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Abstract: Species in the genus Gambierdiscus produce ciguatoxins (CTXs) and/or maitotoxins (MTXs),
which may cause ciguatera fish poisoning (CFP) in humans if contaminated fish are consumed.
Species of Gambierdiscus have previously been isolated from macroalgae at Rangitahua (Raoul Island
and North Meyer Islands, northern Kermadec Islands), and the opportunity was taken to sample for
Gambierdiscus at the more southerly Macauley Island during an expedition in 2016. Gambierdiscus
cells were isolated, cultured, and DNA extracted and sequenced to determine the species present.
Bulk cultures were tested for CTXs and MTXs by liquid chromatography-mass spectrometry
(LC-MS/MS). The species isolated were G. australes, which produced MTX-1 (ranging from 3 to
36 pg/cell), and G. polynesiensis, which produced neither MTX-1 nor, unusually, any known CTXs.
Isolates of both species produced putative MTX-3. The risk of fish, particularly herbivorous fish,
causing CFP in the Zealandia and Kermadec Islands region is real, although in mainland New Zealand
the risk is currently low. Both Gambierdiscus and Fukuyoa have been recorded in the sub-tropical
northern region of New Zealand, and so the risk may increase with warming seas and shift in the
distribution of Gambierdiscus species.

Keywords: Gambierdiscus; ciguatera fish poisoning; ciguatoxins; maitotoxin; Kermadec Islands,
New Zealand

1. Introduction

Gambierdiscus Adachi and Fukuyo is an epiphytic dinoflagellate genus found attached to
macroalgae, dead corals and volcanic sands throughout the world’s tropical regions [1,2]. In the
Pacific region, Gambierdiscus is found on macroalgae, particularly filamentous red macroalgae, coralline
turfs, and the calcareous green genus, Halimeda, and on the volcanic debris that is common in the
active zones.

Species in the Gambierdiscus genus are the causative organisms of ciguatera fish poisoning (CFP) [2].
The toxins produced by some Gambierdiscus species include ciguatoxins (CTXs), maitotoxin (MTX) and
its analogues, gambieric acids, gambieroxide, gambierol and gambierone [3]. CTXs are considered the
main cause of CFP, the economic impacts of which on Pacific Island communities are just beginning to
be recognized. The illness is widely under-reported and may include gastrointestinal and neurological
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effects, and deaths have occurred [4,5]. Folk remedies based on the local floras are used in many
Pacific Islands, and intravenous mannitol has been suggested as a possible treatment [6], although
the efficacy of this substance has been disputed [7]. Currently, treatment is largely supportive and
symptom-driven, as a proven antidote has not yet been developed for CFP [5].

The number of new Gambierdiscus species being described annually has increased. At the
beginning of 2017, fifteen species of Gambierdiscus had been described globally with three of these
being described in 2016, an increase of nearly 30% in that one year [8]. One species, G. honu, described
in 2017, was isolated from Rangitahua/North Meyer Island, Kermadec Islands [9]. Currently, twelve
Gambierdiscus species of the fifteen described are known in the Pacific region, although the CTX
producer, G. polynesiensis, has been isolated much less frequently from samples than the MTX-1
producer, G. australes [8] (Figure 1).

CFP was recently identified as a potential risk in the temperate southwest Pacific based on
the emergence of G. carpenteri blooms in the temperate waters of New South Wales, Australia [10].
G. carpenteri has previously been found only in the tropical waters of northern Australia and, while
G. carpenteri is not a CTX producer, other CTX producing species may also move into this region in
time. The genus Gambierdiscus and the closely related genus Fukuyoa (previously transferred from
the genus Gambierdiscus) have also been reported from New Zealand’s northern, mainland coastal
waters [11,12] and the same potential risk scenario applies.
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The expected effects of climate change include changing currents and warming seas [13,14].
The risk of CFP is expected to increase as Gambierdiscus is delivered to more temperate regions [10],
where cells may become adapted to cooler conditions. Another likely scenario is that cells will be
transported to previously temperate habitats which have become tropicalized [15]. A more haphazard
way that the biogeographic occurrence of Gambierdiscus may expand, and therefore CFP risk occur in
new areas, is via rafting pumice, following submerged volcanic activity [16]. For example, pumice
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from the Havre seamount eruption in the Kermadec Islands (2012) was tracked over thousands of
kilometers of the Pacific Ocean [17]. These rafts are not uncommon in the southwestern Pacific and the
pumice is often fouled with mixed populations of flora and fauna [17].

