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Abstract: Big-Bang and Big-crunch (BB-BC), a heuristic optimization method is based 
on the concept of universal evolution. FireFly optimization (FFO), also a recent heuristic 
optimization method, is based on the concept of flashing behaviour of lightingbugs. 
Both the optimization methods are applied to obtain the solution of the Optimal Power 
Flow (OPF) with continuous and discrete control variables for quadratic generator 
output cost functions. The continuous control variables are generating unit active power 
outputs and generator bus voltage magnitudes, while the discrete ones are transformer-
tap settings and switchable shunt devices. A number of functional constraints such as 
load bus voltage magnitudes, line flows and reactive power capabilities are included as 
quadratic penalties in the optimization function. A comparative simulation results for 
Ward –Hale 6 bus system with seven control variables and IEEE 30 bus system with 
twenty-three control variables are presented. 
 
Keywords: Bing-Bang and Big-Crunch, FireFly, optimal power flow, discrete, 
continuous 

 
NOTATIONS 

TF  : total operating cost,NB: number of buses, NG: number of generator buses, NT: number 
of Transformers, NL: number of lines (branches),NSH: number of switchable shunts, 
NPQ: number of load buses NTR: number of transformers,  : active power injection at bus 
i,   :  reactive power at bus i,NP: population size (number of fireflies in FFO/number of Big-
Bangs BB-BC)NC: number of control variables (co-ordinates of fireflies FF0/dispersions in 
BB-BC) 
 
1. Introduction 
 Rapid growth in power system size and Electrical power demand, problem of reducing the 
operating cost has gained importance while maintaining voltage security and thermal limits of 
transmission line branches. A large number of mathematical programming (algorithms) and AI 
(Artificial Intelligence technique) have been applied to solve OPF[1,2]. In most general 
formulation, the OPF is a nonlinear, non-convex, large scale, static optimization problem with 
both continuous and discrete control Variables. Mathematical programming approaches such as 
Calculus methods, Non-linear programming (NLP), Linear programming (LP), Quadratic 
programming (QP), algorithms applied to obtain OPF solution require smooth and continuous 
cost function. Dynamic programming methods (DP) are good at solving quadratic and ramp 
cost functions, at the cost of increased dimensionality and may get struck in local optimality 
[3]. In cost optimization problems, it is desirable to obtain global optimum solution [2]. Recent 
advances in AI techniques can be applied as complementary approach to pave the way towards 
global/near global solutions for complex optimization problems such as OPF [2]. All search 
intelligence  techniques,  are  population  based  and  stochastic  in  nature.  Search  intelligence  
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techniques developed by scientific community from the inspiration of natural social behaviour 
of   different   organisms/natural   processes,   offer  multiple   feasible solutions per  
iteration/generation. Genetic algorithms and its variants, Swarm intelligence, Bacteria foraging, 
ant-colony search techniques are applied to obtain quality solutions [4] to optimization 
problems. Big-Bang and Big-Crunch (BB-BC) developed by Erol and Eksin [5] from the 
concept of universal evolution, is also a population based search technique. BB-BC method has 
been proved to outperform genetic algorithm for benchmark test functions [5]. FireFly 
Optimization (FFO) also a heuristic algorithm that simulates the flashing behaviour of 
fireflies(lighting bugs) developed by  Dr. Xin-she yang[6] has been applied to solve a number 
of complex optimization problems[7]. The conflicting objectives of Economic Load Dispatch 
(ELD) and thermal emission Pareto [8, 9] using traditional Bmn (real power loss coefficients) is 
solved by FFO. This paper aims at solving complex OPF problem with continuous and discrete 
control variables using BB-BC and FFO. Continuous variables are generator real power outputs 
and generator terminal voltages. Discrete variables are transformer tap settings and switchable 
shunts at power system buses. Each method is run 10 times with different initial control 
variables for 200 generations. The best results of each run are presented. Time taken by both 
optimization methods are compared along with reliability in arriving at quality solutions. 
Results of these two optimization methods are also compared with Genetic approaches 
available in literature [10, 11] of OPF for IEEE-30 bus system. 
 
