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Abstract
Tumor cells show the Warburg effect: high glucose uptake andBackground: 

lactate production despite sufficient oxygen supply. Otto Warburg found this
effect in tissue slices and in suspensions of Ehrlich ascites tumor cells.
Remarkably, these ascites tumor cells can transiently take up glucose an order
of magnitude faster than the steady high rate measured by Warburg for hours.

The purpose of the transiently very high glucose uptake isMethods: 
investigated here with a computational model of glycolysis, oxidative
phosphorylation and ATP consumption which reproduces short kinetic
experiments on the ascites tumor cells as well as the long-lasting Warburg,
Crabtree and Pasteur effects. The model, extended with equations for glucose
and O  transport in tissue, is subsequently used to predict metabolism in tumor
cells during fluctuations of tissue blood flow resulting in cycling hypoxia.

The model analysis suggests that the head section of the glycolyticResults: 
chain in the tumor cells is partially inhibited in about a minute when substantial
amounts of glucose have been taken up intracellularly; this head section of the
glycolytic chain is subsequently disinhibited slowly when concentrations of
glycolytic intermediates are low. Based on these dynamic characteristics,
simulations of tissue with fluctuating O  and glucose supply predict that tumor
cells greedily take up glucose when this periodically becomes available, leaving
very little for other cells. The glucose is stored as fructose 1,6-bisphosphate
and other glycolytic intermediates, which are used for ATP production during 
 O  and glucose shortages.

The head section of glycolysis which phosphorylates glucoseConclusions: 
may be dynamically regulated and takes up glucose at rates exceeding the
Warburg effect if glucose levels have been low for some time. The hypothesis
is put forward here that dynamic regulation of the powerful glycolytic enzyme
system in tumors is used to buffer oxygen and nutrient fluctuations in tissue.
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Introduction
Cancer cells often show high lactate production despite  
sufficient oxygen supply, a phenomenon discovered by Otto  
Warburg1, and an example of widespread metabolic reprogram-
ming in cancer2–4. Warburg’s favorite experimental system to 
study this effect were suspensions of mouse Ehrlich ascites tumor  
cells (EATC)1,5,6, which showed high aerobic glycolytic rates 
persisting for hours, at least when glucose concentrations  
remained high. These EATC were later also used by Warburg’s 
contemporaries to study the kinetics of metabolic responses 
in the first seconds and minutes after glucose addition to cells  
previously depleted of glucose7,8, showing that glucose uptake 
is much higher in the first minute than averaged over one hour. 
The results of these experiments were explained by Chance and 
Hess with a mathematical model, which may have been the first  
digital computer model of a metabolic system7,9. Their model 
contained some biochemical assumptions that are now consid-
ered untenable. In the present study, a small computational model 
is developed that economically reproduces the experimental  
results of the kinetic as well as the steady-state experiments  
on Ehrlich ascites tumor cells, and furthermore provides a  
testable model of the dynamic regulation of energy metabolism  
in the ascites tumor cells. Analysis of the model suggests that 
the head section of glycolysis can sequester glucose at very high  
capacity, but is downregulated quickly to steady-state Warburg 
effect levels if glucose has been taken up. However, the glyco-
lytic head section is disinhibited slowly if glycolytic intermediates  
are depleted in the cells.

Because the metabolic model reproduces the behavior of the 
ascites tumor cells well for conditions with variable glucose 
levels, it is subsequently used to investigate the possible physi-
ological role of this dynamic metabolic regulation in the tumor  
cells. Blood flow and the supply of oxygen and nutrients is often 
fluctuating in tumor tissue, a phenomenon referred to as cycling 
hypoxia10–12. To investigate the role of the dynamic regula-
tion of metabolism, the computational model is extended with  
equations for oxygen and glucose transport in tumor tissue with 
cycling blood flow. The simulations reported here suggest that 
tumor cells can store glucose-derived metabolites to maintain 
ATP and carbon substrate levels during periodic oxygen and  
glucose shortages, as are commonly found in tumor tissue11,13.  
As a result, cells with lower glycolytic capacity than tumor cells 
have sufficient energy supply at constant blood flow, but their 
energy supply fails in conditions with fluctuating blood flow  
where tumor cells with high glycolytic capacity still do well.

Methods
Development of the computational model
The simplified computational model developed and applied  
in this study comprises glycolysis, oxidative phosphorylation,  
ATP consumption and their interactions in the tumor cell  
(Figure 1). The goal of the model is to reconstruct the glucose 
uptake behavior and the dynamic balance of ATP, phosphorylated 
metabolites, glucose-derived metabolites and NADH/NAD redox  
status in the cell, especially in the first minute after a challenge. 
In addition, it also reproduces three effects which persist on the  

Figure 1. Scheme of computational model of tumor cell metabolism. In the head section of glycolysis, 2 ATP are spent to phosphorylate 
glucose, resulting in phosphorylated glycolytic intermediates (PGI) with fructose 1,6-bisphosphate (FBP) as major species. In the tail section 
of glycolysis four ATP, two reduced nicotinamide adenine dinucleotide (NADH) and two pyruvate molecules are produced per metabolized 
FBP and two inorganic phosphate (Pi) molecules are taken up. Pyruvate molecules can be converted to lactate while producing oxidized 
NAD. Pyruvate and NADH are also substrates for mitochondrial oxidative metabolism. ATP is used for growth, proliferation and maintenance 
tasks such as ion pumping. Increased NADH concentration reduces flux in the tail section. Signals from the PGI pool inhibit the head section 
with a time delay.
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order of an hour or longer: i) the Warburg effect1,6: high gly-
colytic rate despite abundant oxygen availability; ii) the Pasteur 
effect7: increase in glycolytic rate when oxygen is depleted; and  
iii) the Crabtree effect6,14: decrease in oxygen uptake after  
addition of glucose. The computational model consists of rate 
equations for the head and tail part of glycolysis, oxidative  
phosphorylation and lactate dehydrogenase which together deter-
mine the rate of change of the key metabolites in the model,  
captured in a system of ordinary differential equations. The 
model is not meant to be a detailed reconstruction of the enzyme  
reactions involved and their regulatory mechanisms, but focuses 
on reproduction of the metabolic responses of the cell which are  
measured experimentally. Nevertheless, this small model  
reproduces the three steady effects and a range of kinetic data  
with satisfactory quantitative approximation.

Chance and Hess7,9 already had developed a digital computer  
model to explain measurements of transients in glucose metabo-
lism and mitochondrial respiration in Ehrlich ascites tumor  
cells. This was probably the first digital model of a biochemical 
system ever published. However, the model’s assumptions are 
not compatible with present biochemical knowledge: oxidative  
phosphorylation, for instance, was assumed to occur via a  
phosphorylated high energy intermediate and not via a chemi-
osmotic mechanism, and mitochondria were assumed to retain  
synthesized ATP until an uncoupling agent was applied.  
Therefore a new model was developed here.