Mainland New Zealand is situated on what is now considered, albeit controversially, to be a
submerged geological continent, Zealandia [18]. Zealandia reaches (and includes) New Caledonia
to the northwest, where CFP has been well documented [19] and where G. toxicus has been
reported [20,21]. There has been speculation that CTX-like compounds found in giant clams
(Tridacna spp.) in New Caledonia were due to cyanobacteria [22], but this remains hypothetical. Clams
may take up Gambierdiscus and accumulate CTX [23] and storage of toxins produced by dinoflagellates
(for example, saxitoxins) in clam siphons for extended periods of time is well documented [24].

Rangitahua (Kermadec Islands) is a New Zealand territory, geographically distinct from Zealandia.
They form a subtropical island arc in the South Pacific Ocean. The islands extend 800–1000 km northeast
of New Zealand’s North Island, and a similar distance southwest of Tonga (Figure 2). The islands are
currently uninhabited, except for the permanently-manned Raoul Island Station, the northernmost
outpost of New Zealand. Rangitahua is considered a stepping stone for fish migrations from tropical
islands in the region migrating to northern New Zealand and the risk of tropical fish arriving in
New Zealand’s northern coastal waters contaminated with CTXs is real [25].
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The first scientific expedition to the Kermadec Islands, on HMS Herald, was in 1854 [26], but it was
not until 1984 that a dedicated marine survey was undertaken. The largest and most comprehensive
marine survey was undertaken on board the RV Braveheart in 2011 [27]. Prior to 2011, the only
micro-algae in the class Dinophyceae recorded from the Kermadec Islands were endosymbionts of
corals in the genus Symbiodinium (Order Suessiales) [28]. During further expeditions in 2013 and 2015,
epiphytic micro-algae were collected from macroalgae and coralline turfs and the dinoflagellate
genera Gambierdiscus, Amphidinium, Ostreopsis, Prorocentrum and Coolia were recorded from
Rangitahua [25,29,30]. In this study, dinoflagellates isolated from macroalgae on Macauley Island,
October 2016, were identified and their toxin production, if any, determined.
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2. Results

2.1. Dinoflagellate Species Identified

Sea water samples collected from mixed macroalgae at Macauley Island were transported to the
Cawthron Institute where dinoflagellates were isolated and cultured. Successful cultures included
species in the genera Gambierdiscus, Ostreopsis and Coolia and all were identified by analysis of DNA
sequence data (Table 1).

Gambierdiscus australes was the most frequently isolated species from the Macauley Island
samples and twenty-seven isolates were cultured and analysed in order to select MTX-1 and MTX-3
producers for further research purposes, including production of reference materials. Two isolates of G.
polynesiensis were also successfully cultured and one is maintained in the Cawthron Institute Culture
Collection of Micro-algae (CICCM), a nationally significant collection, as CAWD254. The Gambierdiscus
species were identified by analysis of large subunit ribosomal RNA sequences (D8–10 region; large
sub-unit (LSU)) (Table 1; Figure 3).

Co-occurring species were Ostreopsis sp. 3 [31] and C. malayensis [32] (GenBank accession numbers
MF109035 and MF109031 respectively). Prorocentrum and Amphidinium cells were identified by light
microscopy, but were not isolated. Some samples contained high concentrations of foraminifera.

Samples were also collected from L’Esperance Rock, the southern Kermadec Islands, but no
dinoflagellates were observed. These samples contained high concentrations of diatom frustules as
well as nematodes and cyanobacteria (cf. Oscillatoria spp.).
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Table 1. Identification of Gambierdiscus isolates from Macauley Island, Kermadec Islands, by analysis
of DNA sequencing data, and toxin production by the isolates as determined by LC-MS/MS.

