b.
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Figure 5. Schematic diagrams of the (a) artificial neural network (ANN) and (b) support vector machine
(SVM) structure.

3.3. Time Series Modeling Strategy

In general, two types of strategies can be taken into account for time series modeling: direct
and recursive prediction [33,34]. The direct prediction strategy always uses actual measured data as
input components, thus, model accuracy is high, especially for short-term predictions. For long-term
predictions, it requires separate models for every prediction horizon, which increases the computational
burden and reduces the efficiency of the time series modeling. The direct prediction strategy can be
expressed as follows:

ŷDP
t = Mh

DP
(

Xi
τi

, YτY

)
,


i = 1, ..., n
Xi

τi
= xi

t−1, ..., xi
t−ai

YτY = yt−1, ..., yt−aY

(10)

where ŷDP
t is estimated target value at time t based on the direct prediction strategy, Mh

DP is a time
series model of the direct prediction for the prediction horizon of h; Xi and xi are i-th exogenous input
variable and its components, respectively; Y is an autoregressive input variable that is identical to
a target variable; ai and aY are the number of past measurement data for Xi and Y. The autoregressive
input variable can be deleted if a model only uses exogenous inputs.

The recursive prediction strategy generally utilizes 1-lead time ahead of the direct prediction
model repeatedly for estimating the autoregressive input components, which enables the model to
perform a simulation and long-term prediction effectively. However, the error occurred from the direct
prediction model in the previous time step can be accumulated continuously with time steps, which
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can deteriorate the model performance significantly [21,34]. Therefore, it is important to build an
adequate direct prediction model for stable and accurate recursive prediction. The recursive prediction
strategy is expressed as:

ŷRP
t = M1

DP
(

Xi
τi

, ŶτY

)
,


i = 1, ..., n
Xi

τi
= xi

t−1, ..., xi
t−ai

ŶτY = ŷt−1, ..., ŷt−aY

(11)

where ŷRP
t is estimated target value at time t based on the recursive prediction strategy, M1

DP is a 1-lead
time direct prediction model and Ŷ is the estimated autoregressive input variable. In this study, ANN-
and SVM-based time series models with four types of input structures as combinations of tide level,
rainfall, GWL, and FSL were designed for upper and lower FSL data, respectively. The number of past
measurement data used for the component of each variable is described in Table 2. As an example,
estimated upper FSL value at time t based on the 1-lead time ahead of direct and recursive prediction
strategies using T-R-G-F type model can be expressed as Equations (12) and (13), respectively.

ŷDP
t = MDP

1

(
x1

t−4, . . . , x1
t−1, x2

t−4, . . . , x2
t−1, x3

t−3, . . . , x3
t−1, yt−4, . . . , yt−1

)
(12)

ŷRP
t = MDP

1

(
x1

t−4, . . . , x1
t−1, x2

t−4, . . . , x2
t−1, x3

t−3, . . . , x3
t−1, ŷt−4, . . . , ŷt−1

)
(13)

where x1
t−k, x2

t−k, and x3
t−k are measured data of tide, rainfall, and GWL at time t-k, respectively; yt and

ŷt are measured and estimated FSL values at time t, respectively.
The data allocation for the model building and validation stages of the ANN and SVM models

are described in Table 3.

Table 2. Model input structures and the number of components for each variable.

Input Structures
(Model Type)

Number of Components for Variables

T R G F Total

Upper FSL

T-R 4 4 – – 8
T-R-F 4 4 – 4 12
T-R-G 4 4 3 – 15

T-R-G-F 4 4 3 4 19

Lower FSL

T-R 8 4 – – 12
T-R-F 8 4 – 4 16
T-R-G 8 4 5 – 17

T-R-G-F 8 4 5 4 21

Notes: Where T: tide; R: rainfall; G: groundwater level; F: interface level.

Table 3. Data allocation for time series model building and validation.

Data Type
Data Allocation

Model Building Model Validation

Upper FSL Num. data 250 247
Time 7:00 15 September–12:00 21 September 13:00 21 September–23:00 5 October

Lower FSL
Num. data 300 197

Time 7:00 15 September–17:00 27 September 18:00 27 September–23:00 5 October
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4. Results and Discussion

4.1. Direct Prediction of FSL

Time series models of 1-h direct prediction for the upper and lower FSL were constructed.
The selected model parameters of the ANN and SVM for each type of input structure are described
in Table 4.

Table 4. The selected ANN and SVM model parameters for the FSL prediction.