Although glycolysis has been extensively studied, it is  
presently still difficult to construct a fully detailed accurate 
model of this pathway15. Therefore, a simplified representation of  
glycolysis by a head and tail section is used, similar to that in 
old conceptual models16. This approach is also taken in recent  
computational17,18 models for yeast glycolysis to investigate 
robustness, efficiency, oscillations, and failure to start up. Conse-
quently, the new model incorporates a parsimonious description  
capturing the essential kinetic properties of the glycolytic sys-
tem in mammalian cells. Two kinetic equations represent the  
head and tail sections of glycolysis upstream and downstream 
of fructose 1,6-bisphosphate (FBP). These two equations make 
it possible to calculate the time course of the FBP pool, which  
can be directly compared with measurements in the experi-
mental data sets. FBP usually also is the most abundant species  
of the phosphorylated glycolytic intermediates (PGI). The new 
model presented here further incorporates a simple descrip-
tion of oxidative phosphorylation in the mitochondria, which  
responds to ADP, inorganic phosphate (P

i
) and oxygen concentra-

tions. This equation is compatible with biochemical knowledge  
and has been used to investigate the functional significance of 
the creatine kinase energy buffer system in muscle19. The equa-
tions are discussed in detail in the Supplementary Material.  
The state variables of the model are given in Supplementary  
Table 1 and the metabolic fluxes in Supplementary Table 2.

The head section of glycolysis comprises the hexokinase,  
glucose 6-phosphate isomerase and phosphofructokinase enzymes, 
which catalyze the double phosphorylation of hexose. The 
most abundant phosphorylated glycolytic intermediate is FBP,  

which is directly represented in the model. However, the other 
phosphorylated glycolytic intermediates (PGI), consisting of 
glucose 6-phosphate, fructose 6-phosphate, dihydroxyacetone  
phosphate, 3-phosphoglycerate, etc., are taken into account in 
the storage of glucose-derived metabolites. They are lumped  
with FBP in the total PGI pool with a model parameter repre-
senting the fixed ratio between the sum of all phosphorylated  
glycolytic intermediates and FBP. In this way the total PGI con-
tent is taken into account in the time-dependent mass balance  
calculations. The rate of the glycolytic head section depends  
on glucose and ATP concentrations. The interaction of glucose 
and ATP in determining the rate of the head section is modelled  
similarly as in kinetic equations for mammalian hexokinase20,21,  
a major site of glycolytic rate limitation in cancer cells22.

In tumor cells there is strong negative feedback of glucose  
6-phosphate (G6P) on hexokinase, the first enzyme of the head 
section of glycolysis22. In addition to feedback by G6P, feedback 
by FBP has also been reported in Ehrlich ascites tumor cells23.  
The feedback control on the head section of glycolysis by 
downstream intermediates shows a clear time delay and affects  
the glycolytic rate in the head section with a half time of order 
10 s24,25. Binding of G6P to hexokinase also may lead to translo-
cation of this enzyme with a similar time course26. The delayed  
negative feedback from the PGI pool on hexokinase is represented 
in the present model by a second order reaction of PGI with the 
head section, governed by a second order forward rate constant  
and a first order backward rate constant (see Eq. 22 in  
Supplementary Text). The forward reaction inactivates the head 
section and the backward reaction reactivates the inactivated 
head section. Representation in this simple form adequately  
describes the time delay of activation and reactivation. The acti-
vation state of the head section is represented by the active  
fraction, F

active
. The delay in inhibition of the head section  

reproduces the overshoot in FBP concentration after glucose 
addition to the cell suspension, whereas previously ATP trap-
ping in the mitochondria7,9 or complex regulatory interactions  
between two compartmentalized glycolytic systems had to be 
hypothesized16 to account for the time course of glucose uptake  
and FBP.

The tail section of glycolysis in the model is downstream  
of the FBP pool. It consists of the glycolytic enzymes aldolase, 
triose phosphate isomerase, glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH), phosphoglycerate kinase, phosphoglycer-
ate mutase, enolase and pyruvate kinase. Input reactants for the 
tail section are FBP, NAD+, ADP and inorganic phosphate (P

i
),  

while its products are pyruvate, NADH and ATP. Equation 2 in the 
Supplementary Text represents the tail section in a lumped fash-
ion. Each reactant which influences the reaction rate is represented  
by a Michaelis-Menten constant, while NADH, which is  
a product of the GAPDH reaction, negatively affects the  
forward net reaction rate in the tail section21,27.

The equation for the lactate dehydrogenase equation,  
pyruvate + NADH ⇌ lactate + NAD+, was taken from Lambeth 
and Kushmerick28. ATP consumption for maintenance, growth  
and cell function correlates linearly with the fall in adenine  
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nucleotide concentration (ATP+ADP) in the experimental data, as  
found in the experiments of Figure 2. Incorporating this  
relation in the model reproduces the steep decline in ATP  
hydrolysis which was found after acutely giving glucose to  
cells which had been deprived of glucose for some time.

The equations determining rates of change of metabolite levels  
represent balances for key players in the model: the balance of 
phosphoryl groups in the ATP, ADP and FBP pools, which play  
a central role in energy metabolism; the balance of carbon  
metabolites representing the distribution and storage of glucose;  
the balance of reduction of NAD to NADH and the reverse  
oxidation reaction, i.e. the NADH/NAD redox balance.

The present model provides only a coarse representation of  
regulatory mechanisms active in vivo, but it fulfills the goal of 
reproducing a broad range of measurements on EATC, both 
the average glucose and oxygen uptake measurements during  
1 hour in Warburg’s laboratory5,6, as well as kinetic responses 

of glucose and oxygen uptake, lactate production, FBP and  
ATP levels measured in the first seconds and minutes follow-
ing glucose addition7,29–32. The model is subsequently used to  
investigate what the physiological role is of high expression  
levels of glycolytic enzymes for the survival and growth of  
cancer cells. 

The model equations are all given in the Supplementary  
Text, where the assumptions underlying the model are discussed 
further. The computational methods for integrating the system 
of ordinary differential equations, for parameter estimation  
and for uncertainty analysis are also given in the Supplementary 
Text.

Results
Model analysis of kinetic data on ascites tumor cell 
suspensions in vitro
A data set was assembled consisting of representative experi-
ments from the literature to be used to estimate parameters 

Figure 2. Response of Ehrlich ascites tumor cells in vitro to addition of different amounts of glucose. Glucose concentration was zero 
at t<0, and the cells respired on endogenous substrates, such as lactate. Glucose was added at t=0. Data for experiments (dots) and model 
fit (lines). Left hand column: low initial glucose concentration (92 µM) was added at t=0 to a suspension of 2.2 volume percent tumor cells. 
Right hand column: a higher glucose concentration (776 µM) was added at t=0 to a suspension of 2.9 volume percent tumor cells. Contents 
of fructose 1,6-bisphosphate (FBP), ATP, total glucose taken up and total lactate produced since t=0 are given in µmol/ml cell volume. The 
rate of O2 consumption is given in µmol/liter intracellular water/sec.
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for the model of metabolic responses of Ehrlich ascites tumor 
cells (see Supplementary Text). The data sets are exem-
plary, but they are representative of results measured in many  
laboratories6–8,16,29–41. All selected experiments were done at 37°C 
on Ehrlich ascites cells that had been grown in mice. During the 
experiments, aerated tumor cell suspensions were diluted in  
buffer solution. Cells and suspension had been depleted of glu-
cose for some time and were respiring on endogenous substrates 
such as lactate, which was abundantly present. At t=0, glucose 
was added to the suspension. Two kinetic data sets for the first  
3–5 min consist of responses to addition of 92 µM and 776 µM 
glucose to cells which had been grown in ascites fluid in mice  
and suspended in media without glucose.