Species Isolate Code CICCM Code GenBank
Accession Number

Toxins Produced (pg/cell) 1

Ciguatoxins 2 Maitotoxin-1

G. polynesiensis Mac3-o CAWD254 MF109032 ND ND
G. australes Mac1-b CAWD255 MF109033 ND 36
G. australes Mac2-a n ND 25
G. australes Mac2-b n ND 12
G. australes Mac2-c n ND 22
G. australes Mac3-a n ND 14
G. australes Mac3-b n ND 20
G. australes Mac3-c CAWD256 MF109034 ND 31
G. australes Mac3-e n ND 19
G. australes Mac3-i n ND 3
G. australes Mac3-m n ND 19
G. australes Mac3-n n ND 5
G. australes Mac4-e n ND 10
G. australes Mac4-f n ND 9
G. australes Mac4-fuk n ND 21
G. australes Mac4-g n ND 27
G. australes Mac5-a n ND 16
G. australes Mac5-b n ND 15
G. australes Mac5-c n ND 8
G. australes Mac5-e n ND 20
G. australes Mac5-f n ND 8
G. australes Mac5-g n ND 7
G. australes Mac5-j n ND 32
G. australes Mac5-l n ND 6
G. australes Mac6-a n ND 18

1 All isolates tested produced MTX-3; 2 Ciguatoxins monitored were CTX-3B; CTX-3C; CTX-4A; CTX-4B; n: not
deposited in the Cawthron Institute Culture Collection of Micro-algae (CICCM); ND: not detected.

2.2. Toxin Production

All the G. australes isolates tested produced MTX-1 and MTX-3. The range of concentrations of
MTX-1 per cell was 3–36 pg/cell, with a mean of 17 pg/cell and median of 18 pg/cell (Table 1). Two of
the best producers (Mac1-b and Mac3-c) were submitted to the Cawthron Institute Culture Collection
of Micro-algae (CICCM), as CAWD255 and CAWD256 respectively, for on-going maintenance.

The G. polynesiensis isolate CAWD254 did not produce any known CTXs or MTX-1, but did
produce MTX-3.

3. Discussion

In late October 2016, an expedition aboard the RV Tangaroa visited the Kermadec Islands, including
Macauley Island (Figure 2), to undertake marine biodiversity surveys. Samples were collected from
macroalgae for the isolation of Gambierdiscus. The study focused on Macauley Island, but included
two samples from L’Esperance Rock. However, no dinoflagellates were found in the latter samples.

Isolates of Gambierdiscus from Macauley Island were predominantly the MTX-1 producer,
G. australes, and the best producers have been retained for further research, including full
characterisation of MTX-3. The range of MTX-1 concentrations per cell, as determined by liquid
chromatography-mass spectrometry (LC-MS/MS) showed a wide variation. A great variation was also
determined by Pisapia et al. (2017) using neuro-2a and erythrocyte lysis bioassays [33]. The toxicity of
a selection of these isolates is summarized by Munday et al. (this issue of Marine Drugs) [34].

The known CTX producer, G. polynesiensis was also isolated from Macauley Island (CAWD254).
The Macauley Island isolate did not, unusually, produce any known CTXs (or MTX-1), CTX being
considered the main cause of CFP. The presence of this species suggests that the Kermadec Islands
do offer suitable habitat for this species, and so there is a potential risk of CFP occurring when fish
are caught and consumed from along the Kermadec arc. Toxicology studies will be carried out to
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determine whether CTX compounds that were not targeted in the analyses carried out in this study, or
other non-related toxic compounds, are produced.

