Categorical characterizations of the natural numbers require primitive recursion

Leszek Aleksander Kołodziejczyk* Keita Yokoyama†

May 24, 2014

Abstract

Simpson and Yokoyama [Ann. Pure Appl. Logic 164 (2012), 284–293] asked whether there exists a characterization of the natural numbers by a second-order sentence which is provably categorical in the theory RCA$_0$. We answer in the negative, showing that for any characterization of the natural numbers which is provably true in WKL$_0$, the categoricity theorem implies Σ^0_1 induction.

On the other hand, we show that RCA$_0$ does make it possible to characterize the natural numbers categorically by means of a set of second-order sentences. We also show that a certain Π^1_2-conservative extension of RCA$_0$ admits a provably categorical single-sentence characterization of the naturals, but each such characterization has to be inconsistent with WKL$_0$ + superexp.

Inspired by a question of Väänänen (see e.g. [Vää12] for some related work), Simpson and the second author [SY12] studied various second-order characterizations of $\langle\mathbb{N},S,0\rangle$, with the aim of determining the reverse-mathematical strength of their respective categoricity theorems. One of the general conclusions is that the strength of a categoricity theorem depends heavily on the characterization. Strikingly, however, each of the categoricity theorems considered in [SY12] implies RCA$_0$, even over the much weaker base theory RCA$_0^*$, that is, RCA$_0$ with Σ^0_1 induction replaced by Δ^0_1 induction in the language with exponentiation. (For RCA$_0^*$, see [SS86].)

This leads to the following question.

* Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland, lak@impan.pl. Supported in part by Polish National Science Centre grant no. 2013/09/B/ST1/04390.

† School of Information Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan, y-keita@jaist.ac.jp. Supported in part by JSPS Grant-in-Aid for Research Activity Start-up grant no. 25887026.
Question 1. [SY12, Question 5.3] Does RCA_0 prove the existence of a second-order sentence or set of sentences T such that $\mathbb{N},0,S$ is a second-order model of T and all second-order models of T are isomorphic to $\mathbb{N},0,S$? One may also consider the same question with RCA_0 replaced by systems which are Π^0_2-equivalent to RCA_0.

The question as stated admits multiple versions depending on whether we focus on RCA_0 or consider other Π^0_2-equivalent theories and whether we want the characterizations of the natural numbers to be sentences or sets of sentences. The most basic version, restricted to RCA_0 and single-sentence characterizations, would read as follows:

Question 2. Does there exist a second-order sentence ψ in the language with one unary function f and one constant c such that RCA_0 proves: (i) $\langle \mathbb{N},S,0 \rangle \models \psi$, and (ii) for every $\langle A,f,c \rangle$, if $\langle A,f,c \rangle \models \psi$, then there exists an isomorphism between $\langle \mathbb{N},S,0 \rangle$ and $\langle A,f,c \rangle$?

We answer Question 2 in the negative. In fact, characterizing $\langle \mathbb{N},S,0 \rangle$ not only up to isomorphism, but even just up to equicardinality of the universe, requires the full strength of RCA_0. More precisely:

Theorem 1. Let ψ be a second-order sentence in the language with one unary function f and one individual constant c. If WKL_0 proves that $\langle \mathbb{N},S,0 \rangle \models \psi$, then over RCA_0 the statement “for every $\langle A,f,c \rangle$, if $\langle A,f,c \rangle \models \psi$, then there exists a bijection between \mathbb{N} and A” implies RCA_0.

Since RCA_0 is equivalent over RCA_0^\ast to a statement expressing the correctness of defining functions by primitive recursion [SS86, Lemma 2.5], Theorem 1 may be intuitively understood as saying that, for provably true single-sentence characterizations at least, “categorical characterizations of the natural numbers require primitive recursion”.

Do less stringent versions of Question 1 give rise to “exceptions” to this general conclusion? As it turns out, they do. Firstly, characterizing the natural numbers by a set of sentences is already possible in RCA_0^\ast:

Theorem 2. There exists a Δ_0-definable (and polynomial-time recognizable) set Σ of $\Sigma^1_1 \wedge \Pi^1_1$ sentences such that RCA_0 proves: for every $\langle A,f,c \rangle$, $\langle A,f,c \rangle$ satisfies all $\xi \in \Sigma$ if and only if it is isomorphic to $\langle \mathbb{N},S,0 \rangle$.

Secondly, even a single-sentence characterization is possible in a Π^2_1-conservative extension of RCA_0, at least if one is willing to consider rather peculiar theories:

Theorem 3. There is a Σ^1_2 sentence which is a categorical characterization of $\langle \mathbb{N},S,0 \rangle$ provably in $\text{RCA}_0^\ast + \neg \text{WKL}$.
Theorem 3 is not quite satisfactory, as the theory and characterization it speaks of are false in \(\langle \omega, P(\omega) \rangle \). So, another natural question to ask is whether a single-sentence characterization of the natural numbers can be provably categorical in a true \(\Pi^0_2 \)-conservative extension of \(\text{RCA}_0 \). We show that under an assumption just a little stronger than \(\Pi^0_2 \)-conservativity, the characterization from Theorem 3 is actually “as true as possible”:

Theorem 4. Let \(T \) be an extension of \(\text{RCA}_0 \) conservative for first-order \(\forall \Delta_0(\Sigma_1) \) sentences. Let \(\eta \) be a second-order sentence consistent with \(\text{WKL}_0 + \text{superexp} \). Then it is not the case that \(\eta \) is a categorical characterization of \(\langle \mathbb{N}, S, 0 \rangle \) provably in \(T \).

The proofs of our theorems make use of a weaker notion of isomorphism to \(\langle \mathbb{N}, S, 0 \rangle \) studied in [SY12], that of “almost isomorphism”. Intuitively speaking, a structure \(\langle A, f, c \rangle \) satisfying some basic axioms is almost isomorphic to \(\langle \mathbb{N}, S, 0 \rangle \) if it is “equal to or shorter than” the natural numbers. The two crucial facts we prove and exploit are that almost isomorphism to \(\langle \mathbb{N}, S, 0 \rangle \) can be characterized by a single sentence provably in \(\text{RCA}_0 \), and that structures almost isomorphic to \(\langle \mathbb{N}, S, 0 \rangle \) correspond to \(\Sigma^0_1 \)-definable cuts.

