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Abstract: Fibroblast activation protein (FAP) is a membrane-tethered serine protease overexpressed
in the reactive stromal fibroblasts of >90% human carcinomas, which makes it a promising tar-
get for developing radiopharmaceuticals for the imaging and therapy of carcinomas. Here, we
synthesized two novel (R)-pyrrolidin-2-yl-boronic acid-based FAP-targeted ligands: SB02055 (DOTA-
conjugated (R)-(1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)glycyl)pyrrolidin-2-yl)boronic
acid) and SB04028 (DOTA-conjugated ((R)-1-((6-(3-(piperazin-1-yl)propoxy)quinoline-4-carbonyl)-
D-alanyl)pyrrolidin-2-yl)boronic acid). natGa- and 68Ga-complexes of both ligands were evaluated
in preclinical studies and compared to previously reported natGa/68Ga-complexed PNT6555. En-
zymatic assays showed that FAP binding affinities (IC50) of natGa-SB02055, natGa-SB04028 and
natGa-PNT6555 were 0.41 ± 0.06, 13.9 ± 1.29 and 78.1 ± 4.59 nM, respectively. PET imaging and
biodistribution studies in HEK293T:hFAP tumor-bearing mice showed that while [68Ga]Ga-SB02055
presented with a nominal tumor uptake (1.08 ± 0.37 %ID/g), [68Ga]Ga-SB04028 demonstrated clear
tumor visualization with ~1.5-fold higher tumor uptake (10.1 ± 0.42 %ID/g) compared to [68Ga]Ga-
PNT6555 (6.38 ± 0.45 %ID/g). High accumulation in the bladder indicated renal excretion of all three
tracers. [68Ga]Ga-SB04028 displayed a low background level uptake in most normal organs, and
comparable to [68Ga]Ga-PNT6555. However, since its tumor uptake was considerably higher than
[68Ga]Ga-PNT6555, the corresponding tumor-to-organ uptake ratios for [68Ga]Ga-SB04028 were also
significantly greater than [68Ga]Ga-PNT6555. Our data demonstrate that (R)-(((quinoline-4-carbonyl)-
D-alanyl)pyrrolidin-2-yl)boronic acid is a promising pharmacophore for the design of FAP-targeted
radiopharmaceuticals for cancer imaging and radioligand therapy.

Keywords: fibroblast activation protein α (FAP-α); cancer-associated fibroblasts (CAFs); FAP inhibitors
(FAPIs); PET imaging; gallium-68; (R)-pyrrolidin-2-yl-boronic acid-based radiopharmaceuticals

1. Introduction

Cancer-associated fibroblasts (CAFs) found in the tumor microenvironment are func-
tionally and phenotypically distinct from normal fibroblasts found in non-cancerous tis-
sues [1]. Immuno-histochemical studies performed by Chesa et al. revealed that CAFs in
several different primary and metastatic carcinomas, including colorectal, breast, ovarian,
bladder, and lung carcinomas, overexpress a transmembrane glycoprotein called fibrob-
last activation protein (FAP) [2]. FAP is a cell-surface serine hydrolase shown to have
dipeptidyl exopeptidase and endopeptidase activities [3]. FAP has a restricted normal
tissue distribution including normal fibroblasts, but is overexpressed in the reactive stro-
mal fibroblasts of >90% of human epithelial carcinomas (breast, lung, colorectal etc.) [2–5].
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Moreover, its enzymatic activity is considered crucial for the promotion of tumor growth [6].
FAP’s constrained expression combined with its role in invasion and tumor metastasis,
makes it a promising target for developing FAP-targeted radiopharmaceuticals for the
imaging and therapy of carcinomas. In this regard, several different strategies including
the use of antibodies [7,8], CAR T-cells [9,10], and FAP vaccines [11], and most significantly
small-molecule inhibitors [6,12–15], have been explored for FAP targeting.

The two most noteworthy groups exploited for the development of small-molecule
based FAP inhibitors are either 2-cyanopyrrolidine derivatives or 2-pyrrolidinylboronic acid
derivatives (boroPro). Additionally, most of the research so far has been directed towards
identifying the inhibitors that are selective for FAP over dipeptidyl peptidases (DPPs), with
which it shares exopeptidase specificity, and over cytosolic prolyl endopeptidase (PREP),
with which it shares endopeptidase specificity [16].

Interestingly, FAP has been reported to exhibit an absolute requirement for glycine at
the P2 position as an endopeptidase [17,18]. This may explain why most small-molecule
FAP inhibitors are based upon an X-Gly-Pro sequence. Jansen et al. presented N-(4-
quinolinoyl)-Gly-(2-cyanopyrrolidine) as an extremely potent FAP inhibitor (IC50 = 10.3 ±
0.4 nM), with high selectivity indices (SI) over both DPPs (>103) and PREP (>83-fold) [19].
Remarkably, the substitution of the nitrile on the P1 pyrrolidine ring with a more elec-
trophilic boronic acid warhead yielded N-(4-quinolinoyl)-Gly-boroPro that demonstrated
2.8-fold higher FAP binding affinity (IC50 = 3.7 ± 0.2 nM) than the former. Moreover, it
retained selectivity over DPPs (>103) with a ~3-fold selectivity over PREP [14].