Investigation into the genetic differences between toxic and non-toxic isolates of G. polynesiensis
will be carried out and more strains of this species will be isolated and analysed for toxins in the
future. The suite of species present at Macauley Island is similar to earlier isolations from Rangitahua,
although G. polynesiensis was not successfully cultured from Rangitahua samples, but was detected by
metabarcoding analysis (see paper by Smith et al., this issue of Marine Drugs) [35]. Both G. honu and
G. pacificus were isolated from Rangitahua, bringing the number of species isolated from the Kermadec
Islands to four (Figure 1). The type species, G. toxicus, was not found in the Kermadec Islands, but
has been reported from New Caledonia [22], which is considered part of Zealandia. Gambierdiscus
sp. has also been reported from mainland New Zealand [11]. One-third of the fifteen described
Gambierdiscus species, twelve of which have been reported from the Pacific region [8], have therefore
been isolated from the Kermadec/Zealandia region. All the species from the Kermadec Islands tested
at Cawthron Institute have produced putative MTX-3, which has been termed ‘putative’ (reputed to
be) due to the ambiguity surrounding the structure and its relation to other toxin analogues produced
by Gambierdiscus. The parent mass is approximately one-third the MW of MTX. MTX-3 is ubiquitous to
all Gambierdiscus species isolated from throughout the Pacific, although G. carpenteri isolates from NSW
Australia have been shown not to produce it. Research is currently being conducted on the isolation
and purification of MTX-3 with the aim of answering these fundamental questions.

The dominant co-occurring dinoflagellates were isolated during this study and could be used as
indicators of potential Gambierdiscus presence for future sampling efforts, as they share the same habitat
as Gambierdiscus. At both Macauley Island and Rangitahua [29,30] co-occurring dinoflagellate species
included Ostreopsis sp. 3 and Coolia malayensis. The latter is a common dinoflagellate in mainland
New Zealand’s northern waters [36], where Fukuyoa paulensis (previously G. cf. yasumotoi) has also
been found [12,35]. The habitat is therefore suitable for Gambierdiscus to flourish, particularly with the
warming seas recorded in Northland in recent years [8].

The risk of CFP occurring in New Zealand and its territories will continue to be assessed using
traditional and molecular techniques, including high-throughput DNA sequencing. The risk is
currently considered low in the Kermadec Islands, particularly as CTX is considered of greater concern
for CFP than the MTXs produced by the commonly isolated G. australes. The potential for CFP incidents
to occur in the future is, however, real as CTX-producing strains of G. polynesiensis occur throughout
the Pacific and with more rigorous sampling it is only a matter of time before toxic strains are found at
sites such as Rangitahua. As more G. polynesiensis isolates are tested for CTX production more data
will be generated, and that data will be linked with the changing environmental conditions to inform
predictive monitoring and so predict CFP.

The risk of fish, particularly herbivorous fish, causing CFP in the Zealandia region is real, as
G. toxicus (isolated from New Caledonia) [22] is considered toxic as determined by cell-based bioassays
(although LC-MS/MS data is lacking). The risk for CFP occurring in mainland New Zealand is
currently considered low, but with sea temperature increases and the expanding distribution of
Gambierdiscus throughout the Pacific that risk will continue to be closely monitored.

4. Materials and Methods

4.1. Sampling, Isolation and Culture

Sampling was carried out on October 2016 by divers on the southeast coast of Macauley Island,
Kermadec Islands (Lat. 30◦23.75′ S, Long. 178◦42.17′ W; Figure 1). Macroalgae attached to rocks
were shaken into containers of local seawater to dislodge dinoflagellates. The macroalgae were then
removed. Sub-samples were transferred to 50 ml tubes (Corning CentriStar, Shanghai, China) and
germanium dioxide and f/2 medium [37] were added to suppress diatom growth and to encourage
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dinoflagellate growth respectively (1% final conc. each). Sampling was also carried out at L’Esperance
Rock (Lat. 31◦34.3 75′ S, Long. 17◦83.03′ W).

Dinoflagellate cells were isolated as described previously [36] and transferred to 12-well tissue
culture plates (Becton Dickinson, Franklin Lakes, NJ, USA) containing f/2 medium and filtered
(0.35 µm), UV treated sea water. Culture conditions were: 25 ◦C (±2 ◦C); 40–70 µmol m−2 s−1 photon
irradiance; 12:12 h L:D). Selected clonal cultures of the Gambierdiscus species isolated during this study
are maintained in the CICCM.

