A Simple Test on 2-Vertex- and 2-Edge-Connectivity

Jens M. Schmidt
Max Planck Institute for Informatics

Abstract
Testing a graph on 2-vertex- and 2-edge-connectivity are two fundamental algorithmic graph problems. For both problems, different linear-time algorithms with simple implementations are known. Here, an even simpler linear-time algorithm is presented that computes a structure from which both the 2-vertex- and 2-edge-connectivity of a graph can be easily “read off”. The algorithm computes all bridges and cut vertices of the input graph in the same time.

1 Introduction
Testing a graph on 2-connectivity (i.e., 2-vertex-connectivity) and on 2-edge-connectivity are fundamental algorithmic graph problems. Tarjan presented the first linear-time algorithms for these problems, respectively [13, 14]. Since then, many linear-time algorithms have been given (e.g., [2, 3, 5, 6, 7, 8, 15, 16, 17]) that compute structures which inherently characterize either the 2- or 2-edge-connectivity of a graph. Examples include open ear decompositions [10, 18], block-cut trees [9], bipolar orientations [2] and s-t-numberings [2] (all of which can be used to determine 2-connectivity) and ear decompositions [10] (the existence of which determines 2-edge-connectivity).

Most of the mentioned algorithms use a depth-first search-tree (DFS-tree) and compute the so-called low-point values, which are defined in terms of a DFS-tree (see [13] for a definition of low-points). This is a concept Tarjan introduced in his first algorithms and that has been applied successfully to many graph problems later on. However, low-points do not always provide the most natural solution: Brandes [2] and Gabow [8] gave considerably simpler algorithms for computing most of the above-mentioned structures (and testing 2-connectivity) by using simple path-generating rules instead of low-points; they call these algorithms path-based.

The aim of this paper is a self-contained exposition of an even simpler linear-time algorithm that tests both the 2- and 2-edge-connectivity of a graph. It is suitable for teaching in introductory courses on algorithms. While Tarjan’s two algorithms are currently the most popular ones used for teaching (see [8] for a list of 11 text books in which they appear), in my teaching experience, undergraduate students have difficulties with the details of using low-points.

The algorithm presented here uses a very natural path-based approach instead of low-points; similar approaches have been presented by Ramachandran [12] and Tsin [16] in the context of parallel and distributed algorithms,
respectively. The approach is related to ear decompositions; in fact, it computes an (open) ear decomposition if the input graph has appropriate connectivity.

Notation. We use standard graph-theoretic terminology from [1]. Let $\delta(G)$ be the minimum degree of a graph G. A cut vertex is a vertex in a connected graph that disconnects the graph upon deletion. Similarly, a bridge is an edge in a connected graph that disconnects the graph upon deletion. A graph is 2-connected if it is connected and contains at least 3 vertices, but no cut vertex. A graph is 2-edge-connected if it is connected and contains at least 2 vertices, but no bridge. Note that for very small graphs, different definitions of (edge)connectivity are used in literature; here, we chose the common definition that ensures consistency with Menger's Theorem [11]. It is easy to see that every 2-connected graph is 2-edge-connected, as otherwise any bridge in this graph on at least 3 vertices would have an end point that is a cut vertex.

2 Decomposition into Chains

We will decompose the input graph into a set of paths and cycles, each of which will be called a chain. Some easy-to-check properties on these chains will then characterize both the 2- and 2-edge-connectivity of the graph. Let $G = (V,E)$ be the input graph and assume for convenience that G is simple and that $|V| \geq 3$. This is not a severe restriction, as self-loops do not influence 2- or 2-edge-connectivity and can therefore be deleted in advance. Similarly, parallel edges do not influence 2-connectivity, but they may influence 2-edge-connectivity, as a bridge does not have parallel edges. However, the 2-edge-connectivity algorithm given in this paper still works for graphs with parallel edges.

We first perform a depth-first search on G. This implicitly checks G on being connected. If G is connected, we get a DFS-tree T that is rooted on a vertex r; otherwise, we stop, as G is neither 2- nor 2-edge-connected. The DFS assigns a depth-first index (DFI) to every vertex. We assume that all tree edges (i.e., edges in T) are oriented towards r and all backedges (i.e., edges that are in G but not in T) are oriented away from r. Thus, every backedge e lies in exactly one directed cycle $C(e)$.

Let every vertex be marked as unvisited. We now decompose G into chains by applying the following procedure for each vertex v in ascending DFI-order: For every backedge e that starts at v, we traverse $C(e)$, beginning with v, and stop at the first vertex that is marked as visited. During such a traversal, every traversed vertex is marked as visited. Thus, a traversal stops at the latest at v and forms either a directed path or cycle, beginning with v; we call this path or cycle a chain and identify it with the list of vertices and edges in the order in which they were visited. The ith chain found by this procedure is referred to as C_i.

The chain C_1, if exists, is a cycle, as every vertex is unvisited at the beginning (note C_1 does not have to contain r). There are $|E| - |V| + 1$ chains, as every one of the $|E| - |V| + 1$ backedges creates exactly one chain. We call the set $C = \{C_1, \ldots, C_{|E| - |V| + 1}\}$ a chain decomposition; see Figure 1 for an example.

Clearly, a chain decomposition can be computed in linear time. This almost concludes the algorithmic part; we now state easy-to-check conditions on C.

2
that characterize 2- and 2-edge-connectivity. All proofs will be given in the next section.

Theorem 1. Let \(C \) be a chain decomposition of a simple connected graph \(G \). Then \(G \) is 2-edge-connected if and only if the chains in \(C \) partition \(E \).