These measured responses of glucose-depleted EATC to  
addition of low concentrations of glucose are shown in Figure 2.  
The model is calibrated (Supplementary Text) on these data  
sets8,32, which are representative of results in several  
laboratories7,29–31,39,41. After adding 92 µM glucose initially32,  
glucose was soon exhausted (Dataset 1, experiment 1)42.  
After adding 776 µM glucose8, the glucose uptake rate was  
~295 µM/s initially and lactate production rose to 157 µM/s  
in 5 s (Dataset 1, experiment 2)42. Glucose uptake was  
subsequently reduced by >90% within 90 s7,8,30,39. According  
to the model, this decline is caused by delayed feedback  
inhibition on the head section of glycolysis.

During the first 20 s mitochondrial respiration is stimulated  
(Figure 2, right); after 30 s respiration is reduced appreciably 
below the initial value found before glucose addition7,29. Both the  
simulation and direct calculation of the mass balance of the  
measured phosphate metabolites shows a ~70% decline in 
ATP hydrolysis in the first minute, correlating with the amount  
of ATP plus ADP broken down to AMP, adenosine, inosine etc. 
This breakdown is reflected in the decreased ATP level after  
glucose addition (Figure 2, right). After the initial breakdown,  
adenine nucleotide levels recover in 0.5–1 hour27,43. The  
reduction of respiration after glucose addition is initially  
strongly determined by the reduced ATP hydrolysis.

Half of the glucose taken up in the first minute after addition 
is stored as PGI, mainly FBP. Subsequently, FBP declines  
(Figure 2, right), reflecting the delayed negative feedback on 
the head section of glycolysis, and settles at still appreciable  
levels. At 5 minutes after glucose addition, 18% of the total  
glucose taken up is found intracellularly as PGI, 43% has been 
excreted as lactate and 34% is stored intracellularly in other  
forms, e.g. glycogen, nucleosides and amino acids.

Model predictions were subsequently compared with experi-
ments not used for parameter estimation (Supplementary Text): 
Warburg’s laboratory measured 63±14 (SD) µM/s lactate 
production and 19±7 µM/s O

2
 consumption in EATC during 1 

hour aerobic incubation with glucose6; the simulation predicts  
52.5 µM/s lactate production and 19.8 µM/s oxygen consump-
tion (Dataset 1; exp 3)42. Simulation further predicts that lactate 
production is increased by 61% during anoxia (Pasteur effect;  
Dataset 2)44; for comparison, in Warburg’s laboratory lactate  

production increased by 61±32% (SD) when oxidative  
phosphorylation was blocked6. Above 200 µM added glucose 
concentration, the peak FBP content levels off, both in  
experiments32,45 and in silico (Dataset 1, experiment 4)42. This 
is consistent with the estimated K

m,glucose
 of 51 µM for the head  

section (Supplementary Table 3) and K
m,glucose

 values reported 
for hexokinase, 46–78 µM20. The fast FBP and lactate accumu-
lations measured at 5 and 10 sec8,45 after glucose addition agree  
with the simulations: tumor cells store for instance ~700 µM  
FBP intracellularly in 10 s if the initial extracellular glucose  
concentration is merely 77 µM (Dataset 1, experiment 5)42,  
demonstrating their high capacity to seize glucose.

The simulations reproduce the persistent inhibition of respira-
tion by glucose, known as the Crabtree effect14: the average 
reduction over 1 hour after adding 11 mM glucose is 44%  
(Dataset 1, experiment 3)42, while a 30±12% (SD) reduction 
was measured in Warburg’s laboratory6. While the decline of  
respiration in the first minutes after glucose addition (Figure 2) 
is mainly caused by reduced ATP hydrolysis, the persisting high  
glycolytic ATP synthesis6 continues to keep ADP concentration  
and respiration reduced much longer (Dataset 1: exp 3)42.

Simulations predict that ATP levels decline by 30% after  
glucose addition at low pyruvate concentrations because of 
breakdown to AMP, inosine etc. (Figure 2), but when 5 mM  
pyruvate is added, the predicted decline of ATP is merely 0.1%  
and the FBP peak decreases by 21% (Dataset 3)46; a similar  
pattern is seen experimentally27.

In short, the present small model economically integrates  
experimental data and biochemical knowledge, and quantitatively 
reproduces experimental results on the Warburg effect, Pasteur 
effect, Crabtree effect and kinetic experiments with addition of 
glucose. The model simulations show that after a period of glu-
cose depletion, glucose uptake is much faster than measured for 
the steady Warburg effect, and that fructose 1,6-bisphosphate  
accumulates and can be quickly taken up in the cell’s biomass 
and consumed by the tail end of glycolysis where ATP is synthe-
sized. This time-course is the consequence of inhibition of the  
head section of glycolysis in about 1 minute when glycolytic  
intermediates accumulate, and slow disinhibition of the  
glycolytic head section when glycolytic intermediate levels are 
low. A second mechanism for energy homeostasis suggested  
by the model consists of reduction of ATP usage, and underlies  
the first phase of the Crabtree effect.

Prediction of the function of the dynamic metabolic 
regulation in the tumor cell
Next the role that the dynamic regulatory mechanisms  
captured in the computational model may play in tumor cell 
physiology is considered. ATP synthesis during hypoxia has long 
been considered a possible role for the glycolytic system under-
lying the Warburg effect. The O

2
 saturation of hemoglobin in  

capillaries in tumor tissue is often low or zero47. O
2
 concentra-

tions are low in tumor tissue48 as well as in the ascites fluid in mice 
where EATC were grown5. Tumor blood flow sometimes stops  
temporarily49 and many blood vessels are not perfused over  
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extensive periods50. Fluctuations in tumor blood flow may lead to 
cycling hypoxia11,51 and periodic glucose shortages. If O

2
 is still 

available when glucose is depleted, ATP can be synthesized by  
oxidative phosphorylation, burning lactate, fatty acids or  
glutamine52. If glucose is still present, glycolysis can synthe-
size ATP if O

2
 is depleted; however, the environment in solid  

tumors contains a glucose concentration in the order of a few 
hundred µM, and in many cases even <100 µM53. Cells die when  
anoxia is combined with glucose depletion for substantial peri-
ods of time1. Figure 2 suggests that tumor cells can store FBP and 
other PGI during periods of sufficient glucose supply during high  
blood flow in tissue (“times of abundance”). Periods of low  
blood flow lead to depletion of O

2
 and glucose (“times of fam-

ine”), and the cells can then use the stored PGI to synthesize ATP.  
For each FBP molecule metabolized in the tail part of  
glycolysis, 4 ATP molecules are synthesized (Figure 1). Stored 
FBP can reach ≥5000 µM, with additionally ≥1200 µM 6-carbon  
units stored as other PGI species (Dataset 1)42. This enables the 
synthesis of at least 4 × (5000+1200) µM = 25 mM ATP from  
PGI, potentially sustaining a high rate of ATP hydrolysis in  
EATC for >2 min, even after glucose and oxygen are depleted.  
The reduction of ATP consumption in the model, also seen  
experimentally in vitro, provides an additional protective mecha-
nism: protein, DNA and RNA synthesis are presumably reduced 
first when ATP levels fall, followed by sodium and calcium  
ion pumping54–57. Warburg established experimentally that  
one-fifth of the normal growth energy supplied for 24 hours 
preserved the transplantability of tumor cells1. Reduced ATP  
hydrolysis required for maintaining cell viability may therefore  
be supported much longer than 2 min (probably at least 10 min) 
from FBP and other PGI stores.