Contrary to the notion that FAP exhibits an absolute requirement for glycine at the
P2 position, two different groups identified small-molecule FAP inhibitors bearing a P2
D-alanine. Tran et al. were the first to show FAP’s tolerability for a P2 D-alanine [20]. They
reported N-acetyl-D-Ala-boroPro to exhibit a modest potency with a Ki(FAP) of 350 nM,
compared to N-acetyl-Gly-boroPro that possessed a Ki(FAP) of 23 nM. In the study pub-
lished by Bachovchin and co-workers, N-acetyl-D-Ala-boroPro was also shown to have
a modest FAP binding potency (IC50 = 2900 ± 600 nM) [21]. Importantly, in the same
study, N-(pyridine-4-carbonyl)-D-Ala-boroPro (ARI-3099) was identified as a highly potent
FAP inhibitor with an IC50 of 36 ± 4.8 nM. Its P2 glycine congener was reported to have a
~75-fold higher FAP binding affinity. Notably, compared to N-(benzoyl)-D-Ala-boroPro
(IC50(FAP) = 54 ± 2.9 nM), N-(4-quinolinoyl)-D-Ala-boroPro (IC50(FAP) = 6.4 ± 1.4 nM)
performed superiorly with ~8-fold higher FAP binding affinity. The FAP/PREP selectivity
values were 160 and 33 for the quinoline- and benzoyl-based inhibitors, respectively, indicat-
ing that the quinoline-based inhibitors are more selective for binding to FAP. Nevertheless,
the findings from the two studies validated FAP’s ability to tolerate a P2 D-alanine in the
context of an X-boroPro-based inhibitor.

The radiolabeled small-molecule FAP inhibitor called [125I]MIP-1232 (Figure 1) was
reported in 2015 and was based on (R)-(1-(benzoylglycyl)pyrrolidin-2-yl)boronic acid
framework [22]. Although the probe did not serve its primary purpose of atherosclerosis
imaging, the authors presented its relevance as a radiotracer for imaging FAP-positive
tumor tissues. [125I]MIP-1232 was reported to strongly accumulate in FAP-positive SK-Mel-
187 melanoma xenograft in vitro.

Recently, a new SPECT tracer [99mTc]Tc-HYNIC-D-Ala-boroPro ([99mTc]Tc-iFAP,
Figure 1) targeting FAP was reported to exhibit 7.05 ± 1.13 %ID/g tumor uptake and
11.18 ± 1.54 %ID/g kidney uptake in an induced Hep-G2 tumor model in mice at 30 min
post injection (pi) [23]. The tumor and kidney uptake values reportedly dropped by ~27%
(5.18 ± 0.82 %ID/g) and ~33% (7.46 ± 1.02 %ID/g), respectively, at 2 h pi with minimal
uptake in most normal organs. In its clinical study, [99mTc]Tc-iFAP was seen to accumulate
in the primary tumors and lymph node metastases of patients with different cancers [24].
The mean radiation equivalent dose for the kidney (5.2 ± 0.8 mSv) was stated to be more
than twice the effective dose (2.3 ± 0.4 mSv) after administrating 740 MBq of the tracer.
The authors concluded the study by declaring the need for additional clinical studies to
further validate the performance of [99mTc]Tc-iFAP.
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The difference between [68Ga]Ga-SB02055 and [68Ga]Ga-SB04028 is indicated by dotted circles. The 
radioisotopes are in red. 
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The development of targeted radiotracers by Haberkorn group is one of the most
significant and clinically relevant applications of FAP inhibitors to date. By expanding
on the framework previously outlined by Jansen et al., they generated a panel of specific
and high-affinity FAP inhibitors (FAPIs), undergoing almost complete internalization of
the ligand-enzyme complex [25–27]. These derivatives were synthesized using different
chemical modifications to attach various chelators via a linker to the quinolinoyl moiety in
N-(4-quinolinoyl)-Gly-(2-cyanopyrrolidine). Of these, 68Ga-labeled FAPI-02 [28], FAPI-04
(Figure 1) and FAPI-46 [29], 99mTc-labeled FAPI-34 [30] and 18F-labeled FAPI-42 [31] and
FAPI-74 [32] are the most advanced and validated in clinical studies for cancer imaging.