Model Type
ANN SVM

HN LR MM C Eps Sig

Upper
FSL

T-R 2 0.001 0.0 7.0 0.13 3.0
T-R-F 15 0.020 0.0 5.0 0.05 2.5
T-R-G 2 0.005 0.3 7.0 0.10 3.0

T-R-G-F 5 0.005 0.0 10.0 0.05 3.0

Lower
FSL

T-R 15 0.001 0.9 3.0 0.11 2.0
T-R-F 15 0.001 0.3 5.0 0.13 3.0
T-R-G 20 0.001 0.9 0.5 0.13 2.5

T-R-G-F 10 0.001 0.0 5.0 0.13 3.0

Three performance criteria were used to evaluate the prediction ability of the ANN and
SVM model, including the root mean squared error (RMSE), mean absolute relative error (MARE),
and correlation coefficient (CORR), as follows:

RMSE =

√√√√ 1
N

N

∑
k=1

(ŷk − yk)
2 (14)

MARE =
1
N

N

∑
k=1

|ŷk − yk|∣∣ymax
k − ymin

k

∣∣ × 100 (15)

CORR =

N
∑

k=1
(yk − y)

(
ŷk − ŷ

)
√

N
∑

k=1
(yk − y)2

√
N
∑

k=1

(
ŷk − ŷ

)2
(16)

where ymax and ymin denote the maximum and minimum values of the observed data, respectively;
and y and ŷ denote the average observed and estimated values, respectively. The RMSE is a useful
index for model performance evaluation when large errors are particularly undesirable as the errors are
squared before they are averaged, which makes large errors have a relatively high weight. The MARE
is the mean absolute error value divided by the range of observed data, thus it can compare the
prediction results of the time series data showing different ranges of fluctuation. The CORR measures
the extent and direction of a linear relationship between the observed and estimated values.

The model performance criteria of ANN and SVM models for 1-h direct prediction of the upper
FSL show that overall prediction accuracy is high: RMSE was below 0.07 m, MARE below 10.82%,
and CORR over 0.89 (Table 5). The model performance of the T-R-F and T-R-G-F type models (which
uses past measurement data of FSL as input values) were better than that of the T-R and T-R-G type
models. The T-R-G-F type SVM model showed the best performance for 1-h direct prediction of the
upper FSL. The average value of each performance criteria shows that the overall direct prediction
ability of the SVM was better than ANN for the upper FSL data in this study. The observed data
and direct prediction results for the upper FSL are shown in Figure 6. Various types of ANN and
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SVM models were trained adequately during the model building stage and there was no significant
difference between the estimated values for the input structures.

Table 5. Model performance criteria values for the direct prediction of upper FSL.

Model Index T-R T-R-F T-R-G T-R-G-F Average

ANN
RMSE (m) 0.061 0.034 0.042 0.032 0.042
MARE (%) 10.329 5.901 7.083 5.613 7.232

CORR 0.888 0.965 0.935 0.964 0.938

SVM
RMSE (m) 0.072 0.029 0.038 0.023 0.040
MARE (%) 12.335 4.959 6.221 3.944 6.865

CORR 0.882 0.982 0.954 0.980 0.949
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The quality performance of the direct prediction for the lower FSL was not as high as the upper
FSL: the MARE values lay between 8.438% and 18.494%, and CORR values between 0.549 and 0.908
(Table 6). The RMSE values, ranging from 0.020 m to 0.040 m, were lower than the upper FSL prediction;
however, this was not due to the prediction result for the lower FSL being better, but that the range of
fluctuation of the lower FSL was smaller than the upper. The correlation of tide level and GWL with
the lower FSL was weaker than the correlation with the upper FSL, which could cause deterioration
in the model performance. The performance of the T-R-F and T-R-G-F type models was better than
that of the T-R and T-R-G type models for lower FSL prediction, which was similar to the upper FSL
prediction. The T-R-G-F type ANN model showed the best performance for 1-h direct prediction
of the lower FSL; however, the average value of the performance criteria of the SVM models was
better than the ANN. The observed data and direct prediction results for the lower FSL are shown in
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Figure 7. The model building stage data included some abnormally high peaks (dashed circle) that
probably had occurred due to pumping for an agricultural activity around the study site, which were
not sufficiently trained by the ANN and SVM models, and can cause the underestimation at peak
values in the validation stage.

Table 6. Model performance criteria values for the direct prediction of lower FSL.