The paper is structured as follows. After a short preliminary Section 1, we conduct our study of almost isomorphism to \(\langle \mathbb{N}, S, 0 \rangle \) studied in [SY12], that of “almost isomorphism”. Intuitively speaking, a structure \(\langle A, f, c \rangle \) satisfying some basic axioms is almost isomorphic to \(\langle \mathbb{N}, S, 0 \rangle \) if it is “equal to or shorter than” the natural numbers. The two crucial facts we prove and exploit are that almost isomorphism to \(\langle \mathbb{N}, S, 0 \rangle \) can be characterized by a single sentence provably in \(\text{RCA}_0 \), and that structures almost isomorphic to \(\langle \mathbb{N}, S, 0 \rangle \) correspond to \(\Sigma^0_1 \)-definable cuts.

The paper is structured as follows. After a short preliminary Section 1, we conduct our study of almost isomorphism to \(\langle \mathbb{N}, S, 0 \rangle \) in Section 2. We then prove Theorem 1 in Section 3, Theorems 2 and 3 in Section 4, and Theorem 4 in Section 5.

1 Preliminaries

We assume familiarity with subtheories of second-order arithmetic, as presented in [Sim09]. Of the “big five” theories featuring prominently in that book, we only need the two weakest: \(\text{RCA}_0 \), axiomatized by \(\Delta^0_1 \) comprehension and \(\Sigma^0_1 \) induction (and a finite list of simple basic axioms), and \(\text{WKL}_0 \), which extends \(\text{RCA}_0 \) by the axiom \(\text{WKL} \) stating that an infinite binary tree has an infinite branch.

We also make use of some well-known fragments of first-order arithmetic, principally \(\text{I} \Delta_0 + \text{exp} \), which extends induction for \(\Delta_0 \) formulas by an axiom \(\text{exp} \) stating the totality of exponentiation; \(\text{BS}_{1} \), which extends \(\text{I} \Delta_0 \) by the \(\Sigma_1 \) collection (bounding) principle; and \(\text{IS}_{1} \). For a comprehensive treatment of these and other subtheories of first-order arithmetic, refer to [HP93]. To distinguish a class of first-order formulas from its second-order analogue, we use notation without the superscript “\(^{\text{\text{d}}} \)”. Thus, for instance, a \(\Sigma_1 \) formula is a first-order formula containing a single block of existential quantifiers followed by a bounded part, whereas a \(\Sigma^0_1 \) formula has the same quantifier structure, but may additionally contain second-order parameters. Such a formula is \(\Sigma_1(\bar{X}) \) if all its second-order parameters are among \(\bar{X} \).
A formula is $\Delta_0(\Sigma_1)$ if it belongs to the closure of Σ_1 under boolean operations and bounded first-order quantifiers.

The theory RCA_0^\ast was introduced in [SS86]. It differs from RCA_0 in that the Σ^0_1 induction axiom is replaced by $\text{I}^\ast_0 + \exp$. WKL_0^\ast is RCA_0^\ast plus the WKL axiom. Both RCA_0^\ast and WKL_0^\ast have $\text{BS}_1 + \exp$ as their first-order part, while the first-order part of RCA_0 and WKL_0 is Σ^0_1.

We let superexp denote both the “tower of exponents” function defined by $\text{superexp}(x) = \exp_x(2)$ (where $\exp^0_x(2) = 1, \exp^{x+1}_x(2) = 2^{\exp^x(2)}$) and the axiom saying that for every x, superexp(x) exists. $\Delta_0(\exp)$ stands for the class of bounded formulas in the language extending the language of Peano Arithmetic by a symbol for x^ω. $\text{I}^\ast_0(\exp)$ is a definitional extension of $\text{I}^\ast_0 + \exp$.

In any model M of a first-order arithmetic theory (possibly the first-order part of a second-order structure), a cut is a nonempty subset of M which is downwards closed and closed under successor. For a cut J, we sometimes abuse notation and also write J to denote the structure $\langle J, S, 0 \rangle$, or even $\langle J, +, \cdot, \leq, 0, 1 \rangle$ if J happens to be closed under multiplication. A set $A \subseteq M$ is bounded if there exists $a \in M$ such that $A \subseteq \{0, \ldots, a\}$, and it is unbounded otherwise. Assuming that $M \models \exp$ and M satisfies $\Delta_0(A)$ induction, we can refer to a bounded set A as M-finite (or simply finite), and to an unbounded set A as (M)-infinite. Under the same assumptions, it makes sense to speak of the internal cardinality $|A|_\#$ of A, which is defined to be $\sup(\{x \in M : A \text{ contains a finite subset with at least } x \text{ elements}\})$. $|A|_\#$ is an element of M if A is finite, and a cut in M otherwise.

If $\langle M, \mathcal{P} \rangle \models \text{RCA}_0^\ast$ and J is a cut in M, then \mathcal{P}_J will denote the family of sets $\{X \cap J : X \in \mathcal{P}\}$. Theorem 4.8 of [SS86] states that if J is a proper cut closed under \exp, then $\langle J, \mathcal{P}_J \rangle \models \text{WKL}_0^\ast$.

The letter \mathcal{A} will always stand for a structure $\mathcal{A} = \langle A, f, c \rangle$ for the language with one unary function and one constant. N stands for the set of numbers defined by the formula $x = x$; in other words, $\mathbb{N}_M = M$. To refer to the set of standard natural numbers, we use the symbol ω.

The general notational conventions regarding cuts apply also to \mathbb{N}: for instance, if there is no danger of confusion, we sometimes write that some \mathcal{A} is “isomorphic to \mathbb{N}” rather than “isomorphic to $\langle \mathbb{N}, S, 0 \rangle$”.

2 Almost isomorphism

The structure $\mathcal{A} = \langle A, f, c \rangle$ is a Peano system if f is one-to-one, $c \notin \text{rng}(f)$, and \mathcal{A} satisfies the natural formulation of the second-order induction axiom with c as the least element and f as successor. A Peano system is said to be almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$ if for every $a \in A$ there is some $x \in \mathbb{N}$ such that $f^x(c) = a$. Since RCA_0^\ast
is too weak to prove that any function can be iterated an arbitrary number of times,
\(f^x(c) = a \) needs to be expressed in such a way as to imply the existence of the sequence \(\langle c, f(c), f^2(c), \ldots, f^x(c) \rangle \).