Most recently, [68Ga]Ga/[177Lu]Lu/[225Ac]Ac-PNT6555 were presented as highly
potent FAP-targeted theranostic pairs in two different conference abstracts [33,34]. PNT6555
(Figure 1) is a DOTA-conjugated FAP-targeted ligand based on a (R)-(1-((4-(aminomethyl)
benzoyl)-D-alanyl)pyrrolidin-2-yl)boronic acid scaffold. [177Lu]Lu-PNT6555 was reported
to show little retention in normal tissues but a high level of tumor retention (>10 %ID/g)
was observed up to 168 h pi. A single dose of [177Lu]Lu/[225Ac]Ac-PNT6555 was reported
to exhibit a dose-dependent anti-tumor efficacy in a HEK-mFAP murine tumor model and
a phase I clinical trial of [177Lu]Lu-PNT6555 is currently underway [35]. No peer-reviewed
publications on imaging or ex vivo biodistribution analysis of [68Ga]Ga-, [177Lu]Lu- and/or
[225Ac]Ac-PNT6555 are currently available.

There are varying preclinical and clinical reports on the association between the uptake
intensity of radiolabeled FAPIs and FAP expression. For example, while [68Ga]Ga-FAPI-
04 is observed to have a high uptake in the bone and muscle in mice, the former is not
observed in humans [26,36–40]. However, the non-tumor-specific uptake of [68Ga]Ga-
FAPI-04 and [68Ga]Ga-FAPI-46 was recently reported in muscles and degenerative lesions
mostly associated with the joints and vertebral bones [39]. Although having additional
clinical studies would help ascertain these ambiguous associations, efforts towards the
development of FAP-targeted inhibitors with improved pharmacokinetic properties and
enhanced FAP specificity compared to the already existing FAPIs is warranted.

Compared to nitrile, the boronic acid warhead has been reported to have a higher
FAP binding affinity [14,19], possibly due to its stronger electrophilic character, and it
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could have a faster pharmacokinetics in vivo due to its highly hydrophilic nature. Fur-
thermore, previous findings confirm that FAP can tolerate a P2 D-alanine apart from a P2
glycine [20,21]. Lastly, a P3 quinolinoyl moiety has been previously optimized for develop-
ing radioligands for FAP targeting by Haberkorn et al. [25,27]. With this aim in mind, we
designed two novel boronic acid-based DOTA-conjugated FAP-targeted ligands; [68Ga]Ga-
SB02055 and [68Ga]Ga-SB04028 (Figure 1), bearing a N-(4-quinolinoyl)-Gly-boroPro and
N-(4-quinolinoyl)-D-Ala-boroPro pharmacophores, respectively. The addition of chelator
DOTA via a piperazine-based linker (Figure 1) allowed the formation of stable complexes
with the PET isotope 68Ga. We posited that these novel boronic acid-based tracers may
exhibit a higher tumor uptake by virtue of their more potent FAP inhibition and demon-
strate superior pharmacokinetics by undergoing quick clearance from all the non-target
organs/tissues and serve as PET imaging agents with excellent imaging contrast. Both
tracers were subjected to a thorough preclinical evaluation including in vitro FAP binding
assays, in vivo stability testing and, PET/CT imaging and ex vivo biodistribution studies
using HEK293T:hFAP tumor xenograft mouse model. The results were then compared with
those obtained from [68Ga]Ga-PNT6555, which is currently been evaluated in the clinic [35].

2. Results

2.1. Synthesis of 68Ga- and natGa-Complexed DOTA-Conjugated FAP-Targeted Ligands

Detailed information on the synthesis, purification and characterizations of all inter-
mediates, precursors and natGa/68Ga-complexed ligands is provided in the Supplementary
Materials. The identities of intermediates, precursors and nonradioactive Ga-complexed
standards were confirmed by MS and/or NMR analyses (Figures S1–S11). For the synthesis
of SB02055 (Scheme 1), compound 1 [41] was coupled overnight with compound 2 [20,42]
to obtain compound 3 in a 35% yield. Compound 3 was Boc-deprotected by stirring it
overnight with diethyl ether (Et2O):4M HCl/dioxane (v/v) in a 1:1 ratio. The mixture was
then evaporated before reacting it with DOTA-NHS to afford compound 4 as a pinanediol
ester of precursor SB02055 in 11% yield over two steps. Compound 4 was treated with a
cleavage cocktail consisting of 95% trifluoroacetic acid (TFA)/2.5% H2O/2.5% triisopropyl-
silane (TIS) for 4 h at room temperature (RT) to finally afford the desired precursor SB02055
in 55% yield.
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Scheme 1. Synthesis of DOTA-conjugated precursor SB02055.

