Enhancing Privacy in Participatory Sensing Applications with Multidimensional Data

Michael M. Groat†, Benjamin Edwards‡, James Horey‡, Wenbo He‡, and Stephanie Forrest*
†Computational Sciences & Engineering, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
‡Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
Email: {mgroat, bedwards, forrest}@cs.unm.edu, horeyjl@ornl.gov, wenbohe@engr.unl.edu

Abstract—Participatory sensing applications rely on individuals to share local and personal data with others to produce aggregated models and knowledge. In this setting, privacy is an important consideration, and lack of privacy could discourage widespread adoption of many exciting applications. We present a privacy-preserving participatory sensing scheme for multidimensional data which uses negative surveys. Multidimensional data, such as vectors of attributes that include location and environment fields, pose a particular challenge for privacy protection and are common in participatory sensing applications. When reporting data in a negative survey, an individual participant randomly selects a value from the set complement of the sensed data value, once for each dimension, and returns the negative values to a central collection server. Using algorithms described in this paper, the server can reconstruct the probability density functions of the original distributions of sensed values, without knowing the participants’ actual data. As a consequence, complicated encryption and key management schemes are avoided, conserving energy. We study trade-offs between accuracy and privacy, and their relationships to the number of dimensions, categories, and participants. We introduce dimensional adjustment, a method that reduces the magnification of error associated with earlier work. Two simulation scenarios illustrate how the approach can protect the privacy of a participant’s multidimensional data while allowing useful population information to be aggregated.

Keywords-multidimensional data; negative surveys; privacy protection; participatory sensing applications

I. INTRODUCTION

Participatory sensing applications [7] sense, collect, analyze, and share local information or knowledge collected from a large population of people, enabling a wide range of applications, such as urban planning [8], public health [11], and vehicular transportation monitoring [24], [31]. In these applications, the privacy of those carrying sensing devices who are willing to share their information should be respected, especially when the information travels across open wireless networks. On the other hand, it is desirable to generate high quality data for policymakers, researchers, and the public. Hence, trade-offs exist between protecting the privacy of the participants’ data, and the utility gained from examining this content.

We seek to preserve the privacy of multidimensional data where all dimensions are sensitive. Particular values from one dimension might reveal information about another through correlation analysis. For example, we present later a radiation detection scenario that determines the distribution of radiation levels at various locations. Participants disguise both dimensions: their geographic location, and their local radiation level.

Existing approaches for protecting privacy of multidimensional data [1], [19], [30] are designed for database applications, where large numbers of records from different users are available to a central server that summarizes statistics about these records [1], [30], [33]. However, in participatory sensing applications, individual nodes usually do not have access to these records and only know their own sensed values. Participants might not be willing to share information with other participants or trust a central collection server.

Our approach applies negative surveys [15], [16], [24] to categorical multidimensional data. A category is defined as a division of the data where each member shares common characteristics. A set of categories forms a proper partition over each dimension. Individual participants disguise data by reporting for each dimension a category from the set complement of the sensed category. A base station is then able to reconstruct the original distribution of sensed categories from this disguised data [24]. This approach avoids complicated encryption and key management schemes, which conserves the overall amount of energy used.

Using privacy and utility metrics taken from Huang et al. [26], we quantify the trade-offs between the accuracy of this reconstruction and the amount of privacy protected. These metrics and some terminology are borrowed from the privacy-preserving data mining field. We use the terms, disguise, perturb, and negate interchangeably.

Our threat model treats the base station as an honest but curious [6], [21] entity. That is, we assume it faithfully follows the network protocols, but could mischievously try to collect information to use against the nodes. Additional threats come from eavesdroppers listening to radio communications who try to intercept packets. We assume that all nodes are equipped with sensors for data capture.

One of the limitations of previous work with negative surveys was the requirement for many participants to reconstruct the data accurately [24], [35], i.e., a slight increase in the number of categories requires a significant increase in the number of participants to maintain the same level of utility. This is compounded using multiple dimensions. We present a method called dimensional adjustment that controls this error, eliminating the need for many participants and improving
utility 2.5 times more than the loss of privacy.

We illustrate our algorithms with two simulations. In the first simulation, a cell phone radiation detection scenario locates radiation threats such as unexploded dirty bombs, escaped radiation from a nuclear reactor accident, or lost or stolen medical waste, while not revealing individuals’ locations. The second simulation reconstructs the underlying probability density function of continuous data. This could have implications in privacy-preserving data mining such as an alternative to random data perturbation [2].

