Direct Integration: Training Software Developers and Designers to Conduct Usability Evaluations

Mikael B. Skov
Jan Stage

Presented by:
Jan Stage
Aalborg University
Department of Computer Science
jans@cs.aau.dk
Usability Evaluation in Software Development

- Usability evaluation and user interaction design are two separate activities in software development

- This separation is often carried through as a complete separation of work between evaluators and developers
Improving the Interplay

• Many problems in software development originate from this division of work
• It is often suggested that we need to bridge the gap or improve the interplay and many of the contributions here intend to do that
• Two general approaches:
 • Better methods for usability evaluation to improve relevance
 • Better forms of feedback to improve impact

• But …
• ... wouldn’t it be much easier to avoid the gap in the first place
Web Site Development

• A large proportion of design and development projects
• A very diverse group of users with very little patience
• Projects with limited budgets and a very short time span
• Cannot afford a full-scale usability evaluation and cannot wait
• This is challenging usability engineering methods
Do-It-Yourself

• **If you can’t afford to have a garage built – what do you do?**

 Hillhout Carport

 Hillhout Carport 18x12 (3.53mx5.46m).
 Great for keeping your car “frost-free” in winter and nice and cool in the summer months.

 Hillhout Carport features:
 - The “passage” width is approx 9’8” (3.0m)
 - The posts are 9 x 9 x 290cm
 - The distance between the posts on each side is 180cm
 - The roof is made of synthetic material. Inclusive of barge board
 - Guttering and drain-pipe included
 - Galvanised brackets
 - Instruction manual included for easy self assembly

 Panels displayed are not included.

 Price incl. VAT £ 999.00

• **Web site usability engineering: train the developers and designers to evaluate and improve their own products**
Training Course

- Teach software developers and designers to conduct usability evaluations
- Provide participants with skills in formative usability evaluation
- No prerequisites
- It is done in a week
- Result: a usability report

<table>
<thead>
<tr>
<th>#</th>
<th>Lecture</th>
<th>Exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to the course and basic website technology</td>
<td>Pilot test: Each team conducts simple pilot usability tests of websites to train their practical skills in usability evaluation. The teams choose the website themselves. Experience with conducting tests and the results achieved are discussed afterwards.</td>
</tr>
<tr>
<td>2</td>
<td>Basic introduction to usability issues and guidelines for interaction design</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>The think-aloud protocol and how to set up a test scenario. User groups and their different needs</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Application of questionnaires for collecting data and how to use different kinds of questions</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Computer architecture and website technology</td>
<td>Usability evaluation: The teams conduct a usability evaluation of the Hotmail website according to a specification provided by the course instructors. The usability evaluations are conducted at the university in assigned rooms for each team. After the usability test sessions, the teams analyze the empirical data and make a usability report that describes the identified usability problems.</td>
</tr>
<tr>
<td>6</td>
<td>Describing the usability testing method and how to collect and analyze empirical data</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Other usability evaluation methods and how to conduct a full-scale usability test session</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Website structures, information search and web surfing</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Guidelines for website design and principles for orientation and navigation</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Principles for visual design and different interaction styles</td>
<td></td>
</tr>
</tbody>
</table>
Method (1)

- **Website:** hotmail.com
- **Participants:**
 - First-year university students
 - Four educations:
 - Informatics
 - Architecture and design
 - Planning and environment
 - Chartered surveyor
- **Setting:** their offices

<table>
<thead>
<tr>
<th>Total number of students</th>
<th>Total number of teams</th>
<th>Team size Average</th>
<th>Team size Min / Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>36</td>
<td>6.5</td>
<td>4 / 8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of test subjects Average</th>
<th>Number of test subjects Min / Max</th>
<th>Age of test subjects Average</th>
<th>Age of test subjects Min / Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6</td>
<td>2 / 5</td>
<td>21,2</td>
<td>19 / 30</td>
</tr>
</tbody>
</table>
Method (2)

Procedure:
- Use the techniques of the course
- A two page scenario emphasizing areas of hotmail to evaluate
- Select test monitor and loggers (before the second class meeting)
- Prepare the tests
- Carry out tests with subjects (about 38 minutes for each)
- Evaluate and produce report

Data collection
- The usability reports
Method (3)

Data analysis

• **Step 1:**
 • 5 randomly selected reports were marked independently by two persons
 • The criteria used for marking were negotiated into a set of 17 variables
 • Evaluation: The way the evaluation was conducted (3 variables)
 • Report: the presentation of the evaluation and the results (6 variables)
 • Result: the outcome of the usability evaluation (8 variables)