The functioning of the FPB storage system of tumor cells is  
difficult to study experimentally in vivo. This may require meta-
bolic measurements at a spatial resolution sufficient to distinguish 
low and high glycolytic cells. High time resolution to resolve the  
transient metabolic responses and experimental control of fluc-
tuating O

2
 and nutrient supply is probably also needed. While  

experimental tests are challenging, the functioning of dynamic  
glycolytic regulation in tissue may be investigated with  
computational simulation.

Simulating tumor cell metabolism during oxygen and 
glucose fluctuations in tissue
There are limitations to experimental approaches, but the func-
tioning of FBP buffering in vivo can be predicted with the  
present metabolic model, extended with well-known equations for 
glucose and O

2
 transport by blood flow and diffusion to simulate 

tumor tissue (Supplementary Text). The model equations for tis-
sue transport are described in the Supplementary Text. Figure 3  
shows a simulation of a hypothetical situation in tissue with 
blood flow fluctuating around a low average value. Similar fluc-
tuations in blood flow are common in tumor tissue10,11,49–51. Blood  
flow rate, diffusion distance and plasma metabolite  
concentrations were set to values found in experiments  
on tumors implanted in rats58, while the metabolic characteris-
tics of the simulated cells are set as determined in EATC in vitro 

(see above). O
2
 and glucose concentrations become virtually zero  

during the low blood flow phase, and the head section of  
glycolysis (Figure 3, dashed curve) and oxidative phosphor-
ylation (blue curve) both stop. ATP synthesis from the stored  
FBP is quickly upregulated to replace reduced oxidative phos-
phorylation (red curve) and keeps ATP levels and ATP synthesis  
virtually constant near the level found at constant high blood 
flow (Dataset 4a)59. The effect of ATP synthesis by the FBP  
buffer mechanism is investigated by uncoupling glycolytic flux 
in the tail section from the associated phosphorylation of ADP.  
This uncoupling leads to an immediate decrease in adenine  
nucleotide levels and ATP hydrolysis is subsequently reduced, 
owing to the second homeostatic mechanism in the model.  
This prevents progressive imbalance of ATP hydrolysis and  
consumption, albeit at a lower turnover rate.

The transition from constant to cycling blood flow was  
simulated (Figure 4 and Dataset 4b)59, with 80% of the cell  
volume consisting of tumor cells with full glycolytic capacity 
while the remaining 20% consists of cells with glycolytic capacity  
reduced to 10%. As long as blood flow is constant, ATP levels  
and ATP hydrolysis for cell functioning are maintained in both  
cell types. When blood flow starts to fluctuate, ATP concen-
tration and ATP usage are well maintained in the cells with full  
glycolytic capacity. However, in the cells with 10% of the tumor 
glycolytic capacity, FBP buffering is appreciably decreased 
and adenine nucleotide levels and ATP hydrolysis fall quickly  
after blood flow fluctuations start. The low-capacity glycolytic 
cells sustain a lower rate of ATP turnover during cycling blood  
flow. Uncertainty analysis shows that the model predictions are 
sufficiently constrained (Supplementary Figure 1, Supplementary 
Figure 2 and Supplementary Text)60.

ATP turnover was well maintained at a constant blood flow,  
even for cells at merely 1.5% of the tumor glycolytic  
capacity which are representative of many normal cell types  
(Supplementary Figure 3 and Dataset 4c)1,59. However, FBP buff-
ering was weak and ATP turnover strongly decreased during  
blood flow cycling. Cells at full tumor glycolytic capacity take 
up 50 µM/s glucose averaged over a flow cycle, while cells at  
1.5% glycolytic capacity take up only 2 µM/s glucose. ATP 
synthesis from the FBP buffer is very low and the storage of  
glucose-derived metabolites for growth is compromised. Tumor 
cells with high glycolytic capacity take much more than their  
fair share of glucose.

The response to cycling blood flow in Figure 4 is influenced  
by two homeostatic mechanisms: FBP buffering and adapta-
tion of ATP turnover. If ATP hydrolysis is made insensitive to  
the cell’s adenine nucleotide status and adaptation of ATP turno-
ver therefore ineffective, the FBP buffering mechanism alone  
can still prevent the collapse of ATP during blood flow stops if 
the full tumor glycolytic capacity is active in the simulation (see  
Supplementary Figure 4 and Supplementary Text). However,  
glycolytic capacity reduction below the tumor level leads to com-
promised ATP concentration and ATP hydrolysis during flow  
stops. PGI stores accumulated in highly glycolytic cells during  
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Figure 3. Tumor cell metabolism in tissue during cycling blood flow. (A) Model simulation of tumor cell metabolism in tissue during  
cycling blood flow, demonstrating ATP synthesis buffered from fructose 1,6-bisphosphate (FBP) stores. All cells have the full tumor glycolytic 
capacity. ATP synthesis by oxidative phosphorylation (blue line) fails periodically during low blood flow because of low oxygen supply. 
Glycolytic ATP synthesis by direct throughput of FBP from head to tail section fails because of glucose depletion (dashed black line). A burst 
of ATP synthesis from the stored fructose 1,6-bisphosphate (FBP) and other phosphorylated glycolytic intermediates (red curve) maintains 
ATP levels during glucose and O2 shortages. A steady state was reached after the transition at t=0 to cycling blood flow. ATP synthesis 
from decreasing levels of FBP was uncoupled between 3505 and 3550 seconds, leading to an immediate fall in ATP level. (B) Scheme of 
energy and nutrient buffering during fluctuating O2 and glucose supply. During high blood flow, FBP and other phosphorylated glycolytic 
intermediates are stored in the tumor cells. At low blood flow glucose and O2 are depleted. Flux in the tail part of glycolysis is maintained by 
use of previously stored FBP, which is replenished if blood flow increases. If blood flow stops for a long time, the intracellular FBP store is 
depleted.

periods of high blood flow are often several-fold larger than  
maximal tissue glucose content (Dataset 5)61, which underscores 
their importance for energy and nutrient buffering.

These simulations address conditions in tumor tissue with  
cycling hypoxia and nutrient shortages caused by cycling blood 
flow. In the next section it is considered how hypoxia and low 
glucose concentrations can also be caused by large diffusion  

distances in the ascites fluid in the murine peritoneal cavity  
in which the ascites cells were grown in the laboratories of  
Warburg6, Chance29, Coe32 and others.