The main contributions of this paper include: (1) We describe the use of negative surveys to protect the privacy of multidimensional data in participatory sensing applications with a new reconstruction algorithm. To our knowledge, this is the first work addressing privacy of multidimensional data in participatory sensing. (2) We compare the performance of negative surveys to a general perturbation approach. (3) We present dimensional adjustment which reduces the needed number of participants to maintain a given level of utility, at the expense of a small amount of privacy. And, (4) we study usability in terms of reconstruction error and the strength of privacy through theoretical analysis and simulations.

The remainder of this paper is structured as follows. Section II gives background information on negative surveys and randomized response techniques. Our protocols are presented in Section III and Section IV describes the privacy and utility metrics used in the analysis. Section V gives the benefits of using negative surveys. Dimensional adjustment is introduced and analyzed in Section VI. Section VII describes two simulations, reporting accuracy and privacy results for each. We discuss our simulations and speculate on how to improve their performance in Section VIII. Section IX discusses related work; and Section X gives future work and our conclusions.

II. BACKGROUND

We first give some background material on randomized response techniques, and a specific instance of these, negative surveys in their single dimensional form.

A. Randomized Response Techniques

Randomized response techniques (RRTs) disguise data by perturbing a categorical value to another value. For example, if race is Hispanic, it could be perturbed to Asian. A perturbation matrix, denoted M, gives the probabilities of perturbing category i to category j. It is an $\alpha \times \alpha$ square matrix where the columns sum to one and α is the number of categories.

Finding the optimal M that balances both privacy and utility has been the subject of earlier research [4], [26]. Warner first suggested the RRT for binary data [34], however, it can be extended to categorical data [3] using the following perturbation matrix, which gives an initial suggestion for M:

$$M = \begin{pmatrix}
p & 1-p \\
\frac{1-p}{\alpha-1} & \cdots & \cdots \\
\cdots & \cdots & \cdots \\
\end{pmatrix},$$ (1)

where p is the probability of a category remaining itself.

The original data can then be estimated from the disguised data with the following equation:

$$\hat{A} = M^{-1}\hat{Y},$$ (2)

where $\hat{Y} = (Y_1, ..., Y_n)^T$ and Y_i is the number of disguised values in the i^{th} category. Since Equation (2) is an unbiased maximum likelihood estimate, A approaches the original distribution as the population grows. Equation (2) is known as the matrix inversion approach. An iterative approach is given by Agrawal et al. [3], but is not developed for multiple dimensions.

B. Single Dimensional Negative Surveys

We review a special case of the Warner scheme called negative surveys [15], [16], [24]. Negative surveys use a specialized perturbation matrix containing zeros on the diagonals and equal values everywhere else, with the columns summing to one, i.e., $p = 0$ in Equation (1). We call these matrices negative survey perturbation matrices (NSPMs).

A negative survey consists of two protocols. The first, or node protocol, maps the sensed data into its negative information to the base station. To do this, each node chooses a category it did not sense with uniform probability, and returns that negative information to the base station.

The second protocol reconstructs the original data at the base station. Instead of Equation (2), the following simpler equation [15] can be used:

$$\forall i \mid A_i = N - (\alpha - 1) \cdot Y_i,$$ (3)

where A_i is the reconstructed number of values in category i, and Y_i is the reported perturbed number of values in category i, with $1 \leq i \leq \alpha$. N is the total number of sensed values. Equation (3) has time complexity $O(\alpha)$, compared to $O(\alpha^2)$ for Equation (2) (ignoring matrix inversion), while still remaining an unbiased maximum likelihood estimate.

III. PROTOCOLS

In our protocols, the individual sensing device always lies about its sensed value and reports this false data. After the base station receives all the false reports, it reconstructs the data to approximate the true distribution of the original sensed values. Hence, we describe two protocols, one for the sensor nodes and another for the base station. Before we describe these protocols, we introduce some notation.

For the entire population, X, Y, and A are D dimensional matrices which represent the counts of the categories of the original, disguised, and reconstructed data sets respectively. For example, if $D=3$ then $X(a, b, c)$, $Y(a, b, c)$, and $A(a, b, c)$ are counts of all the values that occur in the a^{th}, b^{th}, and c^{th} category in the first, second, and third dimensions. The vector $\vec{x} = <a, b, c>$ will indicate a specific index.