2. Optimal power flow problem formulation: OPF problem can be stated as follows 
  ,                                   (1) 

.   , 0                           (2) 
, 0                                  (3) 

                                            (4) 
 where , T                    (5) 
 
x is a state  vector of the system with bus bar angles  and load bus voltages VL.Control 
variables to optimize equation 1 are real power generation of generator loading units( Pg), 
terminal voltages of generators(Vg), tap-setting of transformers(ttap) and switchable shunts(Qsh) 
 

, ,  ,
                (6) 

 
Equation (1) is considered as sum of quadratic cost functions of thermal generating real power 
loading units with usual ai,bi,ci cost coefficients of equation (7) 
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subject to equality constraints of equation (2)   
(i) active power balance in the network  

  -      0                             (i=1, 2, 3,………NB) 
(ii) reactive power balance in the network 
        -      0                            (i=NG+1,………NB) 
   of equation 4 is feasible control vectors of  inequality constraints ,they are 
(i) active power generation of generator buses 
                                       (i=1, 2,……… NG)  
(ii) limits on voltage magnitudes of generator buses 
                                   (i=1, 2,…..NG) 
(iii) limits on switchable shunts 
                                (i=1,…..NSH) 
(iv) limits on tap setting of transformers 
                                   (i=1,…..NT) 
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Equation (3) has functional operating constraints which are as follows 
(i) limits on reactive power generation of generator buses 
                                   (i=1, 2,……… NG) 
(ii) limits on voltage magnitudes of load buses 
                                    (i=NG+1,…….NB) 
(iii) thermal limits of transmission lines 
       | |                                (i=1,…..NL) 
 
 The limits on the control variables of real power generations, voltage magnitudes of 
generators, transformer tap settings and switchable shunt devices are implicitly handled while 
generating the parameters randomly. Power flow solution to equation 2, results in state vectors 
x (bus bar angles, load bus voltages) of the power system network. The functional operating 
constraints are handled by a quadratic penalty function approach [12]. Due to inclusion of 
penalty terms, equation (7) transforms to a pseudo objective function (FF) 
 

min    ∑    ∑   ∑               (8) 
 
here , , ,  are penalty terms for the slack bus generator MW limit violation, Load bus 
voltage  limit violations, generator reactive power limit violations and violations for thermal 
limits of lines respectively.  
 
3. Big-Bang and Big-Crunch (BB-BC) 
 Big-Bang and Big-crunch (BB-BC) optimization, is developed from the concept of 
universal evolution. Big-Bang Phase relates to energy dispersion in random state before 
evolution of universe. The dispersed energy is drawn into an order for the formation of 
universe. The stage of drawing the energy to an ordered state is Big-crunch phase. This concept 
can be mathematically simulated by obtaining object function values by creating random 
control variables (Big -Bang) phase. The Centre of Mass (CM) of Big-Bang phase is drawn into 
an ordered state by a Big- crunch phase. Crunch phase control variables emerge as best control 
variables from Big-Bang phase. Sequential repetition of Big-Bang around CM eventually leads 
to the global control variables of the function to be optimized. In the Big Bang phase control 
matrix (U) of dimension (NP*NC) is generated within lower and upper limits of control 
variables. Each row of control variable is substituted in function to be optimized to obtain  NP 
number of function values. Then centre of mass CMu of first phase dispersions can be 
computed using equation 9. 
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 Computation of  CMu  is crunch phase of the optimization. In equation 9, iu is ith row of U.

if  is the function value corresponding to iu . This completes kth generation of optimization 

method. For (k+1)th generation, each row of control vector is updated around CMu using 
equation 10.   
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 Where 
lmtu  is scale of upper Uupper and lower Ulower limits of the control variables, K is 

generation number, “randn” is normally distributed random number between -1 and +1. 
Repetition of Big Bang followed by crunch  results  in optimum value of the function.   
 
4. Firefly Optimization (FFO) 
 Fireflies, randomly distributed in space, emit light due to photogenic organs on their surface 
for various social behaviour such as prey attraction, warning signals to a predator. The position 
of each firefly can be located using co-ordinate points. The brighter firefly emits more light to 
attract other fireflies. The other fireflies, which are lesser in brightness, get attracted towards 
brighter one, by updating their positions. Thus, fireflies keep moving in space till all of them 
reach same position (towards brighter one). This social behaviour of fireflies is mathematically 
simulated by introducing an attraction factor that depends on the position of Firefly. The 
brightness of firefly is proportional to the maximum of function to be optimized. The co-
ordinates of each firefly are analogous to control variables of the optimization function to be 
optimized. The attraction towards brighter one is simulated as monotonically decreasing 
function.  
                