Being almost isomorphic to \(\mathbb{N} \) is a definable property:

Lemma 5. There exists a \(\Sigma^1_1 \land \Pi^1_1 \) sentence \(\xi \) in the language with one unary function \(f \) and one individual constant \(c \) such that \(\text{RCA}_0 \) proves: for every \(\mathcal{A} \), \(\mathcal{A} \models \xi \) if and only if \(\mathcal{A} \) is a Peano system almost isomorphic to \(\langle \mathbb{N}, S, 0 \rangle \).

Proof. By definition, \(\mathcal{A} \) is a Peano system precisely if it satisfies the \(\Pi^1_1 \) sentence \(\xi_{\text{peano}} \):

\[
\begin{align*}
&\exists c \in \mathbb{N} \land f(c) \neq 2 \land \forall x \in \mathbb{N} \left(f(x) = f(x+1) \right) \land \forall a \in \mathbb{N} \left(f(a) = a \right) \\
&\forall b \in \mathbb{N} \left(f(b) = b \right) \\
&\forall x \in \mathbb{N} \left(f(x) = f(x+1) \right)
\end{align*}
\]

The sentence \(\xi \) will be the conjunction of \(\xi_{\text{peano}} \), the \(\Sigma^1_1 \) sentence \(\xi_{\text{\&}^1} \text{\&} S \):

there exists a discrete linear ordering \(\leq \)

for which \(c \) is the least element and \(f \) is the successor function,

and the \(\Pi^1_1 \) sentence \(\xi_{\Pi^1_1} \):

for every linear ordering \(\leq \) with \(c \) as least element and \(f \) as successor

and for every \(a \), the set of elements \(\leq \)-below \(a \) is Dedekind-finite.

We say that a set \(X \) is *Dedekind-finite* if there is no bijection between \(X \) and a proper subset of \(X \). Note that provably in \(\text{RCA}_0 \), a set \(X \subseteq A \) is finite exactly if \(A \models "X \text{ is Dedekind-finite}". \)

We first prove that Peano systems almost isomorphic to \(\mathbb{N} \) satisfy \(\xi_{\text{\&}^1} \text{\&} S \) and \(\xi_{\Pi^1_1} \). Let \(\mathcal{A} \) be almost isomorphic to \(\mathbb{N} \). Every \(a \in A \) is of the form \(f^x(c) \) for some \(x \in \mathbb{N} \). Moreover, \(x \) is unique. To see this, assume that \(a = f^x(c) = f^{x+y}(c) \) and that \(\langle c, f(c), \ldots, f^x(c) = a, f^{x+1}(c), \ldots, f^{x+y}(c) = a \rangle \) is the sequence witnessing that \(f^{x+y}(c) = a \) (by \(\Delta^0_0 \)-induction, this sequence is unique and its first \(x+1 \) elements comprise the unique sequence witnessing \(f^x(c) = a \)). If \(y > 0 \), then we have \(c \neq f^y(c) \) and then \(\Delta^0_0 \)-induction coupled with the injectivity of \(f \) gives \(f^w(c) \neq f^{x+y}(c) \) for all \(w \leq x \). So, \(y = 0 \).

Because of the uniqueness of the \(f^x(c) \) representation for \(a \in A \), we can define \(\preceq \) on \(A \) by \(\Delta^0_1 \)-comprehension in the following way:

\[
a \preceq b := \exists x \exists y \left(a = f^x(c) \land b = f^y(c) \land x \leq y \right).
\]

Clearly, \(\preceq \) is a discrete linear ordering on \(A \) with \(c \) as the least element and \(f \) as the successor function, so \(\mathcal{A} \) satisfies \(\xi_{\text{\&}^1} \).
For each $a \in A$, the set of elements \preceq-below a is finite. Moreover, if \preceq is any ordering of A with c as least element and f as successor, then for each $a \in A$ the set

$$ \{ b \in A : b \preceq a \iff b \preceq a \} $$

contains c and is closed under f. Since \mathbb{A} is a Peano system, \preceq has to coincide with \preceq. Thus, \mathbb{A} satisfies $\xi_{\preceq, \Pi}$.

For a proof in the other direction, let \mathbb{A} be a Peano system satisfying $\xi_{\preceq, \Sigma}$ and $\xi_{\preceq, \Pi}$. Let \preceq be an ordering on A witnessing $\xi_{\preceq, \Sigma}$. Take some $a \in A$. By $\xi_{\preceq, \Pi}$, the set $[c, a]_{\preceq}$ of elements \preceq-below a is finite. Let ℓ be the cardinality of $[c, a]_{\preceq}$ and let b be the \preceq-maximal element of $[c, a]_{\preceq}$. By $\Delta^0_1(\exp)$-induction on x prove that there is an element below b^{x+1} coding a sequence $\langle s_0, \ldots, s_x \rangle$ such that $s_0 = c$ and for all $y < x$, either $s_{y+1} = f(s_y) \preceq a$ or $s_{y+1} = s_y = a$. Take such a sequence for $x = \ell - 1$. If a does not appear in the sequence, then by $\Delta^0_1(\exp)$-induction the sequence has the form $\langle c, f(c), \ldots, f^{\ell-1}(c) \rangle$ and all its entries are distinct elements of $[c, a]_{\preceq} \setminus \{ a \}$; an impossibility, given that $[c, a]_{\preceq} \setminus \{ a \}$ only has $\ell - 1$ elements. So, a must appear somewhere in the sequence. Taking w to be the least such that $a = s_w$, we easily verify that $a = f^w(c)$.

Remark. We do not know whether in RCA_0 it is possible to characterize $\langle \mathbb{N}, S, 0 \rangle$ up to almost isomorphism by a Π^1_1 sentence. This does become possible in the case of $\langle \mathbb{N}, \leq \rangle$ (given a suitable definition of almost isomorphism, cf. [SY12]), where there is no need for the Σ^1_1 part of the characterization which guarantees the existence of a suitable ordering.

An important fact about Peano systems almost isomorphic to \mathbb{N} is that their isomorphism types correspond to Σ^0_1-definable cuts. This correspondence, which will play a major role in the proofs of our main theorems, is formalized in the following definition and lemma.