An individual participant senses vector $\vec{x}^+ = <x_1^+, x_2^+, \ldots, x_D^+>$ from its environment. Sensed real values are quantized into categories, if necessary. Each $x_i^+ \in \vec{x}^+$ where $1 \leq i \leq D$, reflects that category x_i was sensed in dimension i. x_i is drawn from a set of categories $C_i = \{1, 2, \ldots, \alpha_i\}$, that
form a proper partition over the data in dimension i, and α_i is the total number of categories in dimension i. The “+” in \bar{x}^+ denotes the positive or sensed categorical information, as opposed to the negative or perturbed information represented as \bar{x}^-.

A. Node Protocol

There are three stages to the node protocol:

1) Sensing: A node senses a multidimensional value \bar{x}^+ from its environment. Sensed real values are quantized into categories if necessary.

2) Negation: For each $x^+_i \in \bar{x}^+$, the node selects uniformly at random a category x^-_i to report to the base station from the set of possible categories C_i, such that $x^-_i \neq x^+_i$. It does this for each dimension, creating the perturbed vector \bar{x}^-. The probability of selecting a perturbed category is $\frac{1}{\alpha_i-1}$, where α_i is the number of categories in dimension i. For example in Figure 1, a node has sensed $\bar{x}^+ = <2, b>$ from its environment, and must choose among the white cells, for instance $\bar{x}^- = <3, c>$, for a negative data to report back to the base station.

3) Transmission: After negation, a node sends \bar{x}^- to the base station. We assume no data aggregation and leave that for future work.

Since the number of bits to transmit either the positive or negative data is the same, there is only a slight increase in energy usage. Hence, the node protocol saves power compared to encryption methods that usually pad their blocks and consume a considerable amount of CPU cycles to perform the encryption/decryption process [24].

B. Base Station Protocol

The base station collects the reported data, Y, and estimates the original distributions of sensed values, A. In the single-dimensional case, Equation (3) is used to obtain this estimate [16], [24]. We give a method for a multidimensional approach and later present a time optimization.

1) Reconstruction: Each dimension must use a NSPM. If Equation (3) was extended to D dimensions, the reconstruction equation would be:

$$\forall \bar{x} \mid A(\bar{x}) = N + \sum_{k=1}^{D} (-1)^k \cdot \Gamma(\bar{x}, k),$$

where $\Gamma(\bar{x}, k)$ is given as:

$$\Gamma(\bar{x}, k) = \sum_{B((1, \ldots, D), k)} \left(\prod_{j \in d} (\alpha_j - 1) \cdot \sum_{\bar{y} s.t. \, \bar{y} \in \bar{x}, \forall i \in d} Y(\bar{y}) \right),$$

and $B((1, \ldots, D), k)$ is all the k length possible combinations of members of $\{1, \ldots, D\}$. For example, $B((1, 2, 3), 2)$ is $\{(1, 2), (1, 3), (2, 3)\}$. $Y(\bar{y})$ is the count of the reported disguised sensed values that have categories specified by d from \bar{x}. As an example, Equation (4) with $D=3$ is given as:

$$A(a, b, c) = N - (\alpha_1 - 1) \sum_{\bar{y} s.t. \, \bar{y} \in \bar{x}, y_1=a} Y(\bar{y}) - (\alpha_2 - 1) \sum_{\bar{y} s.t. \, \bar{y} \in \bar{x}, y_2=b} Y(\bar{y}) - (\alpha_3 - 1) \sum_{\bar{y} s.t. \, \bar{y} \in \bar{x}, y_3=c} Y(\bar{y})$$

$$- (\alpha_3 - 1) \sum_{\bar{y} s.t. \, \bar{y} \in \bar{x}, y_3 \neq c} Y(\bar{y}) + (\alpha_1 - 1)(\alpha_2 - 1) \sum_{\bar{y} s.t. \, \bar{y} \in \bar{x}, y_1 = a, y_2 = b} Y(\bar{y})$$

$$+ (\alpha_2 - 1)(\alpha_3 - 1) \sum_{\bar{y} s.t. \, \bar{y} \in \bar{x}, y_1 = a, y_3 = c} Y(\bar{y})$$

$$- (\alpha_1 - 1)(\alpha_2 - 1)(\alpha_3 - 1) Y(a, b, c), \quad \forall a, b, c \quad (6)$$

The time complexity of Equation (4) is given as:

$$O \left(2^D \cdot \prod_{i=1}^{D} \alpha_i \right). \quad (7)$$

This is because there are $\binom{D}{a} + \binom{D}{b} + \cdots + \binom{D}{D}$, or 2^D, total Y terms in Equation (4). For example, Equation (6) has 8 total Y terms. N is another Y term that counts the entire number of participants. For each $Y(d)$ term, we need a count of the specific index d, whose time complexity involves the product of the number of categories in each dimension. This complexity is exponential with respect to the number of dimensions. We next give a different algorithm with a simpler time complexity that uses a dynamic programming approach where information is re-used.