  β =  exp (-γ )    
  (11) 
 
 In the above equation    is the distance between any two fireflies,  is the initial 
attractiveness and γ is an absorption co-efficient which controls the light intensity between two 
fireflies. The movement of firefly j, with  row vector   as co-ordinates can be moved to a 
more brighter firefly i , with  row vector   co-ordinates by using the following update  
equation for firefly  j , 
 

 =  exp γ . alpha*rand (1, NC)-0.5)          (12)  
 
 Where “alpha” is step size, ‘rand’ is uniform random number between 0 and 1.In equation 
12, first term is current position (co-ordinates) of firefly j, second term is the attractiveness 
factor and last term allows random movement of firefly. FFO is maximization algorithm. In this 
paper, in each generation of FFO, function values are sorted in descending order. Minimum of 
function value is considered as the brightest firefly, all other fireflies are moved to the brighter 
one as per equation 12. The implementation of optimization methods to OPF is  presented in 
what follows. 
 
5. Steps to implement BB-BC and FFO to OPF 
    In general evolutionary approach applied to OPF consists of similar steps, the specificity of 
approach differs only in updating the control variables from current generation to the new 
generation during optimal search. The following steps are common to both optimizations of this 
paper applied to solve OPF. The specificity of each optimization is indicated after the following 
steps. 
 

1. Read OPF data (cost coefficients of objective function, Line, bus data and location of 
control variables) in power system network. 

2. Generate   initial control variable matrix U of size (NP*NC) within the lower and 
upper limit of control variables i.e ith row of U can be generated as 

              ui = Ulower *(Uupper –Ulower)*rand (1, NC). 
Where, ‘rand’ is uniform random number [0, 1], Ulower and Uupper  are lower and upper 
limits  of control variables respectively . Typically, Ulower   and Uupper are row vectors of 
dimension (1*NC). 

3. Set generation count k=1. 
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4. Initialize   FF count to 1. Row select of U to 1. 
5. Fetch the row corresponding to Row select from U, modify  line and bus data of power 

system network. Solve for power balance equation of OPF by using Newton Raphson 
(NR)/Fast decoupled load Flow (FDLF). 

6. Check for functional operating constraints, for any violation of these constraints, 
activate    penalties and Evaluate FF. set Row select=Row select +1, FF=FF+1, return 
to 5, till FF count=NP. 

7. Store current best solution and its corresponding control variables. Check for stopping 
criteria, if met display current best solution, else go to step 8. 

8. Update control variables in accordance with update Equation of respective 
optimization method. This step may result in violation of control variable limits. 
Those violated control variables should be made equal to their respective violated 
limit.   

9. Set k=k+1.Return to step 3 till k=Maxgenrations. 
 

 In this paper, to satisfy power balance equations (step 5), FDLF is used [10]. During initial 
generations of optimization algorithm, FDLF may not converge even though control variables 
are within the range. For such cases, an additional large penalty term proportional to maximum 
real and reactive   power mismatch is added to FF.FDLF maximum iterations and power 
balance mismatch tolerance are set to 8 and 0.001pu respectively. In step 8, control variables 
can be updated for BB-BC using equation 10 and for FFO using equation 12. While applying 
BB-BC, the minimum of FF value in each generation is considered as CMu . Convergence 
criteria may be number of generations or difference between best function value of kth and 
(k+1)th generation less than a specified tolerance. The above steps are implemented for the two 
test systems mentioned in this paper. The required code is written in MATLAB-7.0, as m-files 
using library routines of MATLAB soft ware. Code is executed on a 2.1 GHz, Pentium IV PC. 
The choice of optimization parameters namely NP (population size), alpha (step size), γ 
(absorption co-efficient),  initial attraction  in FFO are presented along with test- case 
results. 
 