For the synthesis of SB04028 (Scheme 2), compound 5 prepared following the literature
procedures [23] was coupled with compound 1 overnight to afford compound 6 in a 47%
yield. Compound 6 was then treated overnight with Et2O:4M HCl/dioxane (v/v) in a 1:1
ratio for removing the Boc-group. The resulting mixture was evaporated before reacting
it with DOTA-NHS to obtain compound 7 as a pinanediol ester of SB04028 in 14% yield
over two steps. Finally, compound 7 was treated with a cleavage cocktail consisting of
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95% TFA/2.5% H2O/2.5% TIS for 4 h at RT to yield the desired precursor SB04028 in a
63% yield.
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Scheme 2. Synthesis of DOTA-conjugated precursor SB04028.

natGa-complexed standards were prepared by incubating the respective precursors
with excess natGaCl3 in NaOAc buffer (0.1 N, pH 4.5), followed by HPLC purification [43].
natGa-SB02055, natGa-SB04028 and natGa-PNT6555 were obtained in 36–98% yields. 68Ga
labeling was performed in HEPES buffer (2 M, pH 5.0) [43]. HPLC purification of the
crude reaction yielded the desired 68Ga-labeled analogues in 19–58% decay-corrected
radiochemical yield with >92% radiochemical purity and >9.1 GBq/µmol molar activity.

2.2. In Vitro Fluorescence-Based Binding Assay

The enzymatic cleavage of a fluorogenic substrate (Suc-Gly-Pro-AMC) by the recombi-
nant human FAP (rhFAP) was inhibited by natGa-SB02055, natGa-SB04028 and natGa-PNT6555
in a dose-dependent manner (Figure 2). IC50 values calculated for natGa-SB02055, natGa-
SB04028 and natGa-PNT6555 were found to be 0.41 ± 0.06, 13.9 ± 1.29 and 78.1 ± 4.59 nM,
respectively (n = 3).
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Figure 2. Inhibition of rhFAP-mediated cleavage of a fluorogenic substrate (Suc-Gly-Pro-AMC) by
varying concentrations of natGa-SB02055, natGa-SB04028 and natGa-PNT6555.

2.3. Ex Vivo Biodistribution and PET/CT Imaging Studies

The PET/CT image acquired at 1 h pi with [68Ga]Ga-SB04028 showed a clear visualiza-
tion of the HEK293T:hFAP tumor xenograft [44], with the tumor uptake being comparatively
higher than [68Ga]Ga-PNT6555 (Figure 3). Moreover, [68Ga]Ga-SB04028 displayed a faster
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clearance from most normal organs/tissues, with a relatively lower kidney uptake and
slightly superior tumor/background contrast ratios compared to [68Ga]Ga-PNT6555. On
the other hand, while the uptake of [68Ga]Ga-SB02055 in most normal organs/tissues was
minimal, the tumor uptake of [68Ga]Ga-SB02055 was also negligible on the PET/CT image
(Figure 3). A high accumulation of all the three radiotracers in the urinary bladder indi-
cated excretion via the renal pathway. The co-injection of [68Ga]Ga-SB04028 with FAPI-04
(0.5 mg/mouse) reduced the tumor uptake to the background level (Figure 3).
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Figure 3. Representative maximum intensity projection PET/CT images of [68Ga]Ga-SB02055 (un-
blocked), [68Ga]Ga-SB04028 (unblocked and blocked) and [68Ga]Ga-PNT6555 (unblocked) at 1 h pi in
HEK293T:hFAP tumor-bearing male NRG mice. The mice in the blocked group were co-injected with
FAPI-04 (0.5 mg/mouse). t: tumor; b: urinary bladder.

Data from biodistribution studies (Figure 4 and Table S1) for all three tracers con-
ducted at 1 h pi in HEK293T:hFAP tumor-bearing mice were found to be concordant with
their respective PET/CT images. The tumor uptake values were found to be 1.08 ± 0.37,
10.1 ± 0.42 and 6.38 ± 0.45 %ID/g for [68Ga]Ga-SB02055, [68Ga]Ga-SB04028 and [68Ga]Ga-
PNT6555, respectively. All the tracers were excreted rapidly via the renal pathway with a
low but comparable kidney uptake (1.74 ± 0.95 %ID/g for [68Ga]Ga-SB02055,
2.10 ± 0.33 %ID/g for [68Ga]Ga-SB04028 and 2.29 ± 0.43 %ID/g for [68Ga]Ga-PNT6555).
[68Ga]Ga-SB02055 displayed a retention slighter higher than the background muscle uptake
(0.63 ± 0.20 %ID/g) in some normal organs, particularly the blood (3.13 ± 1.25 %ID/g),
pancreas (2.07 ± 0.83 %ID/g), bone (1.14 ± 0.37 %ID/g) and thyroid (1.49 ± 0.47 %ID/g).
Akin to the control tracer [68Ga]Ga-PNT6555, [68Ga]Ga-SB04028 exhibited a minimal uptake
in most normal organs/tissues, but demonstrated superior tumor/background contrast
ratios than [68Ga]Ga-PNT6555.