Model Index T-R T-R-F T-R-G T-R-G-F Average

ANN
RMSE (m) 0.034 0.020 0.040 0.020 0.028
MARE (%) 15.314 8.438 18.494 8.623 12.717

CORR 0.593 0.885 0.549 0.908 0.734

SVM
RMSE (m) 0.028 0.022 0.030 0.021 0.025
MARE (%) 12.630 9.229 12.654 9.104 10.904

CORR 0.777 0.859 0.733 0.867 0.809
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The results of the direct prediction showed that the best performance models for the upper and
lower FSL were different and that the performance of the SVM model was less sensitive to the input
structure of the ANN for the FSL data.

4.2. Recursive Prediction of FSL

The recursive prediction models of the upper and lower FSL were designed using the 1-h direct
prediction models. The model performance criteria for the recursive prediction of the upper and lower
FSL are described in Tables 7 and 8, respectively.
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Table 7. Model performance criteria values for the recursive prediction of upper FSL.

Model Index T-R T-R-F T-R-G T-R-G-F Average

ANN
RMSE (m) 0.061 0.061 0.042 0.056 0.055
MARE (%) 10.329 10.582 7.083 9.852 9.462

CORR 0.888 0.965 0.935 0.892 0.902

SVM
RMSE (m) 0.072 0.069 0.038 0.040 0.055
MARE (%) 12.335 12.255 6.221 7.043 9.463

CORR 0.882 0.920 0.954 0.943 0.925

Table 8. Model performance criteria values for the recursive prediction of lower FSL.

Model Index T-R T-R-F T-R-G T-R-G-F Average

ANN
RMSE (m) 0.034 0.042 0.040 0.034 0.037
MARE (%) 15.314 16.837 18.494 14.937 16.395

CORR 0.593 0.420 0.549 0.806 0.592

SVM
RMSE (m) 0.028 0.034 0.030 0.035 0.032
MARE (%) 12.630 14.347 12.654 14.773 13.601

CORR 0.777 0.611 0.733 0.592 0.678

The overall model performance of the recursive prediction was lower than the direct prediction.
The T-R-G type SVM models showed the best performance and the average values of the performance
criteria of the SVM was superior to ANN for the recursive prediction of both the upper and lower
FSL. The success of the recursive prediction highly relied on the generalization ability of the model to
capture the relationship between the input and output variables of the given system as the observed
data of the output variables are not available as input components. Based on the SRM, the inherent
generalization ability of the SVM may capture the relationship between input and output data of this
study more effectively than the ANN. The recursive prediction results of the ANN and SVM models
for the upper and lower FSL are shown in Figures 8 and 9, respectively.

Water 2017, 9, 323  12 of 16 

 

Table 7. Model performance criteria values for the recursive prediction of upper FSL. 

Model Index T-R T-R-F T-R-G T-R-G-F Average

ANN 
RMSE (m) 0.061 0.061 0.042 0.056 0.055 
MARE (%) 10.329 10.582 7.083 9.852 9.462 

CORR 0.888 0.965 0.935 0.892 0.902 

SVM 
RMSE (m) 0.072 0.069 0.038 0.040 0.055 
MARE (%) 12.335 12.255 6.221 7.043 9.463 

CORR 0.882 0.920 0.954 0.943 0.925 

Table 8. Model performance criteria values for the recursive prediction of lower FSL. 

Model Index T-R T-R-F T-R-G T-R-G-F Average

ANN 
RMSE (m) 0.034 0.042 0.040 0.034 0.037 
MARE (%) 15.314 16.837 18.494 14.937 16.395 

CORR 0.593 0.420 0.549 0.806 0.592 

SVM 
RMSE (m) 0.028 0.034 0.030 0.035 0.032 
MARE (%) 12.630 14.347 12.654 14.773 13.601 

CORR 0.777 0.611 0.733 0.592 0.678 

The overall model performance of the recursive prediction was lower than the direct 
prediction. The T-R-G type SVM models showed the best performance and the average values of 
the performance criteria of the SVM was superior to ANN for the recursive prediction of both the 
upper and lower FSL. The success of the recursive prediction highly relied on the generalization 
ability of the model to capture the relationship between the input and output variables of the given 
system as the observed data of the output variables are not available as input components. Based on 
the SRM, the inherent generalization ability of the SVM may capture the relationship between input 
and output data of this study more effectively than the ANN. The recursive prediction results of the 
ANN and SVM models for the upper and lower FSL are shown in Figures 8 and 9, respectively.  

Figure 8. Recursive prediction results for the upper FSL: (a) ANN and (b) SVM. 

