The Maximal Subword Complexity of Quasiperiodic Infinite Words

Ronny Polley1 and Ludwig Staiger2
1 itCampus Software- und Systemhaus GmbH, Leipzig
2 Martin-Luther-Universität Halle-Wittenberg

CDMTCS-386
June 2010 (revised January 2011)
The Maximal Subword Complexity of Quasiperiodic Infinite Words

Ronny Polley
itCampus Software- und Systemhaus GmbH
D-04229 Leipzig, Germany
and
Ludwig Staiger†
Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik
von-Seckendorff-Platz 1, D–06099 Halle (Saale), Germany

Abstract

We provide an exact estimate on the maximal subword complexity for quasiperiodic infinite words. To this end we give a representation of the set of finite and of infinite words having a certain quasiperiod \(q\) via a finite language derived from \(q\). It is shown that this language is a suffix code having a bounded delay of decipherability.

Our estimate of the subword complexity uses this property, exploits previously known results on the subword complexity and elementary facts on formal power series and recurrence relations.

Keywords: quasiperiodic words, codes, subword complexity, structure generating function

In his tutorial [Mar04] Solomon Marcus provided some initial facts on quasiperiodic infinite words. Here he posed several questions on the complexity of quasiperiodic infinite words. The papers [LR04, LR07] studied in more detail quasiperiodic infinite words generated by morphisms and their relation to Sturmian words. Their results concern mainly infinite words of low complexity. This fits into the line pursued in the tutorial

*The results of this paper were presented at the “12th Workshop Descriptional Complexity of Formal Systems”, August 8 – 10, 2010, Saskatoon, Canada [PS10]
†email: ludwig.staiger@informatik.uni-halle.de
R. Polley and L. Staiger

The investigations of the present paper turn to the question posed in [LR04] of finding the maximally possible complexity functions for those words. As complexity here and in the cited above papers one considers Marcus’ [Mar04] (subword) complexity function $f(\xi, n)$ of an infinite word ξ, where $f(\xi, n)$ is the number of its subwords of length n.

As a final result we deduce that the maximally possible complexity functions for quasiperiodic infinite words ξ are bounded from above by a function of the form $f(\xi, n) \leq c \cdot t^P_n$, $n \geq n_\xi$ where n_ξ is a number depending on ξ and t_P is the smallest Pisot-Vijayaraghavan number, that is, the unique real root t_P of the cubic polynomial $x^3 - x - 1$, which is approximately equal to $t_P \approx 1.324718$. We show also that this bound is tight, that is, there are ω-words ξ having $f(\xi, n) \approx c \cdot t^P_n$. Moreover, we estimate the quasiperiods for which this bound can be achieved and we estimate the then possible constants c.

The paper is organised as follows. After introducing some notation we derive in Section 2 a characterisation of quasiperiodic words and ω-words having a certain quasiperiod q. Moreover, we introduce a finite basis set P_q from which the sets of quasiperiodic words or ω-words having quasiperiod q can be constructed. In Section 3 it is then proved that the star root of P_q is a suffix code having a bounded delay of decipherability.

This much prerequisites allow us, in Section 4, to estimate the number of subwords of the language Q_q of all quasiperiodic words having quasiperiod q. It turns out that $c_{q,1} \cdot \lambda^n_q \leq f(Q_q, n) \leq c_{q,2} \cdot \lambda^n_q$ where $f(Q_q, n)$ is the number of subwords of length n of words in Q_q and $1 \leq \lambda_q \leq t_P$ depends on q. We construct, for every quasiperiod q, a quasiperiodic ω-word ξ_q with quasiperiod q whose subword complexity $f(\xi_q, n)$ meets the upper bound $c_{q,2} \cdot \lambda^n_q$. Finally, from these results we derive our estimates for the subword complexity of quasiperiodic infinite words and we draw via the results of [Sta93, Sta07, Sta08] a connection to the Kolmogorov complexity of infinite quasiperiodic words.

1 Notation

In this section we introduce the notation used throughout the paper. By $\mathbb{N} = \{0, 1, 2, \ldots\}$ we denote the set of natural numbers. Let X be an alphabet of cardinality $|X| = r \geq 2$. By X^* we denote the set of finite words on X, including the empty word e, and X^ω is the set of infinite strings (ω-words)
over X. Subsets of X^* will be referred to as languages and subsets of X^ω as ω-languages.