Theorem 2. Let \(C \) be a chain decomposition of a simple 2-edge-connected graph \(G \). Then \(G \) is 2-connected if and only if \(C_1 \) is the only cycle in \(C \).

The properties in Theorems 1 and 2 can be efficiently tested: In order to check whether \(C \) partitions \(E \), we mark every edge that is traversed by the chain decomposition. In order to check the property in Theorem 2, we check that \(C_1 \) is a cycle and that, for every \(i > 1 \), the end vertices of \(C_i \) are distinct. For pseudo-code, see Algorithm 1.

Algorithm 1 Check(graph \(G \)) \(\triangleright \) \(G \) is simple and connected with \(|V| \geq 3\)

1: Compute a DFS-tree \(T \) of \(G \)
2: Compute a chain decomposition \(C \); mark every visited edge
3: if \(G \) contains an unvisited edge then
4: output “NOT 2-EDGE-CONNECTED”
5: else if there is a cycle in \(C \) different from \(C_1 \) then
6: output “2-EDGE-CONNECTED BUT NOT 2-CONNECTED”
7: else
8: output “2-CONNECTED”

We state a variant of Theorem 2, which does not rely on edge-connectivity. Its proof is very similar to the one of Theorem 2.
Theorem 3. Let C be a chain decomposition of a simple connected graph G. Then G is 2-connected if and only if $\delta(G) \geq 2$ and C_1 is the only cycle in C.

3 Proofs

It remains to give the proofs of Theorems 1 and 2. For a tree T rooted at r and a vertex x in T, let $T(x)$ be the subtree of T that consists of x and all descendants of x (independent of the edge orientations of T). We will need the following well-known lemma (see, e.g., [4]).

Lemma 4. An edge is a bridge if and only if it is not contained in any cycle.

Theorem 1 is immediately implied by the following lemma.

Lemma 5. Let C be a chain decomposition of a simple connected graph G. An edge e in G is a bridge if and only if e is not contained in any chain in C.

Proof. Let e be a bridge and assume to the contrary that e is contained in a chain whose first edge (i.e., whose backedge) is b. According to Lemma 4, the bridge e is not contained in any cycle of G. This contradicts the fact that e is contained in the cycle $C(b)$.

Now let e be an edge that is not contained in any chain in C. Let T be the DFS-tree that was used for computing C and let x be the end point of e that is farthest away from the root r of T, in particular $x \neq r$. Then e is a tree-edge, as otherwise e would be contained in a chain. For the same reason, there is no backedge with exactly one end point in $T(x)$. Deleting e therefore disconnects all vertices in $T(x)$ from r. Hence, e is a bridge.

The following lemma implies Theorem 2, as every 2-edge-connected graph has minimum degree 2.

Lemma 6. Let C be a chain decomposition of a simple connected graph G with $\delta(G) \geq 2$. A vertex v in G is a cut vertex if and only if v is incident to a bridge or v is the first vertex of a cycle in $C \setminus C_1$.

Proof. Let v be a cut vertex in G; we may assume that v is not incident to a bridge. Let X and Y be connected components of $G \setminus v$. Then X and Y have to contain at least two neighbors of v in G, respectively. Let X^+v and Y^+v denote the subgraphs of G that are induced by $X \cup v$ and $Y \cup v$, respectively. Both X^+v and Y^+v contain a cycle through v, as both X and Y are connected. It follows that C_1 exists; assume w.l.o.g. that $C_1 \notin X^+v$. Then there is at least one backedge in X^+v that starts at v, since the DFS-tree is rooted in Y^+v and X^+v contains a cycle through v. When the first such backedge is traversed in the chain decomposition, every vertex in X is still unvisited. The traversal therefore closes a cycle that starts at v and is different from C_1, as $C_1 \notin X^+v$.

If v is incident to a bridge, $\delta(G) \geq 2$ implies that v is a cut vertex. Now let v be the first vertex of a cycle $C_1 \neq C_1$ in C. If v is the root r of the DFS-tree T that was used for computing C, both cycles C_1 and C_i end at v. Thus, v has at least two children in T and v must be a cut vertex. Otherwise $v \neq r$; let uv be the last edge in C_i. Then no backedge starts at a vertex with smaller DFI than v and ends at a vertex in $T(w)$, as otherwise uw would not be contained in C_i. Thus, deleting v separates r from all vertices in $T(w)$ and v is a cut vertex.
4 Extensions

We state how some additional structures can be computed from a chain decomposition. Note that Lemmas 5 and 6 can be used to compute all bridges and all cut vertices of G in linear time. Having these, the 2-connected components (i.e., the maximal 2-connected subgraphs) of G and the 2-edge-connected components (i.e., the maximal 2-edge-connected subgraphs) of G can be easily obtained: it suffices to cut the DFS-tree T along all cut-vertices or, respectively, all bridges. The former also gives the so-called block-cut tree [9] of G, which is a tree representing the dependency of the 2-connected components and cut vertices of G. Similarly, cutting all bridges in T gives a tree that represents the dependency of the 2-edge-connected components and bridges of G.

Additionally, the set of chains C computed by our algorithm is an ear decomposition if G is 2-edge-connected and an open ear decomposition if G is 2-connected. Note that C is not an arbitrary (open) ear decomposition, as it depends on the DFS-tree. The existence of these ear decompositions characterize the 2-(edge-)connectivity of a graph [10, 18]; Brandes [2] gives a simple linear-time transformation that computes a bipolar orientation and an s-t-numbering from such an open ear decomposition.

References