Definition 6. Let $\mathcal{M} = \langle M, \mathcal{X} \rangle$ be a model of RCA_0^\ast. For a Peano system \mathbb{A} in \mathcal{M} which is almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$, let $J(\mathbb{A})$ be the cut defined in \mathcal{M} by the Σ^0_1 formula $\varphi(x)$:

$$ \exists a \in A \; f^x(c) = a. $$

For a Σ^0_1-definable cut J in \mathcal{M}, let the structure $\mathbb{A}(J)$ be $\langle A_J, f_J, c_J \rangle$, where the set A_J consists of all the pairs $\langle x, y_x \rangle$ such that y_x is the smallest witness for the formula $x \in J$, the function f_J maps $\langle x, y_x \rangle$ to $\langle x+1, y_{x+1} \rangle$, and c_J equals $\langle 0, y_0 \rangle$.

Lemma 7. Let $\mathcal{M} = \langle M, \mathcal{X} \rangle$ be a model of RCA_0^\ast. The following holds:

(a) for a Σ^0_1-definable cut J in \mathcal{M}, the structure $\mathbb{A}(J)$ is a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$, and $J(\mathbb{A}(J)) = J,$

6
(b) if $\mathcal{A} \in \mathcal{X}$ is a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$, then there is an isomorphism in \mathcal{M} between $\mathcal{A}(J(\mathcal{A}))$ and \mathcal{A}.

(c) if $\mathcal{A} \in \mathcal{X}$ is a Peano system almost isomorphic to $\langle \mathbb{N}, S, 0 \rangle$, then there is an isomorphism in \mathcal{M} between \mathcal{A} and $J(\mathcal{A})$, which also induces an isomorphism between the second-order structures $\langle \mathcal{A}, \mathcal{X} \cap \mathcal{P}(A) \rangle$ and $\langle J(\mathcal{A}), \mathcal{X}_J(\mathcal{A}) \rangle$.

Although all the isomorphisms between first-order structures mentioned in Lemma 7 are elements of \mathcal{X}, a cut is not itself an element of \mathcal{X} unless it equals M (because induction fails for the formula $x \in J$ whenever J is a proper cut). Obviously, the isomorphism between second-order structures mentioned in part (c) is also outside \mathcal{X}.

Proof. For a Σ^0_1-definable cut J in \mathcal{M}, it is clear that A_J and f_J are elements of \mathcal{X}, that f_J is an injection from A_J into A_J, and that c_J is outside the range of f_J. Furthermore, for every $(x, y, z) \in A_J$, Σ^0_1 collection in \mathcal{M} guarantees that there is a common upper bound on y_0, \ldots, y_n, so Δ^0_0 induction is enough to show that the sequence $(c_J, f_J(c_J), \ldots, f^j_J(c_J)) = \langle x, y_z \rangle$ exists. If $X \subset A_J$, $X \in \mathcal{X}$, is such that $c_J \in X$ but $f^j_J(c_J) \notin X$, then Δ^0_0 induction along the sequence $(c_J, f_J(c_J), \ldots, f^j_J(c_J))$ finds some $w < x$ such that $f^j_J(c_J) \in X$ but $f^j_J(f^j_J(c_J)) \notin X$. Thus, $\mathcal{A}(J)$ is a Peano system almost isomorphic to \mathbb{N}, and clearly $J(\mathcal{A}(J))$ equals J, so part (a) is proved.

For part (b), if \mathcal{A} is almost isomorphic to \mathbb{N}, then each $a \in A$ has the form $a = f^i(c)$ for some $x \in J(\mathcal{A})$, and we know from the proof of Lemma 5 that the element x is unique. Thus, the mapping which takes $f^i(c) \in \mathcal{A}$ to $\langle x, y_z \rangle \in \mathcal{A}(J(\mathcal{A}))$ is guaranteed to exist in \mathcal{M} by Δ^0_0 comprehension. It follows easily from the definitions of $J(\mathcal{A})$ and $\mathcal{A}(J)$ that the mapping $f^i(c) = \langle x, y_z \rangle$ is an isomorphism between \mathcal{A} and $\mathcal{A}(J(\mathcal{A}))$.

For part (c), we assume that \mathcal{A} equals $\mathcal{A}(J(\mathcal{A}))$, which we may do w.l.o.g. by part (b). The isomorphism between \mathcal{A} and $J(\mathcal{A})$ is given by $(x, y_z) \mapsto x$. To prove that this also induces an isomorphism between $\langle \mathcal{A}, \mathcal{X} \cap \mathcal{P}(A) \rangle$ and $\langle J(\mathcal{A}), \mathcal{X}_J(\mathcal{A}) \rangle$, we have to show that for any $X \subseteq A$, it holds that $X \in \mathcal{X}$ exactly if $\{ x : \langle x, y_z \rangle \in X \}$ has the form $Z \cap J(\mathcal{A})$ for some $Z \in \mathcal{X}$.

The “if” direction is immediate: given $Z \in \mathcal{X}$, the set $\{ (x, y_z) : x \in Z \}$ is $\Delta^0_0(Z)$ and thus belongs to \mathcal{X}.

To deal with the other direction, we assume that \mathcal{M} is countable. We can do this w.l.o.g. because $J(\mathcal{A})$ is a definable cut, so the existence of a counterexample in some model would imply the existence of a counterexample in a countable model by a downwards Skolem-Löwenheim argument.

By [SS86, Theorem 4.6], the countability of \mathcal{M} means that we can extend \mathcal{X} to a family $\mathcal{X}^+ \supseteq \mathcal{X}$ such that $\langle M, \mathcal{X}^+ \rangle \models \text{WKL}_0$. Note that there are no (M-
finite sets in $\mathcal{X}^+ \setminus \mathcal{X}$. This is because a finite set in \mathcal{X}^+ actually has the form
\[\{ x \mid \text{bit}(z, x) = 1 \} \] for some $z \in M$, and each such set is Δ_0-definable and thus in \mathcal{X}.