For $w \in X^*$ and $\eta \in X^* \cup X^\omega$ let $w \cdot \eta$ be their concatenation. This concatenation product extends in an obvious way to subsets $L \subseteq X^*$ and $B \subseteq X^* \cup X^\omega$. For a language L let $L^* := \bigcup_{i \in \mathbb{N}} L^i$, and by $L^\omega := \{w_1 \cdots w_l \cdots : w_l \in L \setminus \{e\}\}$ we denote the set of infinite strings formed by concatenating words in L. Furthermore $|w|$ is the length of the word $w \in X^*$ and $\text{pref}(B)$ is the set of all finite prefixes of strings in $B \subseteq X^* \cup X^\omega$. We shall abbreviate $w \in \text{pref}(\eta)$ ($\eta \in X^* \cup X^\omega$) by $w \subseteq \eta$.

We denote by $B/w := \{\eta : w \cdot \eta \in B\}$ the left derivative of the set $B \subseteq X^* \cup X^\omega$. As usual, a language $L \subseteq X^*$ is regular provided it is accepted by a finite automaton. An equivalent condition is that its set of left derivatives $\{L/w : w \in X^*\}$ is finite.

The sets of infixes of B or η are $\text{infix}(B) := \bigcup_{w \in X^*} \text{pref}(B/w)$ and $\text{infix}(\eta) := \bigcup_{w \in X^*} \text{pref}(\{\eta\}/w)$, respectively. In the sequel we assume the reader to be familiar with basic facts of language theory.

As usual a language $L \subseteq X^*$ is called a code provided $w_1 \cdots w_l = v_1 \cdots v_k$ for $w_1, \ldots, w_l, v_1, \ldots, v_k \in L$ implies $l = k$ and $w_l = v_l$.

\section{Quasiperiodicity}

\subsection{General properties}

A finite or infinite word $\eta \in X^* \cup X^\omega$ is referred to as quasiperiodic with quasiperiod $q \in X^* \setminus \{e\}$ provided for every $j < |\eta| \in \mathbb{N} \cup \{\infty\}$ there is a prefix $u_j \subseteq \eta$ of length $j - |q| < |u_j| \leq j$ such that $u_j \cdot q \subseteq \eta$, that is, for every $w \subseteq \eta$ the relation $u_j|w| \subseteq w \subseteq u_j|w| \cdot q$ is valid (cf. [Mar04, LR04]).

Let for $q \in X^* \setminus \{e\}$, Q_q be the set of quasiperiodic words with quasiperiod q. Then $\{q\}^* \subseteq Q_q = Q^\omega_q$ and $Q_q \setminus \{e\} \subseteq X^* \cdot q \cap q \cdot X^*$.

\begin{definition}
A family $\{w_i\}_{i=1}^{\ell}, \ell \in \mathbb{N} \cup \{\infty\}$, of words $w_i \in X^* \cdot q$ is referred to as a q-chain provided $w_1 = q$, $w_i \supsetneq w_{i+1}$ and $|w_{i+1}| - |w_i| \leq |q|$.

It holds the following.

\begin{lemma}
\begin{enumerate}
\item $w \in Q_q \setminus \{e\}$ if and only if there is a q-chain $\{w_i\}_{i=1}^{\ell}$ such that $w_{\ell} = w$.
\item An ω-word $\xi \in X^\omega$ is quasiperiodic with quasiperiod q if and only if there is a q-chain $\{w_i\}_{i=1}^{\infty}$ such that $w_i \supsetneq \xi$.
\end{enumerate}
\end{lemma}
Proof. It suffices to show how a family \((u_j)_{j=0}^{\eta-1}\) can be converted to a \(q\)-chain \((w_i)_{i=1}^\ell\) and vice versa.

Consider \(\eta \in X^* \cup X^\omega\) and let \((u_j)_{j=0}^{\eta-1}\) be a family such that \(u_j \cdot q \subseteq \eta\) and \(j - |q| < |u_j| \leq j\) for \(j < |\eta|\).

Define \(w_1 := q\) and \(w_{i+1} := u_{\omega,w_i} \cdot q\) as long as \(|w_i| < |\eta|\). Then \(w_i \subseteq \eta\) and \(|w_i| < |w_{i+1}| = |u_{w_i} \cdot q| \leq |w_i| + |q|\). Thus \((w_i)_{i=1}^\ell\) is a \(q\)-chain with \(w_i \subseteq \eta\).