Simulating oxygen and glucose diffusion in ascites fluid 
containing tumor cells
Warburg observed that glucose and O

2
 concentrations were 

very low in the ascites fluid in the abdomen of mice in which  
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Figure 4. Simulations predicting tumor tissue metabolism during the start of blood flow cycling. In this simulation, 80% of the cell 
volume had the full tumor glycolytic capacity; 20% of the cell volume had 10% of the full glycolytic capacity. The two top rows show tissue 
conditions experienced by both cell types. Blood flow and diffusion flux of glucose and O2 from the microvessel into tissue are given (top row). 
O2 and glucose concentrations seen by both cell types are given in the second row. Simulation for cells ~18 µm from the microvessel. High 
ATP consumption, >160 µM/s, was maintained at constant blood flow. See legend to Figure 3 for description of ATP synthesis fluxes. When 
blood flow started to fluctuate at t=0, ATP synthesis from the decline in stored fructose 1,6-bisphosphate (FBP) and other phosphorylated 
glycolytic intermediates (red curve) maintained ATP levels and high ATP hydrolysis rates in cells with full tumor glycolytic capacity; however, 
there was a drop in ATP level and ATP hydrolysis rate in the cells with reduced glycolytic capacity.
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he was growing EATC at a high cell density5; others reported  
~300 µM glucose in this environment62–64. These low glucose 
concentrations are still sufficient for virtually maximal glucose 
consumption by EATC; however, glucose diffusion into the  
ascites fluid measured in vivo has limited capacity62, so that  
it can provide only a small fraction of this maximal consump-
tion. Simulations of EATC in ascites fluid with the present model  
provide an explanation for this paradox: diffusion gradients 
over distances of hundreds of µm cause the glucose concentra-
tion in most of the ascites fluid in the peritoneal cavity to be far  
below the average concentration measured in fluid samples  
(Dataset 6, Dataset 7)65,66. Details of the calculation and results are 
given in the Supplementary Text. It is therefore plausible that most  
tumor cells in the peritoneal cavity are exposed to low glucose  
concentrations and consequently have very low metabolic rates.

Tumor cells in the ascites fluid shift position because of body  
movements and intestinal peristalsis64 which leads to quick 
changes in O

2
 and glucose concentrations. The cells are therefore  

exposed to fluctuating high and low nutrient concentrations  
(Supplementary Text). Greedy glucose uptake followed by stor-
age of glucose-derived metabolites and buffering of ATP by a 
high-capacity glycolytic system may provide selective advantages 
to highly glycolytic tumor cells proliferating in environments  
with low and fluctuating glucose supply such as ascites fluid.  
This may favor the evolution of a high-capacity dynamically  
regulated glycolytic system in the tumor cells. Similar  
consideration may apply to cells in solid tumor environments  
which also often show low and fluctuating oxygen and nutrient  
supply.

Dataset 1. Model simulation results for 5 experiments on 
suspensions of Ehrlich ascites tumor cells in vitro

http://dx.doi.org/10.5256/f1000research.15635.d212544

Experiment 1: low glucose concentration added (92 µM); 
Experiment 2: higher glucose concentration added (776 µM); 
Experiment 3: one hour aerobic incubation with high concentration 
of glucose (11.1 mM); Experiment 4: maximum FBP content 
following addition of a range of glucose amounts; Experiment 5: 
accumulation of lactate and FBP after 5 and 10 s at two low initial 
glucose levels; Experiments 1–5 are described in Supplementary 
Text: Calibrating the computational model with experimental data.

Dataset 2. Simulation results of incubation of Ehrlich ascites 
tumor cells at 11 mM glucose without oxygen, simulating 
experiments in Warburg’s laboratory

http://dx.doi.org/10.5256/f1000research.15635.d212545

See description Experiment 6 in Supplementary Text: Testing the 
computational model with additional experimental data.

Dataset 3. Simulation results of incubation of Ehrlich ascites 
tumor cells in vitro with 5 mM pyruvate and 10 mM glucose

http://dx.doi.org/10.5256/f1000research.15635.d212546

See description of Experiment 7 in Supplementary Text: Testing the 
computational model with additional experimental data.

Dataset 4. Simulations of tumor tissue including fluctuating blood 
flow, diffusion and tumor cell metabolism

http://dx.doi.org/10.5256/f1000research.15635.d212547

ATP hydrolysis is high initially and strongly reduced when energy 
status is compromised. Simulation for tissue with a maximal 
diffusion distance of 40 µm. Result for the tissue layer at 15–20 µm 
from the blood vessel is given. Blood flow is constant for t≤0 and 
starts to fluctuate sinusoidally at t=0, periodically reaching zero for 
a moment, but not fully stopping.

For t ≤ 0: blood flow = offset.

For t>0: blood flow = offset - amplitude ∙ sin(2πt/Tperiod).

offset = 4.4 ml/l intracellular H2O/s, amplitude = 4.4 ml/l/s, flow ≥ 0.

Worksheet A. Simulations of tumor cells (100% of cell volume 
at 100% of the glycolytic capacity). From 3505–3550 sec the 
contribution to ATP synthesis in the tail part of glycolysis derived 
from falling stores of fructose 1,6-biphosphate (FBP) and other GPI 
is uncoupled and therefore not contributing to total ATP synthesis.

Worksheet B. Simulations of tumor cells (80% of cell volume) and 
a second cell type with 10% of tumor glycolytic capacity (20% of 
volume) in tissue with fluctuating blood flow.

Worksheet C. Simulations of tumor cells (80% of cell volume) and 
a second cell type with 1.5% of tumor glycolytic capacity (20% of 
volume) in tissue with fluctuating blood flow.

See Supplementary Text for details.

Dataset 5. Simulations of tumor tissue with metabolism, diffusion 
and fluctuating low blood flow with long flow stops

http://dx.doi.org/10.5256/f1000research.15635.d212548

Maximal ATP hydrolysis 100 µM/s. In the second (“Glycolytic 
capacity 100%”) and penultimate (“FBP buffering uncoupled” ) 
worksheet all cells had the full glycolytic capacity of tumor cells. In 
the rest of the simulations, 95% of cell volume is occupied by tumor 
cells with glycolytic capacity at 100% of tumor cell level. A second 
cell type with lower glycolytic capacity occupies the remaining 5% 
of cell volume. Simulation for 8 tissue layers of width 5 µm, resulting 
in a maximal diffusion distance of 40 µm. Result is given for the 
tissue layer at 15–20 µm from the blood vessel.

Blood flow is constant for t≤0 and starts to fluctuate sinusoidally at 
t=0, periodically stopping fully for ~2 min; for t ≤ 0: blood flow = 
offset; for t>0: blood flow = offset - amplitude ∙ sin(2πt/Tperiod).

offset = 2.2 ml/l intracellular H2O/s, amplitude = 3.5 ml/l/s, flow ≥ 0.

Six different simulations with different glycolytic capacities in the 
second cell type are given.

Worksheet “Glycolytic capacity 100%”: all cells 100% of tumor 
cell level; worksheet “Glycolytic capacity 50%”: Second cell type: 
glycolytic capacity 50% of tumor cell level; worksheet “Glycolytic 
capacity 30%”: Second cell type: glycolytic capacity 30% of tumor 
cell level; worksheet “Glycolytic capacity 10%”: Second cell type: 
glycolytic capacity 10% of tumor cell level; worksheet “Glycolytic 
capacity 1.5%”: Second cell type: glycolytic capacity 1.5% of tumor 
cell level; worksheet “FBP buffering uncoupled”: Glycolytic ATP 
synthesis depending on falling stores of fructose 1,6-biphosphate 
(FBP) and other GPI uncoupled, glycolytic capacity 100% of 
tumor level for all cells; worksheet “Parameters”: the parameters 
representing the glycolytic capacities in the simulations above.
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Dataset 6. Simulation of diffusion of glucose from the peritoneum 
into ascites fluid not containing cells during 3 min

http://dx.doi.org/10.5256/f1000research.15635.d212549

An experiment by Kemp and Mendel is simulated62, see Supplementary 
Text. Tumor cells and metabolism were absent in this simulation. 
The injected ascites fluid initially contained 167 µM glucose and the 
time course of glucose concentrations was simulated in sixty three 
stacked fluid layers with an increment of 10 µm per layer.