4.2. DNA Sequencing and Phylogenetic Analyses of Dinoflagellate Cultures

Dinoflagellate cultures were centrifuged (542 g, 15 min, RT) and DNA extracted using a
PowerSoil™ DNA isolation kit (Mo Bio Inc., Carlsbad, CA, USA). The D8-D10 region of the large
subunit ribosomal RNA gene (LSU rDNA) was amplified as described previously [38] using primers
D8F and D10R [39]. The PCR amplifications were carried out as described previously [38] and
sequencing was carried out at Genetic Analysis Services, University of Otago (Dunedin, New Zealand).
Sequences were aligned using the ClustalW algorithm [40] in Geneious® v8.1.5 [41] and conflicts
resolved by manual inspection. Sequences were aligned using the ClustalW algorithm in Geneious
with publically available sequences from GenBank (www.ncbi.nlm.nih.gov). Bayesian analyses were
carried out in Geneious® using MrBayes 3.1.2 [42]. The evolutionary model (general time reversible
with gamma-shaped among-site variation, GTR+G) was selected using MrModeltest v 2.2 [43].
The consensus sequences from all reads of each taxonomic assignment were aligned with references
sequences. Analyses of alignments were carried out in two simultaneous runs with four chains each
2 × 106 generations, sampling every 1000 trees, discarding a burn-in period of the first 1000 sampling
points. After 2 × 106 generations, potential scale reduction factor values were approximately 1.0 and
average standard deviation of split frequencies were less than 0.01.

4.3. Toxin Analyses

Gambierdiscus cultures were centrifuged (3200× g, 15 ◦C, 15 min) and the growth media decanted
to afford a cell pellet. Cell lysis was induced using a sonication bath (59 Hz, 10 min) and the toxins
extracted twice with pure methanol (approx. 200,000 cells/mL). Each extract was analysed for
selected algal CTXs analogues (LoD 1 ng/mL), MTX-1 (LoD 1 ng/mL) and a putative MTX analogue
previously described as MTX-3 [44]. This was performed using a quantitative LC-MS/MS method
developed at the Cawthron Institute (full method details will be disclosed in an upcoming manuscript).
MTX-1 quantitation was performed using non-certified in-house reference material and therefore
the results presented are for intra-study comparison only. LC-MS/MS analysis was carried out
on a Waters Acquity UPLC i-Class system (Waters, Milford, MA, USA) coupled to a Waters Xevo
TQ-S triple quadrupole mass spectrometer with electrospray ionization (Waters, Manchester, UK).
Chromatographic separation used a BEH Phenyl column (Waters 1.7 µm, 100 × 2.1 mm column)
and eluted with ammoniated mobile phases; (A) Milli-Q (0.2% NH4OH v/v) and (B) acetonitrile
(0.2% NH4OH). Multiple reaction monitoring (MRM) transitions in ESI+, quantitative and qualitative,
were established for the dominant [M + H]+ ions of the algal CTXs (CTX-3B; CTX-3C; CTX-4A; CTX-4B)
and quantitation was performed using reference material provided by Dr. Mireille Chinain, Institut
Louis Malardé, Tahiti, French Polynesia. MRM transitions to monitor the MTX-1 di-anion [M − 2H]−,
in ESI-, were generated using material provided by Prof. Takeshi Yasumoto, Biochemistry and Food
Technology Division, National Research Institute of Fisheries Science, Japan. Data acquisition and
processing was performed with TargetLynx software (Waters-Micromass, Manchester, UK). Peak areas
were integrated and sample concentrations calculated from linear calibration curves generated from
calibration standards.

www.ncbi.nlm.nih.gov
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5. Conclusions

The genus Gambierdiscus occurs in New Zealand’s northeastern Kermadec Islands and throughout
the Zealandia regions of the southwestern Pacific. Research will continue in these areas to ascertain
the risk of ciguatera fish poisoning for New Zealand. The risk is currently extremely low, but is likely
to increase with warming seas and the geographic expansion of Gambierdiscus to new areas.
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