The tumor/muscle, tumor/kidney and tumor/bone ratios for [68Ga]Ga-SB04028
were considerably higher than those for [68Ga]Ga-PNT6555 (79.9 ± 7.50 vs. 52.6 ± 5.86,
4.89 ± 0.72 vs. 2.87 ± 0.59 and 48.1 ± 20.5 vs. 14.9 ± 3.34, respectively) (Figure 5 and
Table S1). These uptake ratios were significantly lower for [68Ga]Ga-SB02055 (tumor/muscle:
1.72 ± 0.19; tumor/kidney: 0.67 ± 0.15; tumor/bone: 0.95 ± 0.06) compared to both control
[68Ga]Ga-PNT6555 as well as [68Ga]Ga-SB04028. Additionally, the tumor/blood ratios for
[68Ga]Ga-SB04028 (10.4 ± 0.70) and [68Ga]Ga-PNT6555 (10.7 ± 1.29) were comparable and
the tumor/blood ratio was much lower for [68Ga]Ga-SB02055 (0.35 ± 0.03).
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The co-injection of [68Ga]Ga-SB04028 with FAPI-04 (0.5 mg/mouse) reduced the
average tumor uptake by ~97% (10.1 ± 0.42 %ID/g vs. 0.30 ± 0.04 %ID/g) (Figure 4 and
Table S1). No significant reduction was observed in its kidney uptake (2.10 ± 0.33 %ID/g
vs. 2.53 ± 0.57 %ID/g) upon FAPI-04 co-injection.

2.4. In Vivo Stability Studies

The in vivo stability studies revealed [68Ga]Ga-SB04028 to be considerably stable in the
blood plasma of male NRG mice (n = 3) at 15 min pi compared to [68Ga]Ga-SB02055. While
no intact [68Ga]Ga-SB02055 was present in the mouse plasma at 15 min pi, 46.6 ± 0.21%
of radioactivity from [68Ga]Ga-SB04028 was found to be present as an intact tracer. The
fractions of tracers remaining intact in the urine at 15 min pi for [68Ga]Ga-SB02055 and
[68Ga]Ga-SB04028 were 93.5 ± 0.91% and 53.6 ± 7.11%, respectively (Figures S1–S4).

3. Discussion

The FAP binding affinity of natGa-SB02055 (0.41 ± 0.06 nM) was found to be ~190-fold
higher than natGa-PNT6555 (78.1 ± 4.59 nM), whereas that of natGa-SB04028 (13.9 ± 1.29 nM)
was ~5.6-fold higher than natGa-PNT6555 in the rhFAP enzymatic assays (Figure 2). This is
consistent with previous reports demonstrating bicyclic heteroaromatic quinolinoyl-based
FAP inhibitors to be more potent than their monocyclic homoaromatic benzoyl-based
congeners [13,14,19,21,45]. Additionally, FAP seems to prefer P2 glycine (SB02055) over
a P2 D-alanine (SB04028). It is to be noted that P2 glycine bearing N-(4-quinolinoyl)-Gly-
boroPro was observed to exhibit an IC50(FAP) of 3.7 ± 0.2 nM by Jansen and co-workers [14].
Interestingly, its P2 D-alanine analogue, N-(4-quinolinoyl)-D-Ala-boroPro, was shown to
exhibit an IC50(FAP) of 6.4 ± 1.4 nM only by Bachovchin et al. [21] in a separate study, and
hence cannot be pitted head to head for comparison.

Surprisingly, findings from the in vitro enzymatic assay for natGa-SB02055 were not
in concordance with the data from the PET/CT imaging and biodistribution analysis of
its radioactive counterpart obtained from HEK293T:hFAP tumor-bearing mice at 1 h pi.
[68Ga]Ga-SB02055 exhibited a nominal tumor uptake (1.08 ± 0.37 %ID/g) close to the
background levels that was ~6-fold lower than [68Ga]Ga-PNT6555 (6.38 ± 0.45 %ID/g) and
primarily underwent renal excretion (Figures 3 and 4, Table S1). However, the uptake in
normal organs, particularly the blood (3.13 ± 1.25 %ID/g), pancreas (2.07 ± 0.83 %ID/g),
bone (1.14 ± 0.37 %ID/g) and thyroid (1.49 ± 0.47 %ID/g), was greater than the background
muscle uptake (0.63 ± 0.20 %ID/g).

We initially suspected the lack of in vivo stability of [68Ga]Ga-SB02055 to be a reason
for its nominal tumor uptake. Upon subjecting it to in vivo stability testing at 15 min pi, we
found no intact [68Ga]Ga-SB02055 in the mouse plasma. Interestingly, the urine samples
collected at the same time presented with >93% intact [68Ga]Ga-SB02055 (Figures S1 and
S2). The low tumor uptake at 1 h pi could possibly be a consequence of [68Ga]Ga-SB02055
undergoing quick clearance from the blood and rapid renal excretion into the urine in
≤15 min of injecting the tracer in vivo. Furthermore, an unidentified highly hydrophilic
68Ga-labeled species accounting for >99% plasma fraction was observed at 15 min pi
during the stability testing. The higher than background level uptake in the blood could
supposedly be attributed to this uncharacterized 68Ga-labeled species. Further investigation
of [68Ga]Ga-SB02055 in this regard is currently underway.