Conversely, let \((w_i)_{i=1}^\ell\) be a \(q\)-chain such that \(w_i \subseteq \eta\) and set
\[
u_j := \max_{\subseteq}\{w' : \exists i (w' \cdot q = w_i \land |w'| \leq j)\}, \text{ for } j < |\eta|.
\]

By definition, \(u_j \cdot q \subseteq \eta\) and \(|u_j| \leq j\). Assume \(|u_j| \leq j - |q|\) and \(u_j \cdot q = w_i\).

Then \(|w_i| \leq j < |\eta|\). Consequently, in the \(q\)-chain there is a successor \(w_{i+1}\), \(|w_{i+1}| \leq |w_i| + |q| \leq j + |q|\). Let \(w_{i+1} = w'' \cdot q\). Then \(u_j \subseteq w''\) and \(|w''| \leq j\) which contradicts the maximality of \(u_j\).

Corollary 3 Let \(u \in \text{pref}(Q_q)\). Then there are words \(w, w' \in Q_q\) such that \(w \subseteq u \subseteq w'\) and \(|u - |w|, |w'| - |u| \leq |q|\).

Corollary 4 Let \(\xi \in X^\omega\). Then the following are equivalent.

1. \(\xi\) is quasiperiodic with quasiperiod \(q\).
2. \(\text{pref}(\xi) \cap Q_q\) is infinite.
3. \(\text{pref}(\xi) \subseteq \text{pref}(Q_q)\).

2.2 A finite generator for quasiperiodic words

In this part we introduce the finite language \(P_q\) which generates the set of quasiperiodic words as well as the set of quasiperiodic \(\omega\)-words having quasiperiod \(q\). We investigate basic properties of \(P_q\) using simple facts from combinatorics on words (see e.g. [Shy01]). We set
\[
P_q := \{v : e \sqsubseteq v \sqsubseteq q \sqsubseteq v \cdot q\},
\]

Then we have the following relations to \(Q_q\).

Proposition 5
\[
Q_q = P_q^* \cdot q \cup \{e\} \subseteq P_q^* ,
\]
\[
\text{pref}(P_q^*) = \text{pref}(Q_q) = P_q^* \cdot \text{pref}(q)
\]
Proof. In order to prove Eq. (2) we show that $w_i \in P_q^* \cdot q$ for every q-chain $(w_i)_{i=1}^\ell$. This is certainly true for $w_1 = q$. Now proceed by induction on i. Let $w_i = w_i' \cdot q \in P_q^* \cdot q$ and $w_{i+1} = w_{i+1}' \cdot q$. Then $w_i' \cdot v_i = w_{i+1}'$. Now from $w_i \sqsubseteq w_{i+1}$ we obtain $e \sqsubseteq v_i \sqsubseteq q \sqsubseteq v_i \cdot q$, that is, $v_i \in P_q$.

Eq. (3) is an immediate consequence of Eq. (2).

Corollary 4 and Proposition 5 imply the following characterisation of ω-words having quasiperiod q.

$$\{ \xi : \xi \in X^\omega \land \xi \text{ has quasiperiod } q \} = P_q^0$$

Proof. Since P_q is finite, $P_q^0 = \{ \xi : \xi \in X^\omega \land \text{pref}(\xi) \subseteq \text{pref}(P_q^*) \}$. The following property of words in P_q is a consequence of the Lyndon-Schützenberger Theorem (see [BP85, Shy01]).

Proposition 6 $v \in P_q$ if and only if $|v| \leq |q|$ and there is a prefix $\bar{v} \sqsubseteq v$ such that $q = v^k \cdot \bar{v}$ for $k = \lceil |q|/|v| \rceil$.

Proof. Sufficiency is clear. Let now $v \in P_q$. Then $v \sqsubseteq q \sqsubseteq v \cdot q$. This implies $v^l \sqsubseteq q \sqsubseteq v^l \cdot q$ as long as $l \leq k$ and, finally, $q \sqsubseteq v^{k+1}$.

Corollary 7 $v \in P_q$ if and only if $|v| \leq |q|$ and there is a $k' \in \mathbb{N}$ such that $q \sqsubseteq v^{k'}$.

