
A Simulation Approach for Impact Analysis of

Requirement Volatility Considering Dependency Change

Junjie Wang1,2, Juan Li1, Qing Wang1, He Zhang3, Haitao Wang1,4

1
Laboratory for Internet Software Technologies, Institute of Software

Chinese Academy of Sciences, Beijing 100190, China
2Graduate University of Chinese Academy of Sciences, Beijing 100039, China

3National ICT Australia, University of New South Wales, Sydney, Australia
4nfschina Inc, Beijing

{wangjunjie, lijuan, wq, wanghaitao}@itechs.iscas.ac.cn, he.zhang@nicta.com.au

Abstract. Requirement volatility is a common and inevitable project risk which
has severe consequences on software projects. When requirement change
occurs, a project manager wants to analyze its impact so as to better cope with it.

As the modification to one requirement can cause changes in its dependent
requirements and its dependency relationship, the impact analysis can be very
complex. This paper proposes a simulation approach DepRVSim (Requirement
Volatility Simulation considering Dependency relationship) to assessing this
sort of impact. We abstract the general patterns of the influence mechanism,
which may trigger modification in its dependency relationship and bring
changes in other requirements through dependency. DepRVSim can generate
such information as the probability distribution of effort deviation and schedule
deviation. As a proof-of-concept, the applicability of DepRVSim is
demonstrated with an illustrative case study of a real software project. Results
indicate that DepRVSim is able to provide experimental evidence for decision

making when requirement changes.

Keywords: Requirement Volatility; Requirement Dependency; Software
Process Simulation;

1 Introduction

It is widely reported that requirements often change during the software/system

development process. These changes are caused by several factors, such as evolving

customer needs, errors in original requirements, technological changes, and changes

in the business environment or organization policy. Requirements volatility often
results in cost and schedule overruns, unmet functions and, at times, cancelled

projects [1, 2]. Houston et al. [3] described an approach to modeling risk factors and

simulating their effects. The effects of six common and significant software

development risk factors were studied, including inaccurate cost estimation, staffing

attrition and turnover, etc. Simulation results reflected that requirements volatility is

the most significant risk factor modeled.

Most requirements cannot be treated independently, since they are related to and

affect each other in complex manners [4, 5]. When a certain requirement changes,

other requirements would be influenced through dependency relationship in ways not

intended or not even anticipated. Apart from that, the requirement dependency

relationship would not remain the same when requirement changes happen. Hence,

during the impact analysis of requirement changes, dependency relationship is one of
the important factors need to be carefully considered.

Several simulation approaches have emerged to assessing the impact of

requirement volatility on project performance. Pfahl et al. [6] built a system dynamic

simulation model for Siemens Corporate Technology to demonstrate the impact of

requirement volatility on project duration and effort. His work modeled the

relationship between unstable definition of requirements and rework cycles, rework

cycles and development productivity, development productivity and project duration,

and so on. This model captured a specific real-world development process in
sufficient detail, but was not easily adaptable to new application contexts. Ferreira et

al. [7] utilized empirical survey results and built an executable system dynamics

model to demonstrate the impact of requirement volatility on cost, schedule and

quality. These studies are conducted applying system dynamics simulation approach.

This type of research focuses on phenomenological observations of external behaviors

of process, such as job size, overall project effort, requirement defects and so on [8].

Compared with system dynamics, discrete-event simulation allows more detailed

descriptions of activity, resource and work product and more suitable for building
fine-grained software process simulation models [8]. Liu et al. proposed a simulation

approach to predict the impact of requirement volatility on software project plans.

This discrete-event simulation model can capture internal behaviors of software

process, such as traceability and dependency relationship [9]. But his approach did

not consider dependency relationship in sufficient detail and did not model the

changes in dependency relationship.

In this paper, we propose a simulation approach named DepRVSim (Requirements

Volatility Simulation considering Dependency relationship) to analyze the impact of
requirement volatility on project plan. In DepRVSim, we model the dependency

relationship and traceability relationship, as well as the changes in dependency

relationship. We abstract the general patterns of the influence mechanism, which may

trigger modification in its dependency relationship and bring changes in other

requirements through dependency. DepRVSim can generate such information as the

probability distribution of schedule deviation.

Only part of the simulation approaches are validated in industrial setting. Among

these case studies, many of them only apply industrial context as simulation inputs.
We not only base our validation on real industrial context, but also compare model

outputs with actual process data and obtain statistical results. Simulation results

indicate that for 10 man hours offset from real effort deviation and 10 hours offset

from real schedule deviation, DepRVSim can reach a correct rate of approximately

45% and 70% respectively. DepRVSim can assist project managers in decision

making process and help understand the impact of requirement volatility in depth.