Now consider some $X \in \mathcal{X}$, $X \subseteq A$. Let T be the set consisting of the finite binary strings s satisfying:

\[\forall a, x < \text{lh}(s) \left[(a = \langle x, y_x \rangle \wedge a \in X \rightarrow (s)_x = 1) \wedge (a = \langle x, y_x \rangle \wedge a \in A \setminus X \rightarrow (s)_x = 0) \right]. \]

T is $\Delta_0(X)$-definable, so it belongs to \mathcal{X}, and it is easy to show that it is an infinite tree. Let $B \in \mathcal{X}^+$ be an infinite branch of T. Then \(\{ x : (x, y_x) \in X \} = B \cap J(\mathcal{A}). \)

However, $B \cap J(\mathcal{A})$ can also be written as $(B \cap \{0, \ldots, z\}) \cap J(\mathcal{A})$ for an arbitrary $z \in M \setminus J(\mathcal{A})$, and $B \cap \{0, \ldots, z\}$, being a finite set, belongs to \mathcal{X}. \(\square \)

Corollary 8. Let $\mathcal{M} = (M, \mathcal{X})$ be a model of RCA_0^\ast. Let $\mathcal{A} \in \mathcal{X}$ be a Peano system almost isomorphic to $\langle \mathbb{N}, \cdot, 0 \rangle$. Assume that $J(\mathcal{A})$ is a proper cut under exp, that \prec is a linear ordering on A with least element c and successor function f, and that \oplus, \otimes are operations on A which satisfy the usual recursive definitions of addition resp. multiplication with respect to least element c and successor f. Then $\langle (\mathcal{A}, \oplus, \otimes, \prec, c, f(c)), \mathcal{X} \cap \mathcal{P}(A) \rangle \models WKL^0_0$.

Proof. Write \mathcal{A} for $\langle \mathcal{A}, \oplus, \otimes, \leq, c, f(c) \rangle$. By Lemma 7 part (b), we can assume w.l.o.g. that $\mathcal{A} = \mathcal{A}(J(\mathcal{A}))$. Using the fact that \mathcal{A} is a Peano system, we can prove that for every $x, z \in J(\mathcal{A})$ we have

\[
\begin{align*}
(x, y_x) \oplus (z, y_z) &= (x + z, y_{x+z}), \\
(x, y_x) \otimes (z, y_z) &= (x \cdot z, y_{x\cdot z}), \\
(x, y_x) \preceq (z, y_z) &\iff x \preceq z.
\end{align*}
\]

By the obvious extension of Lemma 7 part (c) to structures with addition, multiplication and ordering, $\langle \mathcal{A}, \mathcal{X} \cap \mathcal{P}(A) \rangle$ is isomorphic to $\langle J(\mathcal{A}), \mathcal{X}(J(\mathcal{A})) \rangle$. Since $J(\mathcal{A})$ is proper and closed under exp, this means that $\langle \mathcal{A}, \mathcal{X} \cap \mathcal{P}(A) \rangle \models WKL^0_0$. \(\square \)

Remark. It was shown in [SY12, Lemma 2.2] that in RCA_0 a Peano system almost isomorphic to \mathbb{N} is actually isomorphic to \mathbb{N}. In light of Lemma 7, this is a reflection of the fact that in RCA_0 there are no proper Σ^0_1-definable cuts.

Informally speaking, a Peano system which is not almost isomorphic to \mathbb{N} is “too long”, since it contains elements which cannot be obtained by starting at zero and iterating successor finitely many times. On the other hand, a Peano system which is almost isomorphic but not isomorphic to \mathbb{N} is “too short”. The results of this section, together with our Theorem 1, give precise meaning to the intuitive idea strongly suggested by Table 2 of [SY12], that the problem with characterizing the natural numbers in RCA_0^\ast is ruling out structures that are “too short” rather than “too long”.

8
3 Characterizations: basic case

In this section, we prove Theorem 1.

Theorem 1 (restated). Let ψ be a second-order sentence in the language with one unary function f and one individual constant c. If WKL^0_0 proves that $\langle \mathbb{N}, S, 0 \rangle \models \psi$, then over RCA^*_0 the statement “for every A, if $A \models \psi$, then there exists a bijection between \mathbb{N} and A” implies RCA^*_0.

We use a model-theoretic argument based on the work of Section 2 and a lemma about cuts in models of $I\Delta_0 + \exp + I\Sigma_1$.

Lemma 9. Let $M \models I\Delta_0 + \exp + I\Sigma_1$. There exists a proper Σ_1-definable cut $J \subseteq M$ closed under \exp.

Note that a proper cut closed under \exp satisfies $B\Sigma_1 + \exp$, the first-order part of RCA^*_0 and WKL^*_0.

Proof. We need to consider a few cases.

- **Case 1.** $M \models \mathbb{L}_{1\Delta_0} + \exp + I\Sigma_1$. Since $M \models \mathbb{L}_{1\Sigma_1}$, there exists a Σ_1 formula $\varphi(x)$, possibly with parameters, which defines a proper subset of M closed under successor. Replacing $\varphi(x)$ by the formula $\hat{\varphi}(x)$: “there exists a sequence witnessing that for all $y < x$, $\varphi(y)$ holds”, we obtain a proper Σ_1-definable cut $K \subseteq M$. Define:

 $$J := \{ y : \exists x \in K (y < \text{superexp}(x)) \}.$$

 J is a cut closed under \exp because K is a cut, and it is proper because it does not contain $\text{superexp}(b)$ for any $b \notin K$.

 The remaining cases all assume that $M \models \mathbb{L}_{1\Delta_0} + \exp + I\Sigma_1$.

 - **Case 2.** $\text{Log}^*(M)$ is closed under \exp. Define $J := \text{Log}^*(M)$.

 - **Case 3.** $\text{Log}^*(M)$ is closed under addition but not under \exp. Let $\text{Log}(\text{Log}^*(M))$ be the subset of M defined as $\{ x : \text{exp}(x) \in \text{Log}^*(M) \}$. Since $\text{Log}^*(M)$ is closed under addition, $\text{Log}(\text{Log}^*(M))$ is a cut. Moreover, $\text{Log}(\text{Log}^*(M)) \subseteq \text{Log}^*(M)$, because $\text{Log}^*(M)$ is not closed under \exp. Define:

 $$J := \{ y : \exists x \in \text{Log}(\text{Log}^*(M)) (y < \text{superexp}(x)) \}.$$

 J is a cut closed under \exp because $\text{Log}(\text{Log}^*(M))$ is a cut, and it is proper because it does not contain $\text{superexp}(b)$ for any $b \in \text{Log}^*(M) \setminus \text{Log}(\text{Log}^*(M))$.