Dataset 7. Simulation of steady-state diffusion gradients in a 
suspension of Ehrlich ascites tumor cells (25% vol/vol) in ascites 
fluid in the peritoneal cavity

http://dx.doi.org/10.5256/f1000research.15635.d212550

This simulates conditions under which Erhlich ascites cells were 
grown in Warburg’s laboratory5,6 with a maximal diffusion distance 
of 630 µm from blood vessel into ascites fluid. This simulation 
resolves a paradox discussed by Kemp and Mendel62. Sixty three 
layers of ascites fluid with a radius increment of 10 µm per layer 
were simulated.

Discussion
The present small computational model reproduces the three  
effects named after Warburg, Pasteur and Crabtree, respec-
tively, which persist for an hour or more; at the same time the  
model captures the kinetic behavior in the first minutes 
after glucose addition and it is consistent with biochemical  
knowledge. This new concise model gives a new, testable expla-
nation of the dynamic behavior of tumor cell metabolism, 
replacing the model of Chance and Hess7,9. Although the latter  
model has large historical value as the first digital model of 
a biochemical system, it contains assumptions which are  
biochemically untenable. Despite the present model’s expla-
nation of a broad range of in vitro experimental data, further  
testing and refinement is necessary. Better understanding of the 
differential regulation of the head and tail sections of glycolysis 
is desirable. This requires experimental data revealing how the 
duration and extent of glucose depletion and the concentration 
of glycolytic intermediates affect the dynamic regulation of the  
head section of glycolysis in tumor cells. Although the details  
of the model deserve further investigation, it represents the  
experimental responses of ascites tumor metabolism in terms 
of glucose uptake, lactate production, FBP accumulation and  
ATP synthesis well.

The decrease of ATP consumption, correlating with the  
change in adenine nucleotide pool status (ATP+ADP), is 
required to fit the measured data in Figure 2. It should be noted  
that the decrease in ATP+ADP corresponds quantitatively with 
the accumulation of AMP, inosine, adenosine etc.27,43. The  
mechanism of this decrease of ATP hydrolysis requires further 
investigation. A useful extension would further be to model  
how the breakdown of ADP to AMP, inosine etc. helps to main-
tain the free energy of ATP hydrolysis under energetic stress by  
increasing the ATP/ADP ratio27,67.

The model predicts the metabolic responses in the tissue  
situation and provides a plausible and testable explanation 
why tumor cells benefit from a dynamically regulated uptake  
capacity of glucose that exceeds the requirements of the steady 

Warburg effect. The model predicts that tumor cells in tissue 
efficiently gulp glucose at low extracellular concentrations, and 
store it for the dynamic buffering of ATP and nutrients during  
periods of low blood flow. The model predicts that the high  
glucose-gulping capacity is ready for immediate action dur-
ing times of famine, and is partially inhibited with some delay 
during times of feast, presumably to prevent overloading of the 
tumor cells with glucose products, while providing a time window  
of high uptake capacity. A remaining question is whether the 
time window, which provides a high capacity of glucose uptake  
provided by balance of inhibition and disinhibition of the head  
section of glycolysis, may be optimal for some cycling blood  
flow frequencies and not for others.

Experimental interventions in the dynamic regulation of the 
head section of glycolysis may be employed to test the impor-
tance of the dynamic regulatory mechanism for tumor cell  
proliferation and growth. It is conceivable that such interven-
tions could be beneficial for the treatment of tumors, limiting the  
competitiveness of tumor cells against normal tissue and immune 
cells.

When tumor cells have been deprived of glucose for some  
time and are subsequently exposed to glucose, they can invest  
~600 µM/s ATP for many seconds to sequester glucose  
(Dataset 1)42. For comparison, human vastus lateralis mus-
cle consumes ~1000 µM/s for 6 s during maximal sprint  
performance68. The high glucose uptake capacity of tumor 
cells tends to keep tissue glucose concentrations low, making it  
difficult for competing cells with a lower glucose uptake capac-
ity to take up sufficient glucose when supply is low and fluctu-
ating. This may be the driving force for the evolution of Ehrlich 
ascites cells and tumor cells evolving in solid tumors to a state with  
high and dynamically regulated glucose metabolic uptake. 
Cells with higher glycolytic capacity also maintain higher levels  
of phosphorylated glycolytic intermediates to provide build-
ing blocks for macromolecular synthesis and cell growth, in  
addition to the dynamic ATP buffering. The hypothesis is  
therefore put forward here that the nutritional and energetic 
buffering mediated by dynamic regulation of high-capacity glu-
cose metabolism by the glycolytic chain may give tumor cells a  
selective advantage over cells with lower glycolytic capacity  
under conditions of fluctuating oxygen and glucose supply.

Data availability
Dataset 1. Model simulation results for 5 experiments  
on suspensions of Ehrlich ascites tumor cells in vitro. 
Experiment 1: low glucose concentration added (92 µM);  
Experiment 2: higher glucose concentration added (776 µM); 
Experiment 3: one hour aerobic incubation with high concentra-
tion of glucose (11.1 mM); Experiment 4: maximum FBP content 
following addition of a range of glucose amounts; Experiment 5: 
accumulation of lactate and FBP after 5 and 10 s at two low initial 
glucose levels; Experiments 1–5 are described in Supplementary 
Text: Calibrating the computational model with experimental data. 
DOI: https://doi.org/10.5256/f1000research.15635.d21254442.

Dataset 2. Simulation results of incubation of Ehrlich  
ascites tumor cells at 11 mM glucose without oxygen, simu-
lating experiments in Warburg’s laboratory. See description  
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Experiment 6 in Supplementary Text: Testing the computa-
tional model with additional experimental data. DOI: https:// 
doi.org/10.5256/f1000research.15635.d21254544.

Dataset 3. Simulation results of incubation of Ehrlich  
ascites tumor cells in vitro with 5 mM pyruvate and 10 mM 
glucose. See description of Experiment 7 in Supplementary  
Text: Testing the computational model with additional experi-
mental data. DOI: https://doi.org/10.5256/f1000research.15635.
d21254646.

Dataset 4. Simulations of tumor tissue including  
fluctuating blood flow, diffusion and tumor cell metabo-
lism. ATP hydrolysis is high initially and strongly reduced when  
energy status is compromised. Simulation for tissue with a maxi-
mal diffusion distance of 40 µm. Result for the tissue layer at  
15–20 µm from the blood vessel is given. Blood flow is constant  
for t≤0 and starts to fluctuate sinusoidally at t=0, periodically  
reaching zero for a moment, but not fully stopping.

For t ≤ 0: blood flow = offset. 

For t>0: blood flow = offset - amplitude ∙ sin(2πt/Tperiod). 

offset = 4.4 ml/l intracellular H
2
O/s, amplitude = 4.4 ml/l/s,  

flow ≥ 0.

Worksheet A. Simulations of tumor cells (100% of cell  
volume at 100% of the glycolytic capacity). From 3505–3550 sec  
the contribution to ATP synthesis in the tail part of glycolysis 
derived from falling stores of fructose 1,6-biphosphate (FBP)  
and other GPI is uncoupled and therefore not contributing to  
total ATP synthesis.