Next, encouraged by earlier findings regarding FAP’s ability to tolerate a P2 D-alanine
in the context of an X-boroPro-based inhibitor [20,21], we sought to evaluate the effect of
substituting the P2 glycine in [68Ga]Ga-SB02055 with a D-alanine to yield [68Ga]Ga-SB04028.
[68Ga]Ga-SB04028 differed from [68Ga]Ga-SB02055 in only the P2 amino acid residue, while
rest of the molecular structure was kept alike.

The PET/CT imaging data were consistent with the data from the biodistribution
analysis performed at 1 h pi in HEK293T:hFAP tumor-bearing mice. [68Ga]Ga-SB04028
demonstrated >1.5-fold higher tumor uptake (10.1 ± 0.42 %ID/g) than [68Ga]Ga-PNT6555
(6.38 ± 0.45 %ID/g) (Figures 3 and 4, Table S1) and concordant with the findings from FAP
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inhibition assays where natGa-SB04028 was realized to be more potent than natGa-PNT6555.
Additionally, the high accumulation of both [68Ga]Ga-SB04028 and [68Ga]Ga-PNT6555 in
the bladder indicated their renal excretion. The uptake of [68Ga]Ga-SB04028 in most normal
organs/tissues was minimal and comparable to [68Ga]Ga-PNT6555, particularly in the
muscle (0.13 ± 0.01 vs. 0.12 ± 0.02 %ID/g), blood (0.97 ± 0.03 vs. 0.60 ± 0.04 %ID/g),
kidney (2.10 ± 0.33 vs. 2.29 ± 0.43 %ID/g) and bone (0.24 ± 0.09 vs. 0.45 ± 0.12 %ID/g)
(Figure 4 and Table S1). However, since the tumor uptake of [68Ga]Ga-SB04028 was
considerably greater than [68Ga]Ga-PNT6555, the corresponding tumor/organ uptake
ratios for [68Ga]Ga-SB04028 were found to be significantly higher than [68Ga]Ga-PNT6555
(tumor/muscle: 79.9 ± 7.50 vs. 52.6 ± 5.86; tumor/kidney: 4.89 ± 0.72 vs. 2.87 ± 0.59;
tumor/bone: 48.1 ± 20.5 vs. 14.9 ± 3.34), except tumor/blood ratios (10.4 ± 0.70 vs.
10.7 ± 1.29 %ID/g), which were equivalent for the two (Figure 5 and Table S1). In general,
[68Ga]Ga-SB04028 demonstrated superior tumor/background contrast ratios compared to
[68Ga]Ga-PNT6555 as evident from both PET/CT imaging (Figure 3) and biodistribution
analysis (Figure 5 and Table S1).

The imaging and biodistribution analysis of mice co-injected [68Ga]Ga-SB04028 with
FAPI-04 (0.5 mg/mouse) revealed a ~97% reduction in the tumor uptake (10.1 ± 0.42 %ID/g
vs. 0.30 ± 0.04 %ID/g) substantiating in vivo FAP specificity of our lead candidate [68Ga]Ga-
SB04028 (Figures 3 and 4, Table S1). Moreover, as anticipated since there was no significant
reduction observed in the kidney uptake of [68Ga]Ga-SB04028 (2.10 ± 0.33 %ID/g vs.
2.53 ± 0.57 %ID/g), we can conclusively state that retention in the kidneys is by virtue of
the tracer’s propensity to undergo renal elimination and is not FAP mediated.

Unlike its P2 glycine analogue [68Ga]Ga-SB02055, [68Ga]Ga-SB04028 with a P2 D-
alanine residue was found to be relatively more stable during in vivo stability testing.
Strikingly, >47% of [68Ga]Ga-SB04028 remained intact in the mouse plasma at 15 min pi
(Figures S3 and S4). The remaining fractions corresponded to currently uncharacterized
but highly hydrophilic 68Ga-labeled species. The urine samples from the mouse presented
with >54% intact tracer, with the remaining portions co-eluting more or less with the
uncharacterized 68Ga-labeled species found in the plasma samples for [68Ga]Ga-SB04028.

The exact nature and identity of the 68Ga-labeled species eluting prior to each of the
intact tracers during in vivo stability testing has not been characterized. However, it has
been shown that boronic acids under basic (physiological) conditions could be converted to
other species. These include: (1) the degradation products formed under physiological pH
conditions due to the inherent susceptibility of boronic acids to undergo oxidation [46,47];
the empty p orbital of boron in boronic acid is prone to attack by nucleophilic oxygen
of reactive oxygen species (ROS), resulting in the formation of labile boric esters and/or
oxidative de-boronation products; notably, it is the same attribute that allows boronic
acid-based ligands to react with the nucleophilic hydroxyl of the catalytic serine residue of
FAP and form reversible covalent adducts; (2) the anionic boronic acid/hydroxyboronate
anion formed under more basic conditions as a result of hydroxyl (OH−) attack on the
highly electrophilic boron atom [48]; naturally, these ionic species will have a tendency
to elute before the neutral boronic acid forms; and (3) boronate esters formed under
aqueous conditions at a physiological pH of ~7.4 [48]. Efforts are underway to characterize
these species.

The goal of the present work was to develop novel boroPro-based PET imaging
agents with superior pharmacokinetics properties and excellent imaging contrast for easy
and reliable diagnosis of FAP-overexpressing carcinomas. Although our lead candidate
[68Ga]Ga-SB04028 demonstrated superior tumor/background contrast ratios compared to
[68Ga]Ga-PNT6555, there is still some scope for further optimization. (1) A 4,4-difluoro
substituent at the (2S)-2-cyanopyrrolidine ring was previously reported to enhance FAP
inhibitory activity compared to that of unsubstituted analogue [12–14]. It would be interest-
ing to generate a difluorinated derivative of [68Ga]Ga-SB04028 for preclinical investigation,
although its synthesis might be a bit challenging. (2) In terms of diagnostic radiopharma-
ceuticals, 99mTc is the most widely used with SPECT imaging accounting for >70% of all
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the imaging procedures performed in the field of nuclear medicine. Replacing DOTA with
a suitable chelator to allow radiolabeling with 99mTc is definitely worth exploiting.

4. Materials and Methods

4.1. Synthesis of natGa and 68Ga-Complexed DOTA-Conjugated FAP-Targeted Ligands

Detailed information on the synthesis, purification and characterizations of the inter-
mediates, precursors (SB02055 and SB04028), natGa-complexed analogues (natGa-SB02055,
natGa-SB04028 and natGa-PNT6555) and their 68Ga-complexed analogues ([68Ga]Ga-SB02055,
[68Ga]Ga-SB04028 and [68Ga]Ga-PNT6555) is provided in the Supplementary Materials.

4.2. Cell Culture

HEK293T cells were obtained from American Type Culture Collection (Manassas, VA,
USA). The IMPACT Rodent Pathogen Test (IDEXX BioAnalytics, Columbia, MO, USA)
confirmed that the cells were pathogen free. Detailed information on the generation of
HEK293T:hFAP cells has been previously reported by our group [44]. HEK293T:hFAP cells
were cultured in DMEM GlutaMAX™ medium supplemented with 10% FBS, penicillin
(100 U/mL) and streptomycin (100 µg/mL) at 37 ◦C in a Panasonic Healthcare (Tokyo,
Japan) MCO-19AIC humidified incubator containing 5% CO2. Cells were grown until
80–90% confluence, washed with sterile PBS (pH 7.4) and collected.

4.3. In Vitro Fluorescence-Based Binding Assay

The half maximal inhibitory concentration (IC50) values of the FAP-targeted lig-
ands were measured using in vitro enzymatic assay following previously reported pro-
cedures [41,44]. Briefly, rhFAP (Biolegend, San Diego, CA, USA; 0.2 µg/mL, 50 µL) was
added into a Costar clear bottom 96-well plate. Varied concentrations (25 pM to 1 µM)
of natGa-complexed ligands were added to each well (in duplicate) containing the rhFAP.
PBS was added to the control well (in duplicate). After incubating for 30 min at 37 ◦C,
the fluorescence substrate Suc-Gly-Pro-AMC (Bachem, Bubendorf, Switzerland; 20 mM,
50 µL) was added to each well. The velocities of AMC release were measured kineti-
cally at λex = 380 nm, λem = 460 nm at 60 min at 37 ◦C using a FlexStation 3 Multi-Mode
Microplate Reader.

4.4. Ex Vivo Biodistribution and PET/CT Imaging Studies

Imaging and biodistribution studies were performed using immunodeficient male
NRG (NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ) mice following previously reported proce-
dures [41,44]. All experiments were conducted according to the guidelines established by
the Canadian Council on Animal Care and approved by Animal Ethics Committee of the
University of British Columbia. The mice were subcutaneously inoculated with 7.5 × 106

HEK293T:hFAP cells in the left dorsal flank. When the tumors grew to 6–8 mm in diameter,
the mice were used for PET/CT imaging and biodistribution studies.

The PET/CT imaging experiments were carried out using a Siemens Inveon micro
PET/CT scanner (Knoxville, TN, USA). Tumor-bearing mice were injected with ~4 to 6 MBq
of 68Ga-labeled tracer through a lateral caudal tail vein under 2.5% isoflurane in oxygen
anesthesia, followed by recovery and free roaming in their cage during the uptake period. A
10 min localization CT scan was acquired using 3 overlapping positions to cover the entire
mouse. The CT scan was used for the attenuation and scatter correction, and anatomical
localization. A list mode acquisition was then performed for 15 min at 1 h pi with the
mouse under isoflurane sedation. The images were reconstructed using 3D OSEM/MAP
iterative methods.