2) Optimization: We present a time optimization to the previous reconstruction process that solves the same problem. However, this optimization works for any perturbation matrix, not just necessarily a NSPM. It is given in Algorithm 3 where α_i is the number of categories for the ith dimension; “+” is an operation of a matrix designating every element in that dimension; τ is a function similar to transpose that takes a row, column, hyper-row, or hyper-column, and transforms it into a vector appropriate for matrix multiplication. M_δ is the α_i square perturbation matrix for the ith dimension.

The time complexity of Algorithm 3 is:

$$O \left(\sum_{i=1}^{D} \prod_{j=1, j \neq i}^{D} \alpha_j^2 \cdot \alpha_i \right) = O \left(\sum_{i=1}^{D} \alpha_i \cdot \prod_{i=1}^{D} \alpha_i \right), \quad (8)$$

ignoring the cost of matrix inversion for each M_δ. Intuitively, this is based on a matrix multiplication with every possible vector in $Y()$. However, if NSPMs are used for each dimension, the cost of Algorithm 3 reduces to:

$$O \left(D \cdot \prod_{i=1}^{D} \alpha_i \right), \quad (9)$$

because line 10 in Algorithm 3 is replaced with the simpler Equation (3). This dynamic programming algorithm has the
Algorithm 1 Reconstruction Optimization for D Dimensions. Y is the D dimensional matrix of reported disguised values, $F = [\alpha_1, \ldots, \alpha_D]$ is a list of the number of categories for each dimension, and $M = [M_1, \ldots, M_D]$ contains the perturbation matrices for each dimension. The δ is the slice operator. index is constructed to be a D length vector, with a single entry of \cdot. When used as an index into R, it will return a vector.

1: function reconstruct_matrix(Y, D, F, M)
2: \hspace{1em} $R = Y$
3: \hspace{1em} for $\delta \in [1 : D]$
4: \hspace{2em} update_dim($R, D, [], \delta, F, M$)
5: \hspace{1em} end
6: \hspace{1em} return R
7: end

8: function update_dim($R, D, index, \delta, F, M$)
9: \hspace{1em} if length(index) = D
10: \hspace{2em} $R(index) \leftarrow M^{-1}_\delta \cdot R(index)^\varphi$
11: \hspace{1em} elseif $\text{len}(index) + 1 = \delta$
12: \hspace{2em} new_index \leftarrow index\cdotappend($[]$)
13: \hspace{2em} update_dim($R, D, \text{new_index}, \delta, F, M$)
14: \hspace{1em} else
15: \hspace{2em} for $i \in [1 : F(\text{len}(index) + 1)]$
16: \hspace{3em} new_index \leftarrow index\cdotappend($[i]$)
17: \hspace{3em} update_dim($R, D, \text{new_index}, \delta, F, M$)
18: \hspace{2em} end
19: \hspace{1em} end
20: end

This is the index that has the maximum probability in $P(X | Y)$ (the maximum index in each column of $P(X | Y)$).

B. Utility Metric

Utility, also known as accuracy or reconstruction error, measures the difference between the original and reconstructed data distributions. It is measured with the mean square error, calculated from the variance and co-variance as follows:

$$Utility = E(P(A) - P(X))^2$$

$$= \frac{1}{\alpha_1 \cdot \ldots \cdot \alpha_D} \sum_{\bar{x}_i} E(P(A = \bar{x}_1) - P(X = \bar{x}_1))^2$$

$$= \frac{1}{\alpha_1 \cdot \ldots \cdot \alpha_D} \sum_{\bar{x}_i} \left(\sum_{\bar{x}_2} \left[\mu(\bar{x}_1, \bar{x}_2)^2 \cdot \text{var}(\bar{x}_2) \right] + \sum_{c_i \in \bar{x}_3, \bar{x}_4 \text{ s.t. } c_i \neq c_k} \left[2 \mu(\bar{x}_1, \bar{x}_3) \mu(\bar{x}_1, \bar{x}_4) \cdot \text{cov}(\bar{x}_3, \bar{x}_4) \right] \right),$$

where

$$\mu(\bar{x}_1, \bar{x}_j) = \prod_{k=1}^{D} M^{-1}_k(c_k \in \bar{x}_i, c_k \in \bar{x}_j),$$

denotes the $c_k \in \bar{x}_i$ row and $c_k \in \bar{x}_j$ column in M^{-1}_k; and variance and covariance is given as:

$$\text{var}(\bar{x}_i) = \frac{1}{N} \cdot P(Y = \bar{x}_i) \cdot (1 - P(Y = \bar{x}_i)),$$

$$\text{cov}(\bar{x}_i, \bar{x}_j) = -\frac{1}{N} \cdot P(Y = \bar{x}_i) \cdot P(Y = \bar{x}_j).$$