Now set $q_0 := \min \subseteq P_q$. Then in view of Proposition 6 and Corollary 7 we have the following.

$$q = q_0^k \cdot \bar{q} \text{ for } k = \lceil |q|/|q_0| \rceil \text{ and some } \bar{q} \sqsubseteq q_0. \quad (5)$$

Corollary 8 The word q_0 is primitive, that is, there are no $u \in X^*$ and $n > 1$ such that $q_0 = u^n$.

Proof. Assume $q_0 = q_1^l$ for some $l > 1$. Then $\bar{q} = q_1^l \cdot q_1$ where $q_1 \sqsubseteq q_1$, and, consequently, $q \sqsubseteq q_1^{k+l+j+1}$ contradicting the fact that q_0 is the shortest word in P_q.

Proposition 9

1. If $v \in P_q$ and $w \sqsubseteq q$ then $v \cdot w \sqsubseteq q$ or $q \sqsubseteq v \cdot w$.

2. If $v \in P_q$ and $|v| \leq |q| - |q_0|$ then $v = q_0^m$ for some $m \in \mathbb{N}$.
Proof. The first assertion follows from \(v \subseteq q \subseteq v \cdot q \) and \(v \cdot w \subseteq v \cdot q \).

For the proof of the second one observe that, by the first item \(v \cdot q_0 \subseteq q \) and \(q_0 \cdot v \subseteq q \) whence \(q_0 \cdot v = v \cdot q_0 \). Thus \(q_0 \) and \(v \) are powers of a common word. Since \(q_0 \) is primitive, the assertion follows.

Theorem 10 If \(v \in P_q \) and \(w \cdot v \subseteq q \) then \(w \in \{ q_0 \}^* \).

Proof. If \(v \in P_q \) then \(q_0 \subseteq v \). Thus it suffices to prove the assertion for \(q_0 \).

Let \(w \cdot q_0 \subseteq q = q_0^k \bar{q} \). Then \(w \cdot q_0 \subseteq q_0^{k+2} \) and, trivially, \(q_0 \subseteq q_0^{k+2} \). Since \(|w \cdot q_0| + |q_0| < |q_0^{k+2}| \), \(w \cdot q_0 \) and \(q_0 \) are powers of a common word. The assertion follows because \(q_0 \) is primitive.

3 Codes

In this section we investigate in more detail the properties of the star root of \(P_q \), that is, of the smallest subset \(V \subseteq P_q \) such that \(V^* = P_q^{q_0} \). It turns out that the star root of \(P_q \) is a suffix code which, additionally, has a bounded delay of decipherability. This delay is closely related to the largest power of \(q_0 \) being a prefix of \(q \).

According to [BP85] a subset \(C \subseteq X^* \) is a code of a delay of decipherability \(m \in \mathbb{N} \) if and only if for all \(w, w', v_1, \ldots, v_m \in C \) and \(u \in C^* \) the relation \(w \cdot v_1 \cdots v_m \subseteq w' \cdot u \) implies \(w = w' \). Observe that \(C \subseteq X^* \setminus \{ e \} \) is a prefix code, that is, \(w, w', \in C \) and \(w \subseteq w' \) imply \(w = w' \), if and only if \(C \) has delay \(0 \). A subset \(C \subseteq X^* \setminus \{ e \} \) is referred to as a suffix code if no word \(w \in C \) is a proper suffix of another word \(v \in C \).

Define now the star-root of a language \(L \subseteq X^* \):

\[
\sqrt{L} := L \setminus \{ e \} \setminus ((L \setminus \{ e \})^2 \cdot L^*)
\]

For \(\sqrt{P_q} \) we obtain the following.

\[
\sqrt{P_q} = (P_q \setminus \{ q_0 \}^*) \cup \{ q_0 \} \cup \{ v : v \subseteq q \land |q_0| + |v| > |q| \} \tag{6}
\]

Proof. First we prove the identity. The inclusion “\(\subseteq \)” follows from \((P_q \setminus \{ q_0 \}^*) \cup \{ q_0 \} \subseteq P_q \subseteq ((P_q \setminus \{ q_0 \}^*) \cup \{ q_0 \})^* \).