Worksheet B. Simulations of tumor cells (80% of cell volume)  
and a second cell type with 10% of tumor glycolytic capacity  
(20% of volume) in tissue with fluctuating blood flow.

Worksheet C. Simulations of tumor cells (80% of cell volume)  
and a second cell type with 1.5% of tumor glycolytic capacity  
(20% of volume) in tissue with fluctuating blood flow.

See Supplementary Text for details. DOI: https://doi.org/ 
10.5256/f1000research.15635.d21254759.

Dataset 5. Simulations of tumor tissue with metabolism,  
diffusion and fluctuating low blood flow with long flow 
stops. Maximal ATP hydrolysis 100 µM/s. In the second  
(“Glycolytic capacity 100%”) and penultimate (“FBP buffering 
uncoupled”) worksheet all cells had the full glycolytic  
capacity of tumor cells. In the rest of the simulations, 95% of  
cell volume is occupied by tumor cells with glycolytic capac-
ity at 100% of tumor cell level. A second cell type with lower  
glycolytic capacity occupies the remaining 5% of cell vol-
ume. Simulation for 8 tissue layers of width 5 µm, resulting in a  
maximal diffusion distance of 40 µm. Result is given for the  
tissue layer at 15–20 µm from the blood vessel.

Blood flow is constant for t≤0 and starts to fluctuate  
sinusoidally at t=0, periodically stopping fully for ~2 min;  
for t ≤ 0: blood flow = offset; for t>0: blood flow = offset - ampli-
tude ∙ sin(2πt/Tperiod).

offset = 2.2 ml/l intracellular H
2
O/s, amplitude = 3.5 ml/l/s,  

flow ≥ 0.

Six different simulations with different glycolytic capacities  
in the second cell type are given.

Worksheet “Glycolytic capacity 100%”: all cells 100%  
of tumor cell level; worksheet “Glycolytic capacity 50%”: Sec-
ond cell type: glycolytic capacity 50% of tumor cell level; work-
sheet “Glycolytic capacity 30%”: Second cell type: glycolytic  
capacity 30% of tumor cell level; worksheet “Glycolytic capac-
ity 10%”: Second cell type: glycolytic capacity 10% of tumor  
cell level; worksheet “Glycolytic capacity 1.5%”: Second cell 
type: glycolytic capacity 1.5% of tumor cell level; worksheet 
“FBP buffering uncoupled”: Glycolytic ATP synthesis depend-
ing on falling stores of fructose 1,6-biphosphate (FBP) and other 
GPI uncoupled, glycolytic capacity 100% of tumor level for  
all cells; worksheet “Parameters”: the parameters representing  
the glycolytic capacities in the simulations above. DOI: https:// 
doi.org/10.5256/f1000research.15635.d21254861.

Dataset 6. Simulation of diffusion of glucose from the  
peritoneum into ascites fluid not containing cells during 3 
min. An experiment by Kemp and Mendel is simulated62, see  
Supplementary Text. Tumor cells and metabolism were absent 
in this simulation. The injected ascites fluid initially contained  
167 µM glucose and the time course of glucose concentrations was 
simulated in sixty three stacked fluid layers with an increment of  
10 µm per layer. DOI: https://doi.org/10.5256/f1000research.15635. 
d21254965.

Dataset 7. Simulation of steady-state diffusion gradients  
in a suspension of Ehrlich ascites tumor cells (25% vol/vol)  
in ascites fluid in the peritoneal cavity. This simulates condi-
tions under which Erhlich ascites cells were grown in Warburg’s  
laboratory5,6 with a maximal diffusion distance of 630 µm from 
blood vessel into ascites fluid. This simulation resolves a paradox 
discussed by Kemp and Mendel62. Sixty three layers of ascites  
fluid with a radius increment of 10 µm per layer were  
simulated. DOI: https://doi.org/10.5256/f1000research.15635.
d21255066.

Software availability
Source code available from: https://github.com/jhvanbeek/ 
Metabolic-model-DSWE.

Archived source code at time of publication: http://doi.
org/10.5281/zenodo.132239169.

License: GNU General Public License v3.0.
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Supplementary materials
Supplementary Text. Description of the computational model. This file also includes kinetic rate equations and differential  
equations for metabolite concentration changes with detailed description. In addition, it contains a description of the transport equa-
tions for oxygen and metabolites used for simulation of metabolism in tissue with cycling blood flow; also included are descriptions of  
computational methods, parameter optimization, analysis of prediction uncertainty, and of the experimental data sets used to calibrate  
and test the model. Description of simulation of cells growing in ascites fluid.

Click here to access the data.

Supplementary Figure 1. Uncertainty in prediction of the simulation results for tissue with cycling blood flow. The simulation  
in Figure 4 was repeated with parameter sets from 45 MCMC runs replicated with independent random seeds. The lines give the median 
(black) and the estimated 5 and 95% quantiles (red) of the prediction. This reveals the uncertainty in the model prediction of Figure 4.  
Model simulations are for tissue during blood flow cycling. Eighty percent of the cells had the full tumor glycolytic capacity (left column); 
20% of the cell volume had 10% of the full glycolytic capacity (right column). The two top rows show tissue conditions experienced  
by both cell types. Blood flow was initially constant at 0.264 ml/ml intracellular H

2
O/min. For t>0 a sinus wave with amplitude  

0.264 ml/ml/min was superimposed. High ATP consumption, >160 µM/s, was maintained at constant blood flow. When blood flow started 
cycling at t=0, ATP synthesis from the decline in fructose 1,6-bisphosphate (FBP) and other phosphorylated glycolytic intermediates  
(bottom row) maintained ATP levels and ATP hydrolysis rates in cells with full tumor glycolytic capacity. However, there was a sharp 
drop in ATP levels and hydrolysis rate in the cells with reduced glycolytic capacity. The 5% and 95% quantiles show that the predicted  
response pattern is reproducible for a broad range of parameter sets which reflect the potential experimental variation in the data used  
for parameter optimization.

Click here to access the data.

Supplementary Figure 2. Variation in simulation results for the in vitro experiments (see Figure 2). The time courses were  
calculated using the final parameter sets from 45 MCMC ensembles, replicated with independent random seeds (same as in  
Supplementary Figure 1). All 45 results for individual parameter sets were plotted (blue lines). The time courses for the distinct  
parameters sets correspond within a narrow range.

Click here to access the data.

Supplementary Figure 3. Simulation with cells at low glycolytic capacity during the start of cycling blood flow. Simulation as  
in Figure 4, but with 20% of the cells at 1.5% (rather than 10%) of the full glycolytic capacity. Model simulations of tissue during 
cycling blood flow: 80% of the cell volume had the full tumor glycolytic capacity; 20% of the cells had 1.5% of the full capacity,  
representative of many normal body cell types. The two top rows show tissue conditions experienced by both cell types. Blood flow 
was constant at 0.264 ml/ml intracellular H

2
O/min before t=0. For t>0 a sinus wave with amplitude 0.264 ml/ml intracellular H

2
O/min  

was superimposed. High ATP consumption, >160 µM/s, was maintained at constant blood flow. Concentrations and fluxes at ~18 µm 
from the microvessel are given. See the legend of Figure 3 for description of ATP synthesis fluxes. When blood flow started to fluctuate,  
ATP synthesis from the decline in fructose 1,6-bisphosphate (FBP) and other phosphorylated glycolytic intermediates (red curve)  
maintained ATP levels and high ATP hydrolysis rates in cells with full tumor glycolytic capacity. By contrast, glycolytic fluxes were low  
and there was a sharp drop in ATP levels in the cells with reduced glycolytic capacity.