• **Step 2:**
 • Individually marked each report on the 17 variables (a scale of 1 to 5)
 • Counted usability problems

• **Step 3:**
 • Comparison and negotiation of grades for the 17 variables and the identified usability problems
Results (1)

<table>
<thead>
<tr>
<th>Teams</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Conducting the evaluation</td>
</tr>
<tr>
<td>Student (N=36)</td>
<td>3.42 (0.73)</td>
</tr>
<tr>
<td>Professional (N=8)</td>
<td>4.38 (0.74)</td>
</tr>
</tbody>
</table>

- The students did quite well in conducting the evaluation
- The professionals did significantly better
- On task quality and relevance the students seem to do better than the professionals (but not significant)
Results (2)

<table>
<thead>
<tr>
<th>Teams</th>
<th>Report</th>
<th>Test description</th>
<th>Data quality</th>
<th>Clarity of problem list</th>
<th>Executive summary</th>
<th>Clarity of report</th>
<th>Layout of report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student (N=36)</td>
<td></td>
<td>3.03 (0.94)</td>
<td>3.19 (1.33)</td>
<td>2.53 (1.00)</td>
<td>2.39 (0.80)</td>
<td>2.97 (0.84)</td>
<td>2.94 (0.89)</td>
</tr>
<tr>
<td>Professional (N=8)</td>
<td></td>
<td>4.00 (1.31)</td>
<td>2.13 (0.83)</td>
<td>3.50 (0.93)</td>
<td>3.38 (1.06)</td>
<td>4.25 (0.71)</td>
<td>3.25 (0.71)</td>
</tr>
</tbody>
</table>

- The students did well on describing the test and providing underlying data in appendices
- The worst student performance was in clarity of the problem list and executive summary
Results (3)

<table>
<thead>
<tr>
<th>Team</th>
<th>Number of problems</th>
<th>Problem categorization</th>
<th>Practical relevance</th>
<th>Qualitative results overview</th>
<th>Quantitative results overview</th>
<th>Use of literature</th>
<th>Conclusion</th>
<th>Evaluation of test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student (N=36)</td>
<td>2.56 (0.84)</td>
<td>2.06 (1.22)</td>
<td>3.03 (1.00)</td>
<td>3.03 (1.00)</td>
<td>2.28 (1.14)</td>
<td>3.08 (0.81)</td>
<td>2.64 (0.90)</td>
<td>2.44 (1.08)</td>
</tr>
<tr>
<td>Professional (N=8)</td>
<td>4.13 (1.13)</td>
<td>3.25 (1.75)</td>
<td>4.25 (1.49)</td>
<td>3.75 (1.16)</td>
<td>2.00 (1.51)</td>
<td>3.13 (0.35)</td>
<td>3.88 (0.64)</td>
<td>2.88 (1.13)</td>
</tr>
</tbody>
</table>

- The students did poorly on problem identification and description
- Both groups did poorly in describing the quantitative results (efficiency and effectiveness)
Limitations

• The environment in which the evaluations were conducted was not optimal for the usability test sessions
• In some cases, slow Internet access
• Motivation and stress factors
 • Is the motivation between students and professionals comparable
 • Would developers be (equally) motivated to do critical evaluations of their own product
• The demographics of the test subjects are not varied with respect to age and education
Conclusion

• The gap between usability evaluation and software design will disappear if we can train software developers and designers to conduct usability evaluations

• We did a course that quickly teaches fundamental usability skills and explored it through a large empirical study

• The student teams were able to conduct usability evaluations and produce usability reports of a reasonable quality and with relevant results

• The student teams performed well in defining good tasks for the test subjects, and the data material in their reports was significantly better than the professionals

• They were less successful on most of the other variables

• They performed clearly worse on identification of problems and expressing the problems found in a manner relevant to practitioners

Thank you …
Guidance on Usability Problem Identification

<table>
<thead>
<tr>
<th>Problem Severity</th>
<th>Delay in task completion</th>
<th>Irritation</th>
<th>Expectation to system behaviour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>Less than 30 seconds delay</td>
<td>Slight irritation</td>
<td>Minor difference in expected action</td>
</tr>
<tr>
<td>Medium</td>
<td>More than 30 seconds delay</td>
<td>Average irritation</td>
<td>Significant difference in expected action</td>
</tr>
<tr>
<td>Large</td>
<td>Could not complete the task</td>
<td>High irritation</td>
<td>Critical difference in expected action</td>
</tr>
</tbody>
</table>

Table 4. Guidelines used for categorizing the severity of usability problems.