(a)
ValidationModel Building

(b)
Model Building Validation

Figure 8. Recursive prediction results for the upper FSL: (a) ANN and (b) SVM.



Water 2017, 9, 323 13 of 16
Water 2017, 9, 323  13 of 16 

 

 
Figure 9. Recursive prediction results for the lower FSL: (a) ANN and (b) SVM. 

The direct prediction strategy is efficient for the short-term prediction where a real-time 
measurement data of the target variable is available, and the recursive prediction strategy is 
necessary for the long-term prediction or the simulation of the target variable variation. However, 
as mentioned above and in Section 3.3, the error of the estimated target value can be accumulated 
with time steps in the recursive prediction strategy. Thus, it is important to build an adequate direct 
prediction model that learnt a response function of the given system. To evaluate the stability of the 
recursive model building, the RP-DP ratio [24] was calculated for T-R-F and T-R-G-F type models 
with 216 candidate model parameter groups: 

predictiondirecttheofRMSE
predictionrecursivetheofRMSEratioDPRP =−  (17) 

The RP-DP ratio value stands for the extent of the consistency between the direct and recursive 
prediction models. Thus, a narrower distribution with lower values of the RP-DP ratio indicates a 
higher possibility that a recursive prediction model of high consistency with a direct prediction 
model is selected. The calculated RP-DP ratio values of the ANN models were more distributed 
than the SVM for both the T-R-F and T-R-G-F type models and the upper and lower FSL (Figure 10). 
These results indicate that the SVM method is more efficient and stable than the ANN for the 
recursive prediction of the FSL data in this study.  

(a)

(b)

Model Building Validation

Model Building Validation

Figure 9. Recursive prediction results for the lower FSL: (a) ANN and (b) SVM.

The direct prediction strategy is efficient for the short-term prediction where a real-time
measurement data of the target variable is available, and the recursive prediction strategy is necessary
for the long-term prediction or the simulation of the target variable variation. However, as mentioned
above and in Section 3.3, the error of the estimated target value can be accumulated with time steps in
the recursive prediction strategy. Thus, it is important to build an adequate direct prediction model
that learnt a response function of the given system. To evaluate the stability of the recursive model
building, the RP-DP ratio [24] was calculated for T-R-F and T-R-G-F type models with 216 candidate
model parameter groups:

RP−DP ratio =
RMSE of the recursive prediction

RMSE of the direct prediction
(17)

The RP-DP ratio value stands for the extent of the consistency between the direct and recursive
prediction models. Thus, a narrower distribution with lower values of the RP-DP ratio indicates
a higher possibility that a recursive prediction model of high consistency with a direct prediction
model is selected. The calculated RP-DP ratio values of the ANN models were more distributed
than the SVM for both the T-R-F and T-R-G-F type models and the upper and lower FSL (Figure 10).
These results indicate that the SVM method is more efficient and stable than the ANN for the recursive
prediction of the FSL data in this study.
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5. Summary and Conclusions 

In this study, the temporal variation of the upper and lower FSL was monitored using interface 
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The monitoring and prediction of FSL is necessary for the sustainable use of groundwater 
resources in coastal aquifers. The groundwater is the sole and main water source of Jeju Island and 
the local government has installed and operated a saltwater intrusion monitoring network. It is 
expected that the developed model for FSL prediction can be a useful tool in the future 
management of groundwater resources in coastal areas. 
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5. Summary and Conclusions

In this study, the temporal variation of the upper and lower FSL was monitored using interface
eggs at the HD2 observatory on Jeju Island, South Korea. The ANN- and SVM-based time series
models of FSL prediction were developed and their performance compared. The result of the direct
prediction shows that the T-R-G-F type ANN model was best for upper FSL prediction and the T-R-G-F
type SVM model for the lower FSL. The T-R-G type SVM model was best for the recursive prediction
of both upper and lower FSL. The average values of the model performance criteria indicated that the
overall prediction ability of the SVM model was superior to the ANN. The analysis of the RP-DP ratio
distribution showed that the SVM-based recursive prediction model was more stable and efficient than
the ANN for FSL prediction of the study site.

The monitoring and prediction of FSL is necessary for the sustainable use of groundwater
resources in coastal aquifers. The groundwater is the sole and main water source of Jeju Island
and the local government has installed and operated a saltwater intrusion monitoring network. It is
expected that the developed model for FSL prediction can be a useful tool in the future management
of groundwater resources in coastal areas.
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