V. BENEFITS OF A NSPM

NSPMs are well suited for participatory sensing applications. Hence, we have devised the following reasons to base our scheme on them:

1) NSPMs are appropriate for resource constrained devices because the perturbation is simplified at the resource-constrained nodes. Additionally, M does not need to be stored at a node, or used in the perturbation process. This can be beneficial if there are a large number of categories.

2) All samples are guaranteed to be perturbed for a NSPM. If some values are never perturbed because of non-zero values on the diagonals of the perturbation matrix, there is a small chance that a complete record maintains all of its original values. This could be perceived as a privacy breech even if only 1 record out of a million is never perturbed [17].

3) Sensors often do not know the prior distribution of their environment. However, in order to find the best perturbation matrix this distribution needs to be known a priori [26]. Our evidence empirically suggests that for a NSPM, utility is independent of the underlying distribution. This implies that utility is known a priori, even if the underlying distribution is not.

4) An optimal value for p in Equation (1) is zero (a NSPM) when compared to other values of p. This is illustrated in Figure 7 where the privacy and utility metrics (both on the y-axis) are plotted against values of p (x-axis) of the perturbation
matrices in the negative surveys. 10 categories were used, and there are five different underlying distributions. Each underlying distribution is drawn from an ideal distribution that contains a particular Shannon Entropy, denoted in the legend. The utility values for each distribution are similar enough that they appear as a single curve. Trade-offs exist between privacy and utility; the best privacy gives the worst utility, and vice versa. For example in Figure 2, when \(p \) approaches 0.1, utility asymptotically performs the worst. This makes sense, since the figure was created from negative surveys of 10 categories; the perturbation matrix is a uniform matrix. On the other hand, \(p = 0.1 \) provides the best privacy, as seen in the bottoms of the “checkmark” curves. Although privacy at these two points is better at \(p = 0 \), \(p = 0 \) has a better combined privacy and utility value than any other part of the graph, with the exception of the tails of the metric curves. However, if a certain level of privacy is desired, perhaps below 0.3, the best value for \(p \) is zero. As a caveat, we observe that an underlying distribution has to have a high enough Shannon entropy in order for NSPMs to be optimal.

VI. DIMENSIONAL ADJUSTMENT

A challenge of NSPMs shown in previous work for single dimensional data \([24, 35]\) is that a slight increase in the number of categories significantly increases the needed number of participants to maintain a reasonable amount of utility. This increase is compounded with multiple dimensions and has limited negative surveys to small applications. In this paper, we propose the Dimensional Adjustment (DA) method to address this challenge.

DA increases utility by accepting a slight decrease in privacy for a given number of participants. It accomplishes this by distributing the same overall number of categories over an increasing number of dimensions. For example, if an original one dimensional negative survey contains 64 categories, it can be remapped to: 2 dimensions of 8 categories each; 2 dimensions of 4 and 16 categories; or any number of dimensions where the product of the number of categories in each dimension equals 64.

Splitting data into multiple dimensions with a smaller number of categories for each dimension improves reconstruction accuracy (utility). Intuitively, accuracy is related to Figure 1 and the ratio of the white cells (negative information) to the total number of cells. As the number of dimensions grows, and the number of distinct categories remains the same, this ratio decreases, reducing the possible number of cells for perturbed data, which increases the accuracy of reconstruction.

There are trade-offs between a high number of dimensions with a low number of categories, versus a low number of dimensions with a high number of categories. A one dimensional negative survey with 64 categories provides the best privacy but the worst utility, compared to 6 dimensions with 2 categories each, which provides the worst privacy but the best utility. The relationship between privacy and utility is usually nonlinear, providing an opportunity to sacrifice a small amount of one for a larger gain in the other. For example, in Table I with 1,000,000 samples and 10,000 categories, we see privacy degrades 34% while utility improves 86%.