The remainder of the paper is structured as follows. Section 2 describes mechanism

of DepRVSim in detail. Section 3 illustrates the applicability and usefulness of
DepRVSim with the help of a case study. Section 4 discusses threats to validity.

Section 5 discusses related work. Finally, Section 6 concludes the paper and gives

directions of our future work.

2 The DepRVSim Approach

DepRVSim is a discrete-event simulation approach, which adopts the framework of

RVSim [9]. There are four components in DepRVSim as shown in Figure 1.

Requirements

Repository

Software Project Plan
Requirements Change

Event Routines

Requirements Change

Event Generator

Generate

Requirements

Change Events

Utilize

Utilize

Change

Change

Figure 1. DepRVSim structure

Requirements Repository stores description for requirements attributes, including
requirements’ traceability information and dependency information. Since the
realization of each requirement requires a sequence of individual tasks, the
traceability information refers to the relationship between requirement and its related
tasks. As most requirements are related to and affect each other, the dependency
information refers to the relationship between requirements. One change on a certain
requirement not only influences its related tasks through traceability, but also
probably impacts other requirements through dependency, furthermore the
dependency relationship can go through changes. The information in this component
is fully utilized by Requirements Change Event Routines to accurately assess the
impact of requirements volatility on Software Project Plan. The detailed description
about this component is shown in Section 2.1.

The purpose of DepRVSim is to analyze the impact of requirements change on
software project plan. So, Requirements Change Event Generator generates events
which represent requirements changes in simulation. There are three kinds of events in
DepRVSim: Requirements Addition, Requirements Deletion and Requirements
Modification. The detailed description about this component is shown in Section 2.2.

When requirements change events arrive at Requirements Change Event
Routines, the corresponding routines are started to deal with these events utilizing the
information in Requirements Repository. The detailed description about this
component is shown in Section 2.3.

Software Project Plan is the plan of the software project which is analyzed by
DepRVSim. Software Project Plan is changed during simulation, so users can easily
see how requirements volatility impacts on the project plan.

2.1 Requirements Repository

We assume a set of requirements Req1, Req2, … , ReqN will be developed, which
stores in Requirements Repository. Reqi is defined as a tuple: (ReqId, DependencySet,
RelatedTaskSet).

DependencySet denotes the set of requirement’s dependency relationship. Each

item in DependencySet is represented as follows: (ReqId, DepDirection, DepStrength).

DepDirection specifies the dependency direction, which is IN or OUT. The IN

direction denotes that other requirements depend on this one, while the OUT direction

denotes that this requirement depends on others. DepStrength specifies the degree of

the dependency relationship, which is STRONG or WEAK.
RelatedTaskSet denotes the set of requirement’s traceability relationship. Each

item in RelatedTaskSet is one of the corresponding tasks for realizing the requirement
and is represented as follows: (TaskId, Type, Effort). Typical task types are design,
code and test. Effort denotes the estimated effort needed to fulfill a task. Note that
certain dependency relationships between tasks are applied, e.g., test cannot be started
before some or all of the code has been finished.

2.2 Requirements Change Event Generator

Because the purpose of DepRVSim is to analyze the impact of requirements change

on project plan, Requirements Change Event Generator generates requirements

change events during simulation. Change event is described as a tuple: (ReqId,
RChangeType, RChangeTime, ModifyLevel).

ReqId corresponds to the requirement which is added, modified or deleted.
RChangeType defines the type of requirements change event, which are
Requirements Addition, Requirements Modification and Requirements Deletion.
RChangeTime is the time when requirements change event happens. ModifyLevel
specifies the degree to which one requirement is modified for the change type
Requirements Modification. Possible values of ModifyLevel are MAJOR,
MODERATE and MINOR. ModifyLevel >0 indicates that the requirement
modification is adding content, while ModifyLevel <0 indicates deleting content.
They are numeric values between -1 and 1 and satisfy |MAJOR| > |MODERATE| >
|MINOR|, which are calibrated based on historical project data and expert judgement.

DepRVSim allows users to specify how Requirements Change Event is generated.
There are two modes for generating events:

(1) Definite events inputted by users. This mode is suitable for the situation that
one requirement change request has arrived, and users want to know the impact of this
change on project plan.

(2) Supposed events generated automatically according to user-defined rules.
This mode is suitable for the situation that the users intend to predict the impact
according to the trajectory of requirement volatility. The rules can be obtained by
analyzing historical project data (like [10, 11]) or by their experience. Users can also
do “what-if” analysis by setting up different rules.