 - **Case 4.** $\text{Log}^*(M)$ is not closed under addition. Let $\frac{1}{2}\text{Log}^*(M)$ be the subset of M defined as $\{ x : 2x \in \text{Log}^*(M) \}$. Since $\text{Log}^*(M)$ is closed under successor,
\(\frac{1}{2} \log^*(M) \) is a cut. Moreover, \(\frac{1}{2} \log^*(M) \subseteq \log^*(M) \), because \(\log^*(M) \) is not closed under addition. Define:

\[
J := \{ y : \exists x \in \frac{1}{2} \log^*(M) \ (y < \supexp(x)) \}.
\]

\(J \) is a cut closed under \(\supexp \) because \(\frac{1}{2} \log^*(M) \) is a cut, and it is proper because it does not contain \(\supexp(b) \) for any \(b \in \log^*(M) \setminus \frac{1}{2} \log^*(M) \).

\(\Box \)

Remark. Inspection of the proof reveals immediately that Lemma 9 relativizes, in the sense that in a model of \(I\Delta_0(X) + \exp + \neg \Sigma^0_1(X) \) there is a \(\Sigma^1(X) \)-definable proper cut closed under \(\exp \).

Remark. The method used to prove Lemma 9 shows the following result: for any \(n \in \omega \), there is a definable cut in \(I\Delta_0 + \exp \) which is provably closed under \(\exp \) and proper in all models of \(I\Delta_0 + \exp + \neg \Sigma^0_\alpha \). In contrast, there is no definable cut in \(I\Delta_0 + \exp \) provably closed under \(\supexp \); otherwise, \(I\Delta_0 + \exp \) would prove its consistency relativized to a definable cut, which would contradict a result of [Pud85].

We can now complete the proof of Theorem 1. Assume that \(\psi \) is a second-order sentence true of \(\langle \mathbb{N}, S, 0 \rangle \) provably in \(\text{WKL}_0^0 \). Let \(\mathcal{M} = \langle \mathbb{M}, \mathcal{X} \rangle \) be a model of \(\text{RCA}_0^0 + \neg \Sigma^0_\alpha \). Assume for the sake of contradiction that according to \(\mathcal{M} \), the universe of any structure satisfying \(\psi \) can be bijectively mapped onto \(\mathbb{N} \).

Let \(J \) be the cut in \(\mathcal{M} \) guaranteed to exist by the relativized version of Lemma 9. Since \(|A_J|_\mathcal{M} = J \), the model \(\mathcal{M} \) believes that there is no bijection between \(A_J \) and \(\mathbb{N} \), and hence also that \(\mathcal{A}(J) \models \neg \psi \).

By Lemma 7 and its proof, the mapping \(f^\mathcal{A}(c) \mapsto x \) induces an isomorphism between \(\langle \mathcal{A}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle \) and \(\langle J, \mathcal{L}J \rangle \). Since \(J \) is closed under addition and multiplication, we can define the operation \(\oplus \) on \(A_J \) by setting \(f^\mathcal{A}(c) \oplus f^\mathcal{A}(c) = f^\mathcal{A}(c) \), and we can define \(\otimes \) and \(\leq \) analogously. By the uniqueness of the \(f^\mathcal{A}(c) \) representation, \(\oplus, \otimes, \leq \) are all elements of \(\mathcal{X} \). Write \(\mathcal{A}(J) \) for \(\langle \mathcal{A}(J), \oplus, \otimes, \leq, c_J, f_J(c_J) \rangle \).

Clearly, \(A_J \) with the structure given by \(\oplus, \otimes, \leq \) satisfies the assumptions of Corollary 8, which means that \(\langle \mathcal{A}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle \) is a model of \(\text{WKL}_0^0 \). We also claim that \(\langle \mathcal{A}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle \) believes \(\mathbb{N} \models \neg \psi \). This is essentially an immediate consequence of the fact that \(\mathcal{M} \) thinks \(\mathcal{A}(J) \models \neg \psi \), since the subsets of \(A_J \) are exactly the same in \(\langle \mathcal{A}(J), \mathcal{X} \cap \mathcal{P}(A_J) \rangle \) as in \(\mathcal{M} \). There is one minor technical annoyance related to non-unary second-order quantifiers in \(\psi \), as the integer pairing function in \(\mathcal{A}(J) \) does not coincide with that of \(\mathcal{M} \). The reason this matters is that the language of second-order arithmetic officially contains only unary set variables, so e.g. a binary relation is represented by a set of pairs, but a set of \(M \)-pairs of elements of \(A_J \) might not even be a subset of \(A_J \). Clearly, however, since the graph of the \(\mathcal{A}(J) \)-pairing function is \(\Delta^0_\alpha(\text{exp}) \)-definable in \(\mathcal{M} \), a given set of \(M \)-pairs of
elements of A_j belongs to \mathcal{X} exactly if the corresponding set of \hat{A}-pairs belongs to $\mathcal{X} \cap \mathcal{P}(A_j)$; and likewise for tuples of greater constant length.

Thus, our claim holds, and we have contradicted the assumption that ψ is true of \mathbb{N} provably in WKL_0^\ast. \hfill \Box (Theorem 1)

We point out the following corollary of the proof.

Corollary 10. The following are equivalent over RCA_0^\ast:

1. $\neg \text{RCA}_0$.
2. There exists $\mathcal{M} = (M, \mathcal{X})$ satisfying WKL_0^\ast such that $|M| \neq |\mathbb{N}|$.

Proof. RCA_0 proves that all infinite sets have the same cardinality, which gives (2) \Rightarrow (1). To prove (1) \Rightarrow (2), work in a model of $\text{RCA}_0^\ast + \neg \text{RCA}_0$ and take the inner model of WKL_0^\ast provided by the proof of Theorem 1. \hfill \Box

Remark. The type of argument described above can be employed to strengthen Theorem 1 in two ways.

Firstly, it is clear that $\langle \mathbb{N}, S, 0 \rangle$ could be replaced in the statement of Theorem 1 by, for instance, $\langle \mathbb{N}, \leq, +, 0, 1 \rangle$. In other words, the extra structure provided by addition and multiplication does not help in characterizing the natural numbers without Σ^0_1.