We illustrate the trade-offs in Table I, assuming a fixed utility value, to maintain an equivalent level of utility. The multidimensional negative survey that uses 1,000,000 participants is comparable to a single dimensional negative survey that uses 71,414,286 participants. This is calculated by setting the following utility modeling equation of a single dimension:

\[
\text{Utility}_{\text{model}} = \frac{(\alpha - 2)}{N}, \quad (16)
\]

to 1.40E-04 (from Table I), \(\alpha \) to 10,000, and solving for \(N \). The same multidimensional negative survey is also equivalent to a single dimension using 142 categories. This is calculated by setting Equation (16) to 1.40E-04, \(N \) to 1,000,000, and solving for \(\alpha \). Equation (16) has an \(R^2 \) value of 0.999.

To calculate the equivalence of privacy, we use the following privacy modeling equation where the values of the input distribution are normal:

\[
\text{Privacy}_{\text{model}} = \frac{2.5}{(\log_2(\alpha))^2 + 1.5}, \quad (17)
\]

which has an \(R^2 \) value of 0.976. The multidimensional negative survey in Table I is equivalent in privacy to using a single dimensional negative survey of 2,397 categories, yet previously it has the same utility as 142 categories.
VII. APPLICATIONS AND SIMULATIONS

A. Cell Phone Radiation Threat Detection

Participatory sensing could be used to determine if a malicious nuclear device or incident, such as a dirty bomb, lost radioactive material, a nuclear reactor accident, or medical waste exists in a city, and if so, where. In this scenario, we assume that cell phones are equipped with radiation monitors and GPS devices. Locations are quantized into different groups, with a different label for each group. Individuals care about the privacy of their locations. We show that with reasonable parameter assumptions (number of locations, radiation levels, and participants), multidimensional negative surveys can maintain confidentiality and determine which locations contain radiation threats.

Cell phones are ideal for radiation detection and the United States Department of Homeland Security has considered their use [18]. If radiation sensors were installed at fixed locations, they might be tampered with or avoided. This would be harder with cell phones, as they are owned by individual users and exist in large numbers. As an incentive to promote participation, aggregate information could be disseminated freely to participants. This may be necessary, as readings from an individual cell phone might not be as accurate as the combined readings from a larger population. However, for an event such as the Fukushima Daiichi nuclear accident, participants could have the option to send the unperturbed data for more accurate readings. Either way, in such a situation immediate feedback would be beneficial, especially to determine if radiation has spread further than reported.

1) Simulation Setup: Before we explain the simulation setup, we give a small example of 9 locations in Figure 3. The total population of cell phones (participants) is 450,000 and is equally divided among the 9 locations. In the actual simulation, we do not assume a uniform population distribution and instead follow a more realistic model given by Bertaud et al. [5]. We simulate three radiation levels: low, medium, and high. Depending on whether a radiation threat exists or not, each location’s distribution of radiation levels is shifted towards either the lower or higher levels. For example, in Figure 3, location 6 contains a threat distribution, illustrated by the black histogram. This distribution, exponentially shifted towards the higher levels, contains 28,571 participants in the high radiation level, 14,286 in the medium radiation level, and 7,143 in the low level. Benign locations, characterized by the non-threat distributions, are shown in black at the other locations. These distributions are exponentially distributed in the reverse order.

San Francisco, which has roughly 46.7 square land miles, is our example city. We chose the number of distinct locations to be 48, which works well with DA due to its high number of composites. Each location roughly covers one square land mile, which is small enough for a response team with more powerful equipment (such as helicopters equipped with radiation detectors) to pinpoint the exact location of a threat.

San Francisco has a population of about 815,000. We vary the number of participants from 100,000 to 400,000 in increments of 100,000. The spatial distribution of people follows a standard urban model taken from Bertaud et al. [5]. The population is most concentrated at the central business district, and is reduced from the center.

We use 3 categories for the radiation levels. Our experiments show while more categories would increase the granularity of the data, it does not increase accuracy. In fact, we were able to better determine threats with a lower number of levels. However, if there were only 2 radiation levels, adversaries could determine a user’s location, if a threat exists.

Each participant’s cell phone, when queried, samples the environment for the radiation level and notes its location. It then perturbs this information according to Section III-A and sends it to the base station. After the base station collects the perturbed data (one sample from each cell phone), it reconstructs the original distribution.