For the biodistribution studies, the mice were injected with ~1–2 MBq of the 68Ga-
labeled tracer, using the exact procedures as described above. At 1 h pi, the mice were
euthanized by CO2 inhalation. Blood was withdrawn by a cardiac puncture, and the
organs/tissues of interest were collected, weighed and counted using a Perkin Elmer
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(Waltham, MA, USA) Wizard2 2480 automatic gamma counter. The uptake values in percent
of injected dose per gram of tissues (%ID/g) for the different tracers were calculated.

For blocking studies, HEK293T:hFAP tumor-bearing mice were co-injected [68Ga]Ga-
SB04028 with an excess of FAPI-04 (0.5 mg/mouse) as a competitor. Imaging and biodistri-
bution studies were performed at 1 h pi similar to the unblocked mice.

4.5. In Vivo Stability Studies

In vivo stability studies were performed using healthy (non-tumor-bearing) male
NRG mice following previously reported procedures [43,49]. Briefly, [68Ga]Ga-SB02055
(6.32 ± 0.16 MBq) and [68Ga]Ga-SB04028 (9.90 ± 0.26 MBq) were injected via the lateral
caudal vein into the mice (n = 3). At 15 min pi, the mice were sedated and euthanized,
and urine and blood were collected. The blood was processed to obtain plasma by adding
0.5 mL of acetonitrile to 0.5–0.8 mL of whole blood, then vortexing and centrifuging the
resulting mixture on a benchtop mini-centrifuge (Fisherbrand™ Mini-Centrifuge 100–240 V,
50/60 Hz Universal Plug) for 20 min. The supernatant was collected and filtered to give
the blood plasma. The plasma and urine samples were analyzed via radio-HPLC by using
the same conditions as those used for quality control of these 68Ga-labeled radioligands.

4.6. Statistical Analysis

Data were reported as mean ± standard deviation (SD) and analyzed with GraphPad
Prism, version 9.5.1. Two-way ANOVA and multiple t-tests were performed for all the
tumor and organ/tissue uptake values in the biodistribution studies of [68Ga]Ga-SB02055,
[68Ga]Ga-SB04028, and [68Ga]Ga-PNT6555 in the HEK293T:hFAP tumor model. Statistical
significance was defined at p < 0.05 using the Holm–Sidak method.

5. Conclusions

We successfully synthesized and evaluated two novel 68Ga-labeled (R)-pyrrolidin-2-
yl-boronic acid-derived PET tracers for FAP-targeted cancer imaging. While the P2 glycine-
containing [68Ga]Ga-SB02055 displayed a minimal tumor uptake, its P2 D-alanine congener
[68Ga]Ga-SB04028 demonstrated a significantly higher tumor uptake and superior imaging
contrast compared to [68Ga]Ga-PNT6555. (R)-(((quinoline-4-carbonyl)-D-alanyl)pyrrolidin-
2-yl)boronic acid is a highly promising pharmacophore that can be used to develop PET
imaging agents with superior pharmacokinetics properties and excellent imaging contrasts
for visualization of FAP-overexpressing carcinomas. The replacement of DOTA with
suitable chelators/prosthetic groups to allow radiolabeling with two of the most widely
used imaging isotopes, 99mTc and 18F, is warranted in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16060798/s1. Detailed synthetic procedures and results for
the preparation of FAP-targeted ligands and their natGa/68Ga-complexed analogues; Table S1: Biodis-
tribution and tumor/organ uptake ratios of [68Ga]Ga-SB02055, [68Ga]Ga-SB04028 and [68Ga]Ga-
PNT6555 in HEK239T:hFAP tumor-bearing mice; Figure S1: A representative MS spectrum of com-
pound 3; Figure S2: A representative NMR spectrum of compound 3; Figure S3: A representative MS
spectrum of compound 4; Figure S4: A representative MS spectrum of SB02055; Figure S5: A repre-
sentative MS spectrum of natGa-SB02055; Figure S6: A representative MS spectrum of compound 6;
Figure S7: A representative NMR spectrum of compound 6; Figure S8: A representative MS spectrum
of compound 7; Figure S9: A representative MS spectrum of SB04028; Figure S10: A representative
MS spectrum of natGa-SB04028; Figure S11: A representative MS spectrum of natGa-PNT6555; Figure
S12: Representative radio-HPLC chromatograms from an in vivo stability study performed to de-
termine the percent of the intact fraction of [68Ga]Ga-SB02055 in mouse plasma and urine samples
collected at 15 min post-injection; Figure S13: Radio-HPLC analysis of [68Ga]Ga-SB02055; Figure S14:
Representative radio-HPLC chromatograms from an in vivo stability study performed to determine
the percent of the intact fraction of [68Ga]Ga-SB04028 in mouse plasma and urine samples collected
at 15 min post-injection; Figure S15: Radio-HPLC analysis of [68Ga]Ga-SB04028.
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