Secondly, for any fixed $n \in \omega$, the theories $\text{RCA}_0^\ast / \text{WKL}_0^\ast$ appearing in the statement could be extended (both simultaneously) by an axiom expressing the totality of f_n, the n-th function in the Grzegorczyk-Wainer hierarchy (e.g., the totality of f_2 is exp, the totality of f_3 is superexp). The proof remains essentially the same, except that the argument used to show Lemma 9 now splits into $n + 2$ cases instead of four.

By compactness, $\text{RCA}_0^\ast / \text{WKL}_0^\ast$ could also be replaced in the statement of the theorem by $\text{RCA}_0^\ast + \text{PRA} / \text{WKL}_0^\ast + \text{PRA}$, where PRA is primitive recursive arithmetic.

4 Characterizations: exceptions

In this section, we prove Theorems 2 and 3.

Theorem 2 (restated). There exists a Δ_0-definable (and polynomial-time recognizable) set Ξ of $\Sigma^1_1 \land \Pi^1_1$ sentences such that RCA_0^\ast proves: for every \mathcal{A}, \mathcal{A} satisfies all $\xi \in \Xi$ if and only if it is isomorphic to $\langle \mathbb{N}, S, 0 \rangle$.

11
Proof of Theorem 2. Let the set \(\Xi \) consist of the sentence \(\xi \) from Lemma 5 and the sentences

\[
\exists a_0 \exists a_1 \ldots \exists a_{x-1} \exists a_x [a_0 = c \land a_1 = f(a_0) \land \ldots \land a_x = f(a_{x-1})],
\]

for every \(x \in \mathbb{N} \). (Note that in a nonstandard model of \(\text{RCA}_0^* \), the set \(\Xi \) will contain sentences of nonstandard length.)

Provably in \(\text{RCA}_0^* \), a structure \(\mathbb{A} \) satisfies all sentences in \(\Xi \) exactly if it is a Peano system almost isomorphic to \(\mathbb{N} \) such that for every \(x \in \mathbb{N} \), \(f^x(c) \) exists. Clearly then, \(\mathbb{N} \) satisfies all sentences in \(\Xi \). Conversely, if \(\mathbb{A} \) satisfies all sentences in \(\Xi \), then \(J(\mathbb{A}) = \mathbb{N} \) and so \(\mathbb{A} \) is isomorphic to \(\mathbb{N} \).

\(\square \)

Theorem 3 (restated). There is a \(\Sigma_1^1 \) sentence which is a categorical characterization of \(\langle \mathbb{N}, S, 0 \rangle \) provably in \(\text{RCA}_0^* + \neg \text{WKL} \).

Before proving the theorem, we verify that the theory it mentions is a \(\Pi_1^1 \)-conservative extension of \(\text{RCA}_0^* \).

Proposition 11. The theory \(\text{RCA}_0^* + \neg \text{WKL} \) is a \(\Pi_1^1 \)-conservative extension of \(\text{RCA}_0^* \).

Proof. Let \(\exists X \forall Y \varphi(X,Y) \) be a \(\Sigma_1^1 \) sentence consistent with \(\text{RCA}_0^* \). Take \((M, X) \) and \(A \in X \) such that \((M, X) \models \text{RCA}_0^* + \forall Y \varphi(A,Y) \). Let \(\Delta_1(A)\text{-Def} \) stand for the collection of the \(\Delta_1(A) \)-definable subsets of \(M \). \(\Delta_1(A)\text{-Def} \subseteq X \), so obviously \((M, \Delta_1(A)\text{-Def}) \models \text{RCA}_0^* + \forall Y \varphi(A,Y) \). Moreover, by a standard argument, there is a \(\Delta_1(A) \)-definable infinite binary tree without a \(\Delta_1(A) \)-definable branch, so \((M, \Delta_1(A)\text{-Def}) \models \neg \text{WKL} \).

\(\square \)

Proof of Theorem 3. Work in \(\text{RCA}_0^* + \neg \text{WKL} \). The sentence \(\psi \), our categorical characterization of \(\mathbb{N} \), is very much like the sentence \(\xi \) described in the proof of Lemma 5, which expressed almost isomorphism to \(\mathbb{N} \). The one difference is that the \(\Sigma_1^1 \) conjunct of \(\xi \):

there exists a discrete linear ordering \(\preceq \)
for which \(c \) is the least element and \(f \) is the successor function,
is strengthened in \(\psi \) to the \(\Sigma_1^1 \) sentence:

there exist binary operations \(\oplus, \otimes \) and a discrete linear ordering \(\preceq \) such that
\(\preceq \) has \(c \) as the least element and \(f \) as the successor function,
\(\oplus \) and \(\otimes \) satisfy the usual recursive definition of addition and multiplication,
and such that \(I\Delta_0 + \exp + \neg \text{WKL} \) holds.
I\Delta_0 + \exp is finitely axiomatizable, so there is no problem with expressing this as a single sentence. Note that \psi is \Sigma^1_2.

Since \neg \text{WKL} holds, the usual +, \cdot and ordering on \mathbb{N} witness that \mathbb{N} satisfies the new \Sigma^1_2 conjunct of \psi. Of course, \mathbb{N} is a Peano system almost isomorphic to \mathbb{N}, and thus it satisfies \psi.

Now let \mathcal{A} be a structure satisfying \psi. Then \mathcal{A} is a Peano system almost isomorphic to \mathbb{N}, so we may consider \nu(\mathcal{A}). The existence of +, \cdot, \leq witnessing the \Sigma^1_2 conjunct of \psi guarantees that \nu(\mathcal{A}) is closed under exp. Moreover, Corollary \text{8} implies that \nu(\mathcal{A}) cannot be a proper cut, because otherwise \mathcal{A} with the additional structure given by +, \cdot, \leq would have to satisfy WKL. So, \nu(\mathcal{A}) = \mathbb{N} and thus \mathcal{A} is isomorphic to \mathbb{N}.

\section{Characterizations: exceptions are exotic}

To conclude the paper, we prove Theorem 4 and some corollaries.