6. Test Results and Discussions 
  To test the effectiveness and quality solutions of optimization methods of this paper, OPF 
simulations are carried on Ward-Hale- 6 bus and Modified IEEE-30 bus   power system 
networks. Required data for the two systems for cost coefficients of generators, control variable 
limits, bus and transmission line data are taken from [13]. In both systems, first bus is slack bus 
and its real power limit is dealt in OPF using quadratic penalty. Generator voltages of slack bus 
for both systems are also included as control variables. Total system load considered for ward-
Hale is (1.3500pu +j 0.3600pu) and for IEEE-30 bus system total base case load is 
(2.834pu+j1.2620pu). The lower and upper magnitudes of all load bus voltages are 0.95 pu and 
1.05 pu respectively. The transformer tap setting is considered as (0.9+tap_ position*0.005), 
where tap_ position can take 41 discrete steps in the range 0 to 40 integer values. The tap_ 
position 0 indicates minimum tap 0.9 and tap_ position 40 indicates maximum tap of 1.1. 
Switchable shunt considered as (step _val*0.01), where step_ val can take 6 discrete steps in 
the range of 0 to 5 integer values, a step_ val 0 indicates 0.00pu capacitive shunt and 5 
indicates capacitive shunt of  0.05pu(on 100MVA base).Test results for  Ward-Hale and IEEE-
30 bus systems  are presented in table 1 and table 2  respectively . Each test case is run initially 
for base load (without optimization) with control variables as given in second column of the 
tables 1and 2. Cost after optimization by FF0 and BB-BC along with control variables and 
slack bus power is indicated in column 3 and column 4 of table 1, 2. Upon close observation of 
table 1, 2 optimal cost of real power generation obtained by BB-BC and FFO are almost same 
with a small edge for FF0.   
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Table 1. Variables for Ward-Hale 6 bus system 
Variables Base case FFO BB-BC 

Pg1(pu) 1.2251 0.689885 0.689925 
Pg2(pu) 0.25 0.8 0.8 
Vg1(pu) 1.05 1.1 1.1 
Vg2(pu) 1.10 1.15 1.15 
Qsh4(pu) 0.00 0.05 0.05 
Qsh6(pu) 0.00 0.05 0.05 
t1(6-5) 1.00 0.9550 0.9250 
t2(4-3) 1.00 0.9900 0.9800 
Total real power generation(pu) 1.4753 1.4899 1.4899 
Total real power losses (pu) 0.1253 0.1399 0.1399 
cost($/hr) 904.3086 450.9592 450.9907 

                      
Table 2. Variables for IEEE 30- bus system 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Both optimization methods of this paper have only one common parameter, ‘NP’ to be 
chosen by trial. In case of BB-BC, NP is set to 25 and 50 for Ward-Hale and IEEE-30 bus case 
respectively.  In case of FF0 other parameters of optimization update equation γ and  and are 
set to 1.The number of simulations carried out by keeping alpha constant for all generations of 
optimization process at different values in the range of 0.02 to unity, resulted in higher cost 
than BB-BC. To improve the results, alpha is reduced gradually in small steps as optimization 
proceeds number of generations. Such reduction of alpha is done by letting alpha=0.975*alpha, 
with alpha as unity before start of optimization generations. Trails made for alpha are indicated 
in table 3, with NP=25 in case of Ward-Hale, NP=40 in case of IEEE 30 bus system.   
 
 

Variables Base case FFO BB-BC 
Pg1(pu) 0.987014 1.765171 1.749672 
Pg2(pu) 0.8 0.487865 0.481406 
Pg5(pu) 0.5 0.214746 0.208195 
Pg8(pu) 0.2 0.216439 0.222772 
Pg11(pu) 0.2 0.11980 0.14110 
Pg13(pu) 0.2 0.120276 0.12000 
Vg1(pu) 1.06 1.085421 1.087797 
Vg2(pu) 1.043 1.066785 1.065492 
Vg5(pu) 1.01 1.034902 1.03551 
Vg11(pu) 1.082 1.069076 1.063822 
Vg13(pu) 1.071 1.059076 1.010111 
Qsh10(pu) 0.19 0.04 0.04 
Qsh12(pu) 0 0.03 0.01 
Qsh15(pu) 0 0.02 0.02 
Qsh17(pu) 0 0.04 0.02 
Qsh20(pu) 0 0.04 0.02 
Qsh21(pu) 0 0.04 0.05 
Qsh23(pu) 0 0.03 0.04 
Qsh24(pu) 0.043 0.03 0.04 
Qsh29(pu) 0 0.02 0.02 
t1(6-9) 0.978 0.9850 1.0950 
t2(6-10) 0.969 0.9650 0.9600 
t3(4-12) 0.932 0.9900 1.0100 
t4(28-27) 0.968 1.005 1.015 
Total Real power  generation(pu) 2.887 2.9243 2.9231 
Total Real power losses(pu) 0.053 0.0930 0.0891 
Cost($/hr) 900.5211 800.6803 800.8949 
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Table 3. Variation of alpha vs Cost 