To prove the reverse inclusion assume \(\ell > 1 \) and \(v_1 \cdots v_\ell \in P_q \) for \(v_i \in P_q \). Then \(|q_0| \leq |v_i| \) and thus \(|q_0| + |v_i| \leq |q| \) for all \(i \). According to Proposition 9.2 we have \(v_i \in \{ q_0 \}^* \) which shows \(P_q \cap (P_q^2 \cdot P_q^*) \subseteq \{ q_0 \}^* \).
The remaining inclusion now follows from Proposition 9.2. □
Next we are going to show that $\sqrt[*]{P_q}$ is a suffix code having a bounded delay of decipherability.

Corollary 11 $\sqrt[*]{P_q}$ is a suffix code.

Proof. Assume $u = w \cdot v$ for some $u, v \in \sqrt[*]{P_q}, u \neq v$. Then Theorem 10 proves $w \in \{q_0\}^* \subseteq P_q$. If $w \neq e$, in view of $u \subseteq q$ Proposition 9.2 implies $v \in \{q_0\}^*$ and hence $u \in \{q_0\}^*$. Thus $u = v = q_0$ contradicting $u \neq v$. □
We conclude this part by investigating the delay of decipherability of $\sqrt[*]{P_q}$. We prove that the this delay depends on the relation between the quasi-period q and the minimal w.r.t. word $q_0 \in P_q$. If $q = q_0^k$ then $\sqrt[*]{P_q} = \{q_0\}$ is a prefix code. If $q \notin \{q_0\}^*$ then $q_0^k \not\subseteq q$ implies that the delay of decipherability of $\sqrt[*]{P_q}$ is at least k. The following theorem gives an upper bound.

Theorem 12 Let $q = q_0^k \cdot \bar{q}$ where $\bar{q} \subseteq q_0$. Then $\sqrt[*]{P_q}$ is a code having a delay of decipherability of at most $k + 1$.

Proof. We have to show that if the words $v \cdot w_1 \cdots w_{k+1}$ and $v' \cdot w'_1 \cdots w'_{k+1}$, where $v, w_1, \ldots, w_{k+1}, v', w'_1, \ldots, w'_{k+1} \in \sqrt[*]{P_q}$ are comparable w.r.t. “\subseteq” then $v = v'$.

Without loss of generality, assume $v \subseteq v'$. Then $|q_0| \leq |v| < |v'| \leq |q|$. We have $|w_i|, |w'_i| \geq |q_0|$. Thus $|w_1 \cdots w_{k+1}|, |w'_1 \cdots w'_{k+1}| > |q|$. Moreover, according to Proposition 9.1 $q \subseteq w_1 \cdots w_{k+1}$ and $q \subseteq w'_1 \cdots w'_{k+1}$, whence $v \cdot q \subseteq v' \cdot q$. Then in view of the inequality $|v| + |q| \geq |v'| + |q_0|$ we have $q \supseteq v \cdot w_0$ for the word $w \neq e$ with $v \cdot w = v'$ and, according to Theorem 10 $w \in \{q_0\}^*$. This contradicts the fact that $\sqrt[*]{P_q}$ is a suffix code. □

Thus, if $q_0^k \not\subseteq q \subseteq q_0^{k+1}$ the code $\sqrt[*]{P_q}$ may have a minimum delay of decipherability of k or $k + 1$. We provide examples that both cases are possible.

Example 13 Let $q := aabaaaba$. Then $q_0 = aabaa, k = 1$ and $\sqrt[*]{P_q} = P_q = \{q_0, aabaaab, q\}$ which is a code having a delay of decipherability 2.

Indeed $aabaaabaab = q_0 \cdot q_0 \not\subseteq q \cdot q_0$ or $aabaaabaab = q_0 \cdot q_0 \not\subseteq aabaaab \cdot q_0$. □

Moreover, in Example 13, $q \cdot q_0 \notin Q_q$. Thus our example shows also that $q \cdot P_q^*$ need not be contained in Q_q.
Example 14 Let \(q := aba \). Then \(k = 1 \) and \(P_q = \{ ab, aba \} \) is a code having a delay of decipherability 1.