2.3 Requirements Change Event Routines

Requirements Change Event Routines includes three general routines for the three
types of requirements change events in simulation, which is represented as follows.
Assume the changed requirement is Ri, the requirement that Ri depends on is Rout, the
requirement that depends on Ri is Rin.

Requirements Addition Event Routine
This routine has three steps as follows:

 Step1: Add Ri to Requirements Repository with related tasks

 Step2: Generate Ri.DependencySet
Assume the total number of requirements is N, the parameter dper (dependency

percent) of Ri is defined as follows: dper = (Nd / N) * 100.
Nd can be calculated easily by N and dper. dper is generated based on the uniform

distribution of the type UNIFORM (min, max). The “min” and “max” represent the
minimum and maximum values, respectively. We name the two parameters as
dperMin and dperMax. Choose Nd requirements as ones with which Ri has
dependency relationship. Randomly generate DepDirection and DepStrength.

 Step3: Rearrange tasks properly in Software Project Plan.
In DepRVSim, overlapping of the phases for one requirement is not allowed.

Design tasks have precedence relationship the same as the dependency of
requirements related to them. For example, if design tasks T1 and T2 realize
requirements R1 and R2 respectively, and R2 depend on R1, then T2 must be arranged
to start after T1 is finished. In code and test phases, tasks do not have such precedence
relationship, so tasks in the same phase can be parallel. In addition, there is no idle
time between tasks.

Requirements Deletion Event Routine
This routine has three different steps from addition routine, which is shown as

follows:

 Step1: Delete Ri from Requirements Repository

 Step2: Modify the influenced requirements
When deleting Ri from current project plan, the requirements with which Ri has

dependency relationship might be influenced. The ModifyLevel of these requirements
is shown in Table 1, where “none” indicates that the requirement is not influenced.

Table 1. Rule for ModifyLevel of Rout and Rin in deletion routine

Ri’s ModifyLevel DepStrength Rin’s ModifyLevel Rout’s ModifyLevel

delete STRONG delete none

delete WEAK major none

 Step3: Adjust the Software Project Plan.
Requirements deletion may cause idle time between tasks, so the Software Project

Plan needs to be adjusted.

Requirements Modification Event Routine
There are four steps in the routines:

 Step1: Modify corresponding tasks’ effort of Ri

Set up a parameter emp (effort modified percent). DepRVSim distinguish the

variant effort for the situation that a task has not been started and the situation that a

task has been finished, which is signified by RChangeTime. Suppose the original task

effort is Effi. If the task has not been started, the effort after modification is

Effi*(1+emp). If the task has been finished, apply the parameter reworkRate to signify
this difference. The rework effort is Effi*emp*reworkRate. If the task has been started

but not finished, divide the task into two parts and calculate new effort respectively.

The parameter emp is generated based on the uniform distribution of the type

UNIFORM (min, max). When ModifyLevel = major, the distribution is

UNIFORM(moderate, major). When ModifyLevel = moderate, the distribution is

UNIFORM(minor, moderate). When ModifyLevel = minor, the distribution is

UNIFORM(0, minor). The reworkRate is an input parameter calibrate based on

particular project.

 Step2: Modify the dependency relationship of Ri

As experiences from software development shows that requirement dependency

relationship would not remain unchanged when the certain requirement is modified,

DepRVSim model this situation. When analyzing the changes in dependency

relationship, we distinguish adding content and deleting content of certain

requirements, as well as the direction of the dependency relationship. Detailed rules

are described as follows:

Rule1: When the modification to Ri is adding its content, Ri might newly depend
on other requirements.

Set up a parameter dperAdd to represent the dependency percent of newly added

dependency relationship. We generate dperAdd based on the same uniform

distribution as emp. We also apply an input parameter fAdd to revise the generated

dperAdd. The parameter fAdd is different among software projects and can be decided

based on expert judgement.

The number of newly added dependency relationship can be calculated using

dperAdd, fAdd and N, which is similar with dper. Randomly choose requirements with
which new dependency emerges. Generate the dependency relationship for Ri where

DepDirection is OUT and DepStrength is randomly generated.

Rule2: When the modification to Ri is adding its content, for the dependency

relationship that Ri depends on others, current dependency might be strengthened.

We apply a parameter dpermp to represent the modified percent of dper. Generate

dpermp based on the same uniform distribution as emp. The number of changed

dependency relationship can be calculated by N * dper * dpermp.

Randomly choose the influenced relationship. If current DepStrength is WEAK,
change it to STRONG. If current DepStrength is STRONG, keep it unchanged.

Rule3: When the modification to Ri is deleting its content, for the two kinds of

dependency relationship, which are Ri depends on others and other requirements

depend on Ri, the current dependency relationship is weakened or disappears.
Apply the parameter dpermp to decide the number of changed relationship as Rule2.