The base station determines if a threat exists, and if so, at which location. It takes a linear regression with the reconstructed histogram of radiation levels at each location, assuming histogram values are one unit apart. Ideally, a threat location will have a positive slope from the linear regression, and a non-threat location will have a negative slope. A predefined value is used as a threshold to determine if a threat exists or not. If the slopes for all locations are below this threshold, then no threat exists. We chose the thresholds to reduce equally the overall number of false positives and false negatives, but it can be adjusted towards reducing one error type over another. For example, a better strategy might send response teams to investigate false positives, than allowing a false negative to slip through. We simply chose the thresholds a posteriori, but in the future these values (and better detection methods) can be chosen a priori, with enough domain knowledge.
We ran the simulation 1000 times for the various numbers of participants, assigning the threat distribution to a random location in 500 of the runs. In the other 500 runs we assigned a non-threat distribution to all locations.

2) Results and Analysis: Table II summarizes the results, showing the number of false positives and negatives. Accuracy is the percentage of true positives that correctly determined the threat location. The average privacy and utility metrics are also shown. Since we are calculating an unbiased maximum likelihood estimate, more participants reduce the number of false positives and negatives and increase determination accuracy.

Because accuracy was low for a single dimension (first four rows of Table II), we used DA. The original negative surveys contained 48 locational categories. These were adjusted to 2 dimensions of 6 and 8 categories; 3 dimensions of 4, 4, and 3 categories; and 4 dimensions of 2, 2, 4, and 3 categories. The results are also noted in Table II. With 4 dimensions, we obtained 100% accuracy with 200,000 or more participants.

B. Reconstructing Continuous Values

In addition to categorical data such as locations and radiation levels, multidimensional negative surveys can be applied to continuous data such as temperature or humidity. We reconstruct the probability density functions of different underlying distributions and compare the parameters of these distributions to the original parameters. This could have implications in privacy-preserving data mining as an alternative to random data perturbation [2].

1) Simulation Setup: Any fixed point number can be represented as a collection of categories by labeling each digit’s position (1’s, 10’s, 100’s,..) with a value zero through nine. Thus a fixed point number with \(n \) digits is treated as an \(n \) dimensional negative survey, with each dimension having ten potential categories; it is then straightforward to apply the protocols presented previously.

We generated values from two probability distributions, rounding each value to 2 and 3 significant digits. We used the following normal and exponential distributions:

\[
N(\mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad \mathcal{E}(\mu) = \frac{1}{\mu} e^{-\frac{x}{\mu}}.
\]

Tests used \(N(500, 100) \) and \(\mathcal{E}(100) \), and we truncated the tails of the distribution at 0 and 1000. To negate a sensed value, a random digit not equal to the actual digit is reported for each position. We started by generating 1,000 sensed values, and exponentially increased the number of values to 9 billion for both 2 and 3 significant digits.

The base station reconstructs the frequency of each number in the significant digit range (the probability density function) of the underlying data according to the protocols in Section III. The parameters from the reconstructed data are determined using a maximum likelihood estimate and then are compared to the original parameters used to construct the data.

2) Results and Analysis: We calculated the difference between the estimated and original parameter and divided by the original parameter. Each data point is an average of 20 runs. Figure 4 shows the results. It suggests that a theoretical maximum accuracy depends on the parameter type, the distribution, and the number of dimensions. All parameters are within 5% of the original parameter values after 200,000 sensed values.

VIII. DISCUSSION

In the cell phone simulation, because the data are perturbed, it is almost impossible for the collection server to determine a participant’s true location[2]. Most, if not all, encryption methods must eventually trust the final recipient of the data. In contrast, our method does not require such trust. Furthermore, it does not incur the extra computational cost of encryption, and the additional communication overhead to transmit encrypted data.

1While the cell phone tower can reveal the node’s location, the base station cannot determine the location from its own information.
Sometimes nodes will be captured and masquerade as legitimate nodes, continually sending responses when queried. These nodes might become dishonest or rogue, and try to disrupt or alter the group aggregate information by not following or altering the node protocol. They can either report the original sensed value, or favor some categories over others. This can be addressed by “adjusting” the perturbation matrices, \(M_\delta \), for each dimension \(\delta \) in the reconstruction process.

Some participants’ locations might either be constant (if they are not moving around) or follow regular patterns. If a single cell phone were to report its negative location regularly, an adversary might be able to infer its positive location through long term monitoring of the transmitted values. This is especially important if an ID is transmitted with the data. One possibility to combat this is for participants to respond to a base station query only if their location has changed since the last query, or to limit the amount of information sent to the base station.

The communications graph in the cell phone simulation has each node reporting directly to the base station. Routing in traditional wireless sensor networks usually follow a tree path. In situations like these, it could be possible to adopt an aggregation strategy similar to Castelluccia et al. [9]; or, the negative histograms could be aggregated using a min/max scheme from Groat et al. [22] where each value in the negative histogram is treated as a maximum.