Click here to access the data.

Supplementary Figure 4. Simulations of tumor metabolism during cycling and stopping blood flow. In the simulation on the  
second row and the bottom row all cells had the full tumor glycolytic capacity. In the third through penultimate row ATP concentrations 
and fluxes are given for cells which had their glycolytic capacity changed to a percentage of the full tumor cell glycolytic capacity, as indi-
cated above the rows. These cells with reduced glycolytic capacity constitute 5% of the total cell volume; the remaining 95% of the cells  
had the full tumor glycolytic capacity (100%). Results are calculated at ~38 µm from the blood vessel. Blood flow and fluxes of O

2
 and 

glucose carried into the tissue by the arterial blood are common to all simulations (top row); the other rows each represent a separate  
simulation. Blood flow was initially constant and started to fluctuate at t=0, including flow stops. All ATP fluxes and blood flow  
are expressed per volume of intracellular H

2
O. The ATP synthesis flux is partitioned in oxidative phosphorylation (blue) and two con-

tributions by the tail section of glycolysis, with fructose 1,6-bisphospate (FBP) either directly fed from the head part of glycolysis  
(direct glycolytic throughput: dashed line) or taken from decreasing FBP stores (FBP buffering: red line). When ATP synthesis  
depending on phosphorylated glycolytic intermediate stores was uncoupled (bottom row), ATP levels collapsed during flow stops,  
although glycolytic capacity was 100% in all cells.

Click here to access the data.

Supplementary Table 1. State variables in the model of tumor cell metabolism.

Click here to access the data.
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The manuscript ‘The dynamic side of the Warburg effect: glycolytic intermediates as buffer for fluctuating
glucose and O2 supply in tumor cells’ presents a coarse-grained kinetic model of glycolysis. The model,
despite being extremely simplified, is able to reproduce several experimental datasets in Ehrlich ascites
tumor cells after parameter calibration. The author then applies this model to predict dynamic behaviors of
tumor cells under fluctuating blood flow. I like the idea of using simplified models to interpret complex
biological phenomena but would like to see more discussions about the rationale of using this model
instead of other models with full details of every reaction involved in glycolysis. There is space to improve
presentation of the results as well. Specific comments are listed below for the author’s reference.

Some important interactions that may affect FBP dynamics are missing in the model. For instance,
it is known that FBP is an allosteric activator of pyruvate kinase (Jurica et al ; Christofk et al ). I
expect that this feedback will attenuate the FBP buffering mechanism proposed in this study since
lower glycolysis (i.e. 'tail' in this model) is activated by high concentration of FBP thus enhancing its
consumption. Moreover, the two sections (‘head’ and ‘tail’) of glycolysis are both considered to be
irreversible, thus neglecting the effects of thermodynamics on glycolytic flux. This may also lead to
overestimation of FBP concentration as well because FBP is not allowed to be converted back to
glucose.
The main goal of developing this coarse-grained model is not clear to me. Besides the model
developed by Chance and Hess, there are numerous mathematical models for glycolysis, most are
much more detailed than the model presented in this study. The author claims that this model
replaces the model of Chance and Hess – I feel this inappropriate since this statement doesn’t give
any credit to all other glycolysis models.
Most, if not all, results are presented as curves from the simulation with little information about the
take-home messages. It is thus very difficult to read the key findings directly from the figures. For
instance, it is my understanding that one of the two most important hypotheses drawn based on the
simulation is that cells with high glycolytic capacity (which mimics ‘Warburgian’ cancer cells)
consume glucose much more quickly than cells with lower glycolytic capacity after switching from
low glucose to high glucose condition, thus being more competitive under conditions with frequent
nutrient deprivation. To emphasize this point, I would recommend using one figure directly
comparing glucose uptake fluxes in cells with different glycolytic capacities instead of the 10 figure
panels currently included in Fig 4.  
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This is an interesting original research article based on computational modeling to understand several
questions related to cancer cell metabolism, specifically on the Warburg effects and related phenomena
(high glucose uptake and lactate production by cancer cells despite sufficient oxygen supply; also very
high transient glucose uptake one order of magnitude faster than the high steady state glucose uptake). In
doing this, the author developed a new computational model integrating simplified "phenomenological"
models of key lumped reactions in glycolysis, mitochondrial ATP synthesis coupled to oxygen
consumption (oxidative phosphorylation; OxPhos), and cytosolic ATP consumption. I am not an expert in
cancer cell metabolism, so I do not know how much experimental data are available for testing and
calibrating the mathematical model. I trust the author has carefully considered all the important
experimental data that are available for the calibration of the model. For example, I see the author has
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considered some key experimental data sets showing transients in several important variables in the
mathematical model governing cellular metabolism in cancer cells (Figure 2). This is surely an important
data sets for model calibration, as it depicts the transients of fructose biphosphate (FBP) content, ATP
content, glucose uptake, lactate production, and oxygen consumption for two different glucose stimulation
conditions in cancer cells (low glucose and high glucose conditions). These data show distinct
characteristics in these important variables for these two perturbation conditions. Based on the calibrated
model, the author used model simulations to gather several interesting insights into the cancer cell
metabolism. Finally, the author has very well recognized the limitations of the model. I still wanted to point
out few further limitations of the modeling.

As I mentioned above, the modeling of the lumped reaction processes in this integrated model are highly
phenomenological. The author considered two lumped reactions of the whole glycolysis process (termed
as "head" and "tail" portion of the glycolysis), one reaction representing OxPhos, and one reaction for ATP
consumption. I wonder what is the philosophy behind the formulated flux expressions for these lumped
reactions. I see the author has not given any thermodynamic consideration in the modeling of these
lumped reactions (e.g. reversible reaction fluxes satisfying the Haldane constraint, relating kinetic
parameters to the Gibbs free energy of the lumped reactions). The author has also not included the
stoichiometry of the biochemical species in the modeled reaction fluxes. For example, the modeled
lumped reaction fluxes do not include square terms considering two ATP and ADP are involved in the
lumped phosphorylation-dephosphorylation reactions. Also I am wondering if the author has individually
parameterized these reactions fluxes prior to integration and testing the integrated model with the
dynamic data in Figure 2.

Besides these few modeling limitations, the author has done a great job in developing, calibrating and
testing the model, and coming up with interesting conclusions regarding the operation of this complex
metabolic system in cancer cell. I am not sure how these findings can be experimentally tested, but I
would invite the author to put some of his thoughts on further testing experimentally these interesting
model predictions. Besides, I have few other suggestions:

1. I would suggest the author to show the model simulated reaction fluxes along with the model fittings in
Figure 2.

2. I would suggest the author using the acronym EATC throughout after it is defined.

3. I did not see how the effect of blood flow is integrated into the model. I thought the model is for isolated
cell experiments in a cuvette.

4. The whole experimental system (cells in buffer) is considered as a single compartment. I am wondering
how the model prediction would alter if one considers compartmentation (e.g. extracellular, cytosol, and
mitochondria as separate compartments with transport of species in and out of the compartments).
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