4 Subword Complexity

In this section we investigate upper bounds on the subword complexity function \(f(\xi, n) \) for quasiperiodic \(\omega \)-words. If \(\xi \in X^\omega \) is quasiperiodic with quasiperiod \(q \) then Proposition 6 and Corollary 7 show \(\text{infix}(\xi) \subseteq \text{infix}(P_q^*) \). Thus

\[
 f(\xi, n) \leq |\text{infix}(P_q^*) \cap X^n| \text{ for } \xi \in P_q^\omega.
\]

Similar to the proof of Proposition 5.5 of [Sta93] let \(\xi_q := \prod_{v \in P_q^\omega \{e\}} v \). This implies \(\text{infix}(\xi) = \text{infix}(P_q^*) \). Consequently, the tight upper bound on the subword complexity of quasiperiodic \(\omega \)-words having a certain quasi-period \(q \) is

\[
 f_q(n) := |\text{infix}(P_q^*) \cap X^n|.
\]

The following facts are known from the theory of formal power series (cf. [BR88, SS78]). As \(\text{infix}(P_q^*) \) is a regular language the power series \(s_q^* := \sum_{n \in \mathbb{N}} f_q(n) \cdot t^n \) is a rational series and, therefore, \(f_q \) satisfies a recurrence relation

\[
 f_q(n + k) = \sum_{i=0}^{k-1} a_i \cdot f_q(n + i)
\]

with integer coefficients \(a_i \in \mathbb{Z} \). Thus \(f_q(n) = \sum_{i=0}^{k'-1} g_i(n) \cdot t^i \) where \(k' \leq k \), \(t_i \) are pairwise distinct roots of the polynomial \(t^n - \sum_{i=0}^{k-1} a_i \cdot t^i \) and \(g_i \) are polynomials of degree not larger than \(k \).

In the subsequent parts we estimate values characterising the exponential growth of the family \(\{ |\text{infix}(P_q^*) \cap X^n| \}_{n \in \mathbb{N}} \). This growth mainly depends on the root of largest modulus among the \(t_i \) and the corresponding polynomial \(g_i \).

First we show that, independently of the quasiperiod \(q \) this polynomial is constant. Then we show that, for every quasiperiod \(q \), a root of largest modulus is always positive. Then we estimate those quasiperiods for which this root is maximal, and finally, for those quasiperiods with maximal roots we estimate the corresponding constants.

4.1 The subword complexity of a regular star language

The language \(P_q^* \) is a regular star-language of special shape. Here we show that, generally, the number of subwords of regular star-languages grows only exponentially without a polynomial factor. We start with some easily
derived relations between the number of words in a regular language and the number of its subwords.

Lemma 15 If $L \subseteq X^*$ is a regular language then there is a $k \in \mathbb{N}$ such that

$$|L \cap X^n| \leq |\text{infix}(L) \cap X^n| \leq \sum_{i=0}^{k} |L \cap X^{n+i}|$$ (8)

As a suitable k one may choose the twice number of states of an automaton accepting the language $L \subseteq X^*$.

In order to derive the announced simple exponential growth we use Corollary 4 of [Sta85] which shows that for every regular language $L \subseteq X^*$ there are constants $c_1, c_2 > 0$ and a $\lambda \geq 1$ such that

$$c_1 \cdot \lambda^n \leq |\text{pref}(L^*) \cap X^n| \leq c_2 \cdot \lambda^n.$$ (9)

A consequence of Lemma 15 is that Eq. (9) holds also (with constant $k \cdot c_2$ instead of c_2) for $\text{infix}(L^*)$.

4.2 The subword complexity of P^*_q

It is now our task to estimate the value λ_q which satisfies the inequality $c_1 \cdot \lambda_q^n \leq |\text{infix}(P^*_q \cap X^n| \leq k \cdot c_2 \cdot \lambda_q^n$. Following Lemma 15 and Eqs. (9) and (3) it holds

$$\lambda_q = \limsup_{n \to \infty} \sqrt[n]{|P^*_q \cap X^n|}$$ (10)

which is the inverse of the convergence radius $\text{rad}_{P^*_q}$ of the power series $s_q(t) := \sum_{n \in \mathbb{N}} |P^*_q \cap X^n| \cdot t^n$. The series s_q is also known as the structure generating function of the language P^*_q.

If $|q_0|$ divides $|q|$ then $P^*_q = \{q_0\}^*$ whence $\lambda_q = 1$. Therefore, in the following considerations we may assume that $|q|/|q_0| \notin \mathbb{N}$.

Since $\sqrt[]*[P^*_q]$ is a code, we have $s_q(t) = \frac{1}{1-s_q(t)}$ where $s_q(t) := \sum_{v \in \sqrt[]*[P^*_q]} t^{|v|}$ is the structure generating function of the finite language $\sqrt[]*[P^*_q]$. Thus the convergence radius rad_{s_q} is the smallest root of $1 - s_q(t)$. It is readily seen that this root is positive. So λ_q is the largest positive root of the reversed polynomial

$$p_q(t) := t^{|q|} - \sum_{v \in \sqrt[]*[P^*_q]} t^{|q| - |v|}.$$ Summarising these observations we obtain the following.