In the second simulation, if participant populations are not large enough, a single participant can report multiple sensed values over time, and the base station can accumulate these multiple reported values to obtain a more accurate estimation of the parameters. Additionally, DA can improve accuracy by changing the samples to a lower base or radix.

IX. RELATED WORK

Privacy-preserving algorithms have been developed for data mining [17], [27], [28], data aggregation [10], [20], [24], and other applications [29], [32]. There are four main classes of solutions: perturbation, \(k \)-anonymity, secure multi-party computation (SMC), and homomorphic encryption. The first class hides data values by perturbing individual data or query results [17], [27], [28]. These methods usually assume that the distribution of data/noise is known to obtain accurate results. However, as shown by Kargupta et al. [28] and Huang et al. [27], certain types of data perturbation might not preserve privacy well. The second class, \(k \)-anonymization [1], [30], [33], makes a data value or participant indistinguishable from \(k-1 \) other items. It was originally designed for privacy-preserving data mining, but in participatory sensing applications individual participants sense and share their own data. Hence, there is limited potential to mix individual participants’ data with others’ data. The third class, SMC techniques [12], [23], [25], rely on a joint computation among a set of involved peers. This is problematic in participatory sensing applications which may incur a high communication or computation overhead when the participant population is large. The fourth class aggregates data based on homomorphic encryption [10], [20], which allows a user to perform data aggregation on individual data without knowing the data. However, in order to interpret the final aggregation result, a server needs to know which users reported data, which is not always desirable.

Dwork et al. [14] introduced the term \(\text{pan-private} \) in the context of streaming algorithms which can protect the state of information inside a node. This is useful for node capture attacks that examine internal data. This work assumes a secure stream as a precondition of the algorithm while negative surveys, on the other hand, protect the stream of information in transit. Pan-private algorithms, however, work better for complex aggregates such as the \(t \)-incidence items, the \(t \)-cropped mean, and the fraction of \(k \)-heavy hitters [14].

Differential privacy [13] aims to provide the maximal accuracy of responses for users querying a statistical database, while minimizing the ability of these users to identify records in the database. Differential privacy assumes that a trusted server handles and responds to the queries, while negative surveys, on the other hand, do not assume that the server is trustworthy.

Xie et al. present \(\text{Gaussian negative surveys (GNSs)} \) [35], an attempt to reduce the number of participants needed for accurate reconstruction. They propose a special perturbation matrix where the columns represent a Gaussian distribution with the mean centered over the original category and the original category consists of zero. This method eliminates the need for reconstruction at the base station. However, for the radiation detection simulation, GNSs do not protect privacy as well as negative surveys. Although group privacy is maintained, the privacy guarantee of an individual participant depends on the variance of the Gaussian distribution in the perturbation matrix. It must be small enough to maintain an acceptable level of utility and require few participants; however, smaller values make it easier to determine the general location of an individual participant. It is not until the variance is increased to cover the entire column of the perturbation matrix that GNSs approach the same privacy guarantee as traditional negative surveys, yet this increases the number of needed participants.

X. CONCLUSION AND FUTURE WORK

Information such as physical locations, driving speeds, or medical information, can have devastating effects if intercepted by adversarial parties. Multidimensional negative surveys perturb participatory sensing application data, providing reasonable privacy. The privacy preservation problem addressed here is challenging, because (1) users may not trust the information collection server; and (2) we do not rely on standard encryption schemes due to the limited resources on embedded or sensor devices. An advantage of our work is that these problems can be managed by simply tuning parameters of the protocols. Our method scales well because the communication and computation overhead is low for the sensor nodes, especially when compared to expensive encryption schemes.

Future work will examine the limits of dimensional adjustment on real world data sets with large numbers of categories.
While much information can be mined from a histogram, we will look at reconstructing other aggregates. Finally, we will rigorously compare multidimensional negative surveys on continuous data to common data mining techniques such as random data perturbation.

ACKNOWLEDGMENT

The authors would like to thank Roshan Rammohan, Lance Williams, and Fernando Esponda for their suggestions, insights, and ideas. MG acknowledges support from Motorola, Inc, Eli Lilly and Company, and NSF grant HRD-0622930; WH acknowledges support from DOE NNSA grant DE-FG52-06NA27494; SF acknowledges the partial support of NSF (grants CCF-0621900, CCR-0331580, SHF-0905236) and AFOSR MURI grant FA9550-07-1-0532.

This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

REFERENCES