Stable Ramsey’s theorem and measure

Damir D. Dzhafarov
University of Chicago

SouthEastern Logic Symposium
28 February 2010
Stable Ramsey’s theorem

Definition

Let $X \subseteq \omega$ be an infinite set and let $n, k \in \omega$.

- $[X]^n := \{ Y \subseteq X : |Y| = n \}$.
- A coloring on X is a function $f : [X]^n \rightarrow k = \{0, \ldots, k-1\}$.
- A set $H \subseteq X$ is homogeneous for f if $f \upharpoonright [H]^n$ is constant.
- A coloring $f : [X]^2 \rightarrow k$ is stable if for all $x \in X$, $\lim_{y \in X} f(x, y)$ exists.
(RT\(_n^k\)) Every \(f : [\omega]^n \to k \) has an infinite homogeneous set.

(SRT\(_2^k\)) Every stable \(f : [\omega]^2 \to k \) has an infinite homogeneous set.

We deal only with stable colorings, and only with \(k = 2 \).
Stable Ramsey’s theorem

Fact

- For every computable stable $f : [\omega]^2 \rightarrow 2$, there is a Δ^0_2 set every infinite subset or cosubset of which computes an infinite homogeneous set for f.

- For every Δ^0_2 set A, there is a computable stable $f : [\omega]^2 \rightarrow 2$ such that every infinite homogeneous set of f is a subset or cosubset of A.
Theorem (Hirschfeldt, 2006)

Every Δ^0_2 set has an infinite subset or cosubset $H \lt_T \emptyset'$.
Stable Ramsey’s theorem

Theorem (Hirschfeldt, 2006)

Every Δ^0_2 set has an infinite subset or cosubset $H <_T \emptyset'$.

Theorem (Downey, Hirschfeldt, Lempp, and Solomon, 2001)

There is a Δ^0_2 set with no low infinite subset or cosubset.
Stable Ramsey’s theorem

<table>
<thead>
<tr>
<th>Theorem (Hirschfeldt, 2006)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Δ^0_2 set has an infinite subset or cosubset $H \lessdot_T \emptyset'$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Downey, Hirschfeldt, Lempp, and Solomon, 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a Δ^0_2 set with no low infinite subset or cosubset.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem (Cholak, Jockusch, and Slaman, 2001)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Δ^0_2 set has a low$_2$ infinite subset or cosubset.</td>
</tr>
</tbody>
</table>
Stable Ramsey’s theorem

Definition (Mileti, 2005)

Let \(d \) be a degree.

- Let \(\mathcal{C}_d \) be the class of all \(\Delta^0_2 \) sets with an infinite subset or cosubset of degree \(\leq d \).
- Say \(d \) is s-Ramsey if \(\mathcal{C}_d = \Delta^0_2 \).
Stable Ramsey’s theorem

Definition (Mileti, 2005)

Let d be a degree.

- Let C_d be the class of all Δ^0_2 sets with an infinite subset or cosubset of degree $\leq d$.
- Say d is *s-Ramsey* if $C_d = \Delta^0_2$.

Theorem (Mileti, 2005)

- *There is no s-Ramsey degree* $d < 0'$.
- *There is no low$_2$ s-Ramsey degree.*
A martingale is a map $M : 2^{<\omega} \to \mathbb{Q}^{\geq 0}$ such that for all $\sigma \in 2^{<\omega}$,

$$M(\sigma) = \frac{M(\sigma 0) + M(\sigma 1)}{2}$$

A martingale succeeds on a set X if $\limsup_{n \to \infty} M(X \upharpoonright n) = \infty$.

A class \mathcal{C} of Δ^0_2 sets is Δ^0_2 null if there is a martingale $M \leq_T \emptyset'$ that succeeds on every $X \in \mathcal{C}$.
Measure

Theorem (Hirschfeldt and Terwijn, 2008)

The class of low sets is not \(\Delta^0_2 \) null.

Corollary

The class of \(\Delta^0_2 \) sets having a low infinite subset or cosubset is not \(\Delta^0_2 \) null.
Definition

A degree d is *almost s-Ramsey* if C_d is not Δ^0_2 null.
Definition

A degree d is *almost s-Ramsey* if C_d is not Δ^0_2 null.