Lemma 16 Let $q \in X^* \{\epsilon\}$. Then there are constants $c_{q,1}, c_{q,2} > 0$ such that the structure function of the language $\text{infix}(P^*_q)$ satisfies

$$c_{q,1} \cdot \lambda_q^n \leq |\text{infix}(P^*_q) \cap X^n| \leq c_{q,2} \cdot \lambda_q^n$$

\footnote{If $|q_0|$ divides $|q|$ we have $p_q(t) = t^{|q_0|} - 1$ instead.}
where \(\lambda_q \) is the largest (positive) root of the polynomial \(p_q(t) \).

Remark 17 One could prove Lemma 16 by showing that, for each polynomial \(p_q(t) \), its largest (positive) root has multiplicity 1. Referring to Corollary 4 of [Sta85] (see Eq. (9)) we avoided these more detailed considerations of a particular class of polynomials.

Next we are looking for those quasiperiods \(q \) which yield the largest value of \(\lambda_q \) among all quasiperiods. To this aim we show that we may restrict our considerations to the case when \(|q_0| > |q|/2 \).

Lemma 18 If \(|q_0| \) does not divide \(|q|\) and the language \(P_q^* \) is maximal w.r.t. \(\subseteq \) in the class \(\{ P_q^* : q' \in X^* \setminus \{ e \} \} \) then \(|q_0| > |q|/2 \).

Proof. If \(|q|/|q_0| \notin \mathbb{N} \) and \(|q_0| \leq |q|/2 \) we have \(q = q_0 \cdot \tilde{q} \) for \(k \geq 2 \) and \(e \neq \tilde{q} \sqsubset q_0 \). Then, obviously \(P_q^* \subseteq P_{q_0}^* \) for \(q' := q_0 \cdot \tilde{q} \).

From \(|q_0| > |q|/2 \) we obtain that the polynomial \(p_q(t) \) has the form \(t^{|q|} - \sum_{i \in M} t_i \) where \(0 \in M \subseteq \{ j : j < \frac{|q|}{2} \} \). In [Pol09] the following properties were derived.

Lemma 19 Let \(\mathcal{P} := \{ t^n - \sum_{i \in M} t_i : n \geq 1 \land 0 \in M \subseteq \{ j : j \leq \frac{n-1}{2} \} \} \). Then

1. for every \(n \geq 1 \) the polynomial \(t^n - \sum_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} t^i \) has the largest positive root among all polynomials of degree \(n \) in \(\mathcal{P} \), and
2. the polynomials \(t^3 - t - 1 \) and \(t^5 - t^2 - t - 1 = (t^2 + 1) \cdot (t^3 - t - 1) \) have the largest positive roots among all polynomials in \(\mathcal{P} \).

Some remarks are in order here.

Remark 20

1. It holds \(p_{a^n b a^n}(t) = t^{2n+1} - \sum_{i=0}^{n} t^i \) and \(p_{a^n b^2 a^n}(t) = t^{2n+2} - \sum_{i=0}^{n} t^i \), so for all degrees \(\geq 1 \) there are polynomials of the form \(p_q(t) \) in \(\mathcal{P} \).
2. The polynomials \(p_{a b a}(t) = t^3 - t - 1 \) and \(p_{a^2 b a^2}(t) = (t^2 + 1) \cdot (t^3 - t - 1) \) have exactly one positive root which is also their only root of modulus \(> 1 \).

This positive root \(t_p \) of \(p_{a b a}(t) = t^3 - t - 1 \) (or of \(p_{a^2 b a^2}(t) \)) is known as the smallest Pisot-Vijayaraghavan number, that is, a positive root \(> 1 \) of a polynomial with integer coefficients all of whose conjugates have modulus smaller than 1.
3. The other roots are non-real and form pairs of conjugate complex numbers. The complex roots t_1, t_2 of $p_{\text{aba}}(t) = t^3 - t - 1$ have $|t_1| = |t_2| = \frac{1}{\sqrt{8}} < 1$.

Before proceeding to the proof of Lemma 19 we recall that the polynomials $p(t) \in \mathcal{P}$ have the following easily verified property.

If $\varepsilon > 0$ and $p(t') \geq 0$ for some $t' > 0$ then $p((1 + \varepsilon) \cdot t') > 0$. \hfill (11)

Since $p(0) = -1 < 0$ for $p(t) \in \mathcal{P}$, Eq. (11) shows that once $p(t') \geq 0$, $t' > 0$ the polynomial $p(t)$ has no further root in the interval (t', ∞).

Proof. (of Lemma 19) Using Eq. (11) the first assertion is easy to verify. To show the second one it suffices to show that $p_0(t) > 0$ for every polynomial of the form $p_n(t) := t^n - \sum_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} t^i$ other than $t^3 - t - 1$ or $t^5 - t^2 - t - 1$.

For degrees $n = 1, 2$ or $n = 4$ this is readily seen. Now we proceed by induction on n. To this end we observe the following properties of the family $(p_n(t))_{n \geq 1}$.

$$p_{n+2}(t) - p_n(t) = t^{n+2} - t^n - t^{\lfloor \frac{n+1}{2} \rfloor} \quad \text{for } n \geq 3$$ \hfill (12)

From this one easily obtains that $p_{n+2}(tp) - p_n(tp) = t_{p,n-1} - t_{p,\frac{n+1}{2}} > 0$ for $n \geq 4$, and the assertion follows by induction.

4.3 The subword complexity of ω-words

Having derived the results on the subword complexity of quasiperiodic words we are now in a position to give a first answer to Question 2 in [Mar04] by deriving tight upper bounds on the subword complexity of quasiperiodic infinite words.

To this aim recall Eq. (7) and the definition of ξ_q. We obtain the following bounds.
Lemma 21

1. If $\xi \in X^\omega$ is quasiperiodic with quasiperiod q then $f(\xi, n) = |\text{infix}(\xi) \cap X^n| \leq c \cdot \lambda_q^n$ for a suitable constant $c > 0$ not depending on ξ.

2. For every quasiperiod $q \in X^* \setminus \{e\}$ there is a constant $c_q \xi \in P_q^\omega$ such that $c_q \lambda_q^n \leq f(\xi, n) = |\text{infix}(\xi) \cap X^n|$ for every $\xi \in P_q^\omega$ having $\text{infix}(\xi) = \text{infix}(P_q^\omega)$.

3. There is a constant $c > 0$ such that for every quasiperiodic ω-word $\xi \in X^\omega$ there is an $n_\xi \in \mathbb{N}$ such that $f(\xi, n) = |\text{infix}(\xi) \cap X^n| \leq c \cdot t^\omega_n$ for all $n \geq n_\xi$.

Remark 22 The bound in Lemma 21.3 is independent of the size of the alphabet X. And indeed, quasiperiodic ω-words of maximal subword complexity have quasiperiods of the form aba or $aabaa$, $a, b \in X$, $a \neq b$ (see the remark after Lemma 19), thus consist of only two different letters.

We conclude this section by mentioning that the bounds obtained here can be extended to the Kolmogorov complexity of infinite words.

In [Sta93, Section 5] (see also [Sta07]) the asymptotic subword complexity of an ω-word $\xi \in X^\omega$ was introduced as $\tau(\xi) := \lim_{n \to \infty} \frac{\log|X|}{n} |\text{infix}(\xi) \cap X^n|$ and it was shown that τ is an upper bound to the asymptotic upper and lower Kolmogorov complexities of infinite words:

$$\kappa(\xi) \leq \tau(\xi) \leq \tau(\xi).$$

Moreover, from the results of [Sta93, Section 5] it follows that for every quasiperiodic word q there is a $\xi \in P_q^\omega$ such that $\kappa(\xi) = \tau(\xi) = \log|X| \cdot \lambda_q$, that is, a quasiperiodic ω-word having quasiperiod q of maximally possible asymptotic (lower) Kolmogorov complexity. Using results of Section 4 of the same paper [Sta93] and of [Sta08] one obtains that there are $\xi \in P_q^\omega$ such that the Kolmogorov complexity and the a priori complexity of the n-length prefix $\xi[0..n]$ of ξ is $K(\xi[0..n]) = \log|X| \cdot \lambda_q \cdot n + o(n)$.

References

Complexity of Quasiperiodic Infinite Words