Randomly choose the influenced dependency relationship. If current DepStrength is
STRONG, change it to WEAK. If current DepStrength is WEAK, delete the
corresponding dependency relationship.

 Step3: Modify the influenced requirements

When modifying Ri from current project plan, the requirements with which Ri has

dependency relationship might be influenced. The ModifyLevel of these requirements

is shown in Table 2.

Table 2. Rule for ModifyLevel of Rout and Rin in modification routine

Ri’s ModifyLevel DepStrength Rin’s ModifyLevel Rout’s ModifyLevel

major STRONG major none

major WEAK moderate none

moderate STRONG moderate none

moderate WEAK minor none

minor STRONG minor none

minor WEAK none none

 Step4: Adjust the Software Project Plan

Requirement modification may change duration and precedence relationship of

related project tasks, or cause idle time between tasks, so the Software Project Plan

needs to be adjusted.

3 Case Study

The method in this paper is mainly applied to the matured software organizations,

such as the ones which have achieved CMMI (Capability Maturity Model Integration)

maturity level 4 or higher. Such organizations have stable development and

maintenance processes. After a long-period accumulation of process execution data,

they can analyze and determine the dependency strength, the modification level and
other parameters with sufficient data.

We conducted our case study in such a software organization. We utilized a real

software project in this organization to demonstrate the applicability of the proposed

approach and the results of the study. This software project is Software Process

Management Platform-Qone [12]. With more than 600 thousand source lines of code,

this product has been developed and maintained for more than 7 years. More than 300

Chinese software organizations are using this tool to manage their projects.

We applied the real development data of Qone 5.1. During the requirement
analysis phase, the project was planned. During the development phase, change

request were forwarded to project manager. For example, changes in business

environment might require a certain requirement to be enhanced. These changes made

the schedule prolonged and one or several weeks’ delay is the common case.

3.1 Project Introduction

There are 24 requirements (R1~R24) generated through the requirement phase. Table 3

shows the requirement-related information, including ReqId, requirement name and

the estimated task-specific efforts per requirement.

Table 4 presents the estimated task-specific productivities per developer.

Productivity represents the amount of work done per hours. For example, the

productivity of Dev1 for Design task is 2 as Table 4 shows, and the Design effort of

R1 is 48 hours as Table 3 shows, then Dev1 can perform the Design1 in 48/2 hours.

Productivity 0 for a task type implies that a developer is not able to perform that type

of task.
Figure 2 shows the requirements’ dependency information. For example, the

dependency relationship between R1 and R2 is that R2 strongly depends on R1. The

dependency relationship is obtained by analyzing historical project data and by expert

judgement.

Table 3. Requirements information of Qone 5.1

ReqId Requirement name Design
(man hour)

Code
(man hour)

Test
(man hour)

Total
(man hour)

R1 Generate new PIIDS table 48

104 90 242

R2 Search PIIDS related
information

48 104 90 242

R3 Maintain PIIDS table 48 104 90 242

R4 Export PIIDS table 48 104 90 242

R5 Import evaluation tools 48 104 90 243

R6 Approve change request 44 56 73 173

R7 Timing task notification 44 56 73 173

R8 Table handling
notification

44 56 73 173

R9 Table selection conflict
notification

44 56 73 173

R10 Project problem
submission notification

44 56 73 173

R11 Identity authenticate 23 18 72 113

R12 Access control 20 21 72 113

R13 Data security 16 18 72 106

R14 Import and export file
handling

16 40 122 178

R15 Import and export project
selection

20 37 122 179

R16 Project data matching 18 37 122 177

R17 Import and export failure
handling

18 43 122 183

R18 Import and export
information modification

18 38 122 178

R19 Related project handling 16 40 110 166

R20 Department report import
and export

16 40 110 166

R21 Add configuration files
association

4 3 1 8

R22 Bug comment 4 3 1 8

R23 Size restriction of change
request

4 3 1 8

R24 Add links for project
name

4 3 1 8

Table 4. Estimated productivity of developers for different task types

Developers Design
(dimensionless)

Code
(dimensionless)

Test
(dimensionless)

Dev1 2 1 1

Dev2 1 0 2

Dev3 1.2 2 1.4

Dev4 1 1.5 2

R1 R15R14

R4R3R2
R20

R19

R18R17R16

STRONG
STRONG

WEAK
WEAK

STRONG

STRONG
WEAK

WEAK

STRONG

Figure 2. Dependency relationship between requirements of Qone 5.1

Software project plan specifies the planned start time and end time for each task