alpha Ward-Hale 
Cost($/hr) 

IEEE 30 
Cost($/hr) 

0.02 453.2976 802.747 
0.5 451.9923 804.25 
1 451.9234 807.171 

                                     
 Simulations carried out, by varying γ in the range 0.85 to 1,(  set to 1), after selection of 
proper step size alpha, also resulted in the optimal cost as reported in tables 1,2. Hence, from 
table 3 and simulation carried with variation of γ, selection of alpha is critical in FFO optimal 
cost. Step size alpha reduced in small steps in every generation lead to the local search of 
objective function. A comparative Convergence value of FF in $/hr is indicated in table 4. It is 
clear from table 4 that quality solutions can be arrived by both optimization methods in early 
generations of optimization. It can also be observed from table, that FF0 attains quality 
solutions than BB-BC, in very initial generations (20 generations). The reason can be attributed 
to the fact that FFO updates control variables in each generation based on distance norm 
between best function value of FF and the rest of function values among FF. In case of BB-BC, 
convergence to optimal value is controlled by k of equation 4. As optimization advances 
number of generations, BB-BC optimal search will be local as indicated in table 4. Table 5 
indicates data statistics for ten independent test runs with different initial values, for 200 
generations. 
 

Table 4. A comparative converge values of FF. 
Generation 

number FFO BB-BC 

20 810.38 821.65 
30 802.49 808.96 
40 802.26 807.09 
50 802.16 807.06 
60 800.72 807.09 
70 800.72 802.59 
80 800.72 801.95 
90 800.72 800.87 

100 800.72 800.07 
 
 Computational time, difference between Maximum and Minimum cost, Mean cost and 
Standard deviations provided in Table 5 gives better edge to FFO compared to BB-BC. The 
best cost by application of problem specific advanced genetic operators[10], and real coded 
genetic algorithm[11] for same IEEE-30 bus system are 802.06 $/h and 801.824$/h 
respectively. Best cost obtained by both optimizations of this paper is less than genetic 
approaches. However, the proposed optimization approaches of this paper need to be tested for 
their robustness for certain complex non-linear and non-convex optimization situations like 
reactive power dispatch using recently proposed  an Intelligent Water Drop (IWD) algorithm 
with target voltage stability index [ 14] and proposed two step-initialization heuristic search 
algorithm[15] to optimal power flow with FACTS devices. 
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Table 5. Minimum, Maximum, Mean and standard deviation with different initial values 
Ward-Hale IEEE-30 

FFO BB-BC FFO BB-BC 
Min ($/hr) 451 451 800.6 800.9 
Max($/hr) 451.8 452.1 801.7 802.2 
Mean ($/hr) 451.2 451.2 800.9 801.3 
Standard deviation 0.3097 0.4469 0.353 0.4348 
Meantime(S) 10.47 12.99 81.26 98.743 

         
7. Conclusion 
  Big-Bang and Big-Crunch and firefly optimization methods are applied to solve complex 
static optimal power flow problem with continuous and discrete control variables. Test results 
and simulations carried towards establishing reliability confirm promising nature of the two-
optimization methods for optimal power flow solutions. Careful selection of step size in Firefly 
optimization results in optimal, fast and reliable optimal power flow solutions than Big-Bang 
and Big-Crunch optimization. Both optimization methods are simple to implement compared to 
Genetic approaches for optimal power flow solutions. 
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