
L. Pomante, M. Pugliese, F. Santucci

University of L’Aquila
Center of Excellence DEWS
ITALY
Outline

• Introduction
• Platform-Based Design
• Secure Platform Internal Architecture
• PBD using AGILLA Agents
• Implementation Issues
• Conclusion and Future Works
Introduction
Introduction

- Provide secure monitoring services, supported by flexible and cheap systems, in areas where ordinary networks are unsuitable is one of today interesting challenges

- Wireless Sensor Networks represent a promising technological solution but resource constraints and exposure to external attacks could limit their employment
Introduction

• In such a context, this work focuses on design and implementation issues of a security framework suitable for WSN monitoring applications.

• We have exploited the Platform-Based Design methodology to define a Secure Platform.
 – In particular, the distributed nature of the problem led us to consider an agent-based approach.
Platform-Based Design
Platform-Based Design

• Architecture of the proposed framework
Platform-Based Design

• Main design choices
 – Clustered network topology for the underlying WSN
 • Cluster heads host functions related to the cluster as a whole while ordinary cluster members host node-specific functions
 – Static SW components (SWC)
 – Agent-based Middleware
 • We have exploited the AGILLA middleware

• Application Execution Environment
 – Composed by the SWC API and the MW services set
Platform-Based Design

- Mobile Agents AEE
 - Agents implement cluster-domain functions
 - SWC implement node-domain functions
Secure Platform Internal Architecture
Secure Platform Internal Architecture

• Two main security functions should be mapped to mobile agents and SW components
 – Intrusion Detection System (IDS)
 • Based on Weak Process Models
 – Cryptographic Scheme (CS)
 • Based on Topology Authenticated Key Scheme (TAKS)
Secure Platform Internal Architecture

• **IDS function**
 – ADL/TM blocks are mapped into SWC while IRL and IRLA blocks into an agent (Intrusion Reaction Agent)
 • This design choice allows optimal code distribution for those functions that should not be implemented anywhere
 – IRA will be hosted only on WSN cluster heads
Secure Platform Internal Architecture

• CS function
 – CS functions that supports secured data exchange are mapped on a single SW component
Secure Platform Internal Architecture

- Final architecture
PBD using AGILLA agents
PBD using AGILLA agents

- The “mobile-agents”-based MW AGILLA provides several useful functions
 - Tuple Space
 - Neighbor List
 - Agent Migration

However, current version of AGILLA does not allow direct interaction with external SW components
PBD using AGILLA agents

• Therefore we have extended the AGILLA architecture defining new interfaces between external SWC and internal components
 – Communication Unit
 – Neighbors List
 – Tuple Space

• Some of such enhancements have been implemented as an embedded SW stub developed in NesC
Implementation Issues
Implementation Issues

• The AGILLA extension implemented is related to interfacing Communication Unit and SWC
 – A mechanism to make able agents to retrieve information about the radio traffic from the nodes
 • The node-part has been modified to allow the evaluation of some customizable indicators about the radio traffic
 • The interface of the MW has been modified to allow agents to get such indicators
Implementation Issues

• In order to validate such extension (while starting to build the proposed framework) we have developed a simple demo application
 – The final goal is to detect nodes that present a radio traffic indicator out of reference values
• TupleOut, Dynamic, Alarm
Conclusion and Future Works
Conclusion and Future Works

• We have presented an agent-based design of a Security Platform for WSN Monitoring Applications
 – Security functions are executed directly by nodes and complexity in IDS management is reduced due to the use of mobile agents and clustered tree topology

• Currently we are carrying on early experimentations on MicaZ and working on the full implementation of the proposed architecture