Theorem (Dzhafarov)

*There is no almost s-Ramsey degree $d < 0'$.***
Theorem (Dzhafarov)

There is an almost s-Ramsey degree that is not s-Ramsey.

Proof idea.

Fix $A \in \Delta^0_2$ with no low infinite subset or cosubset.

Let M_0, M_1, \ldots list all \emptyset'-computable martingales.

For all i, fix L_i on which M_i does not succeed and $\bigoplus_{j \leq i} L_i$ is low.

Let $D[0] = L_0$.

If $(\exists x \in A)(\exists F \text{ finite})[F[0] \restriction \max F = D[0] \restriction \max F \land \Phi_F(x) \downarrow = 1]$:

let $r_1 = \phi_F(x)$, make $F \subset D$, and let $D[1] = F[1] \cup \{x \in L_1 : x > r_1\}$.

If not, let $D[1] = L_1$.

Continue.
Theorem (Dzhafarov)

There is an almost s-Ramsey degree that is not s-Ramsey.

Proof idea.

- Fix $A \in \Delta^0_2$ with no low infinite subset or cosubset.
- Let M_0, M_1, \ldots list all \emptyset'-computable martingales.
- For all i, fix L_i on which M_i does not succeed and $\bigoplus_{j \leq i} L_i$ is low.
- Let $D[0] = L_0$.
- If $(\exists x \notin A)(\exists F \text{ finite})[F[0] \upharpoonright \max F = D[0] \upharpoonright \max F \land \Phi^F_0(x) \downarrow = 1]$:
 - let $r_1 = \varphi^F_0(x)$, make $F \subseteq D$, and let $D[1] = F[1] \cup \{x \in L_1 : x > r_1\}$.
- If not, let $D[1] = L_1$.
- Continue.
Measure

Theorem (Dzhafarov)

There is an almost s-Ramsey degree $d < 0''$ which is not s-Ramsey.
Theorem (Dzhafarov)

There is an almost s-Ramsey degree $d < 0''$ which is not s-Ramsey.

Question

Is there a low$_2$ almost s-Ramsey degree?
Recall the following principles:

(COH) For every family $\langle X_i : i \in \mathbb{N} \rangle$ there is a set C such that for all i, $C \subseteq^* X_i$ or $C \subseteq^* \overline{X_i}$.

(DNR) For every set X there is an f such that for all e, $\Phi^X_e(e) \neq f(e)$.

Theorem (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman, 2006) Over RCA$_0$, $\text{SRT}^2_2 = \Rightarrow \text{DNR}$.

Question Over RCA$_0$, does $\text{SRT}^2_2 = \Rightarrow \text{WKL}_0$ or $\text{SRT}^2_2 = \Rightarrow \text{COH}$?
Recall the following principles:

(COH) For every family \(\langle X_i : i \in \mathbb{N} \rangle \) there is a set \(C \) such that for all \(i \), \(C \subseteq^* X_i \) or \(C \subseteq^* \overline{X_i} \).

(DNR) For every set \(X \) there is an \(f \) such that for all \(e \), \(\Phi_e^X(e) \neq f(e) \).

Theorem (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman, 2006)

Over \(\text{RCA}_0 \), \(\text{SRT}^2_2 \implies \text{DNR} \).

Question

Over \(\text{RCA}_0 \), does \(\text{SRT}^2_2 \implies \text{WKL}_0 \) or \(\text{SRT}^2_2 \implies \text{COH} \)?
Define the following principles:

(SRAM) For every set X there is a set Y such that every stable coloring $f \leq_T X$ has an infinite homogeneous set $H \leq_T Y$.

(ASRAM) For every set X there is a set Y such that for every X-computable approximation to a martingale M there is a stable coloring $f \leq_T X$ on which M does not succeed and which has an infinite homogeneous set $H \leq_T Y$.

(ASRT2_2) For every approximation M_s to a martingale M there is a stable coloring $f \leq_T M_s$ on which M does not succeed and which has an infinite homogeneous set.
Theorem (Dzhafarov)

Over RCA₀, the following implications hold:

\[\text{ACA₀} \rightarrow \text{SRAM} \rightarrow \text{SRT}^2 \rightarrow \text{ASRT}^2 \rightarrow \text{DNR} \rightarrow \text{RCA₀} \]

(Double arrows are not reversible in RCA₀.)
Thank you for your attention.