\textbf{Theorem 4 (restated).} Let T be an extension of RCA^0_0 conservative for first-order \forall \Delta_0(\Sigma_1) sentences. Let \eta be a second-order sentence consistent with WKL^0_0 + superexp. Then it is not the case that \eta is a categorical characterization of \langle \mathbb{N}, S, 0 \rangle provably in T.

\textit{Proof.} Let \mathcal{M} = (M, \mathcal{X}) be a countable recursively saturated model of WKL^0_0 + superexp + \eta.

Tanaka’s self-embedding theorem [Tan97] is stated for countable models of WKL_0, but it is part of the folklore that the same proof works for countable recursively saturated models of WKL^0_0. Thus, there is a cut I in M such that \langle M, \mathcal{X} \rangle and \langle I, \mathcal{X}_I \rangle are isomorphic. In particular, \langle I, \mathcal{X}_I \rangle \models \eta.

Let a \in M \setminus I. Define the cut K in M to be

\{ y : \exists x \in I (y < \exp_{a+3}(2)) \}.

(K, \mathcal{X}_K) is a model of WKL^0_0 and I is a \Sigma_1-definable proper cut in K.

T is conservative over RCA^0_0 for first-order \forall \Delta_0(\Sigma_1) sentences, so there is a model \langle L, \mathcal{Y} \rangle \models T such that K \preceq_{\Delta_0(\Sigma_1)} L. We claim that in \langle L, \mathcal{Y} \rangle there is a Peano system \mathcal{A} satisfying \eta but not isomorphic to \mathbb{N}. This will imply that T does not prove \eta to be a categorical characterization of \mathbb{N}. It remains to prove the claim.

We can assume that \eta does not contain a second-order quantifier in the scope of a first-order quantifier. This is because we can always replace first-order quantification by quantification over singleton sets, at the cost of adding some new first-order quantifiers with none of the original quantifiers of \eta in their scope.
Note that \((K, \mathcal{X}_K)\) contains a proper \(\Sigma_1\) definable cut, namely \(I\), which satisfies \(\eta\). Using the universal \(\Sigma_1\) formula, we can express this fact by a first-order \(\exists \Delta_0(\Sigma_1)\) sentence \(\eta^{FO}\). The sentence \(\eta^{FO}\) says the following:

there exists a triple “\(\Sigma_1\) formula \(\varphi(x, w)\), parameter \(p\), bound \(b\)” such that

\(b\) does not satisfy \(\varphi(x, p)\), the set defined by \(\varphi(x, p)\) below \(b\) is a cut,

and this cut satisfies \(\eta\).

To state the last part, replace the second-order quantifiers of \(\eta\) by quantifiers over subsets of \([0, \ldots, b - 1]\) (these are bounded first-order quantifiers) and replace the first-order quantifiers by first-order quantifiers relativized to elements below \(b\) satisfying \(\varphi(x, p)\). By our assumptions about the syntactical form of \(\eta\), this ensures that \(\eta^{FO}\) is \(\exists \Delta_0(\Sigma_1)\).

\(L\) is a \(\Delta_0(\Sigma_1)\)-elementary extension of \(K\), so \(L\) also satisfies \(\eta^{FO}\). Therefore,

\((L, \mathcal{Y})\) also contains a proper \(\Sigma_1\)-definable cut satisfying \(\eta\). By Lemma 7, this means that in \((L, \mathcal{Y})\) there is a Peano system \(\mathcal{A}\) satisfying \(\eta\) but not isomorphic to \(\mathbb{N}\). The claim, and the theorem, is thus proved.

Remark. The assumption that \(\eta\) is consistent with \(\text{WKL}_0^\times\) rather than just \(\text{WKL}_0\) is only needed to ensure that there is a model of \(\text{RCA}_0\) with a proper \(\Sigma_1\)-definable cut satisfying \(\eta\). The assumption can be replaced by consistency with \(\text{WKL}_0\) extended by a much weaker first-order statement, but we were not able to make the proof work assuming only consistency with \(\text{WKL}_0^\times\).

One idea used in the proof of Theorem 4 seems worth stating as a separate corollary.

Corollary 12. Let \(\eta\) be a second order sentence. The statement “there exists a Peano system \(\mathcal{A}\) almost isomorphic but not isomorphic to \(\langle \mathbb{N}, S, 0 \rangle\) such that \(\mathcal{A} \models \eta\)” is \(\Sigma_1^1\) over \(\text{RCA}_0^\times\).

Proof. By Lemma 7, a Peano system satisfying \(\eta\) and almost isomorphic but not isomorphic to \(\mathbb{N}\) exists exactly if there is a proper \(\Sigma_1^0\)-definable cut satisfying \(\eta\). This can be expressed by a sentence identical to the first-order sentence \(\eta^{FO}\) from the proof of Theorem 4 except for an additional existential second-order quantifier to account for the possible set parameters in the formula defining the cut.

Theorem 4 also has the consequence that if we restrict our attention to \(\Pi^1_1\)-conservative extensions of \(\text{RCA}_0\), then the characterization from Theorem 3 is not only the “truest possible”, but also the “simplest possible” provably categorical characterization of \(\mathbb{N}\).
Corollary 13. Let T be a Π^1_1-conservative extension of RCA_0^*. Assume that the second-order sentence η is a categorical characterization of $\langle \mathbb{N}, S, 0 \rangle$ provably in T. Then

(a) η is not Π^1_2,

(b) T is not Π^1_2-axiomatizable.

Proof. We first prove (b). Assume that T is Π^1_2-axiomatizable and Π^1_1-conservative over RCA_0^*. As observed in [Yok09], this means that $T + \text{WKL}_0^*$ is Π^1_1-conservative over RCA_0^*, so T is consistent with $\text{WKL}_0^* + \text{superexp}$. Hence, Theorem 4 implies that there can be no provably categorical characterization of \mathbb{N} in T.

Turning now to part (a), assume that η is Π^1_2. Since T is Π^1_1-conservative over RCA_0^* and proves that $\mathbb{N} \models \eta$, then $\text{RCA}_0^* + \eta$ must also be Π^1_1-conservative over RCA_0^*. But then, by a similar argument as above, η is consistent with $\text{WKL}_0^* + \text{superexp}$, which contradicts Theorem 4.

Acknowledgement. We are grateful to Stephen G. Simpson for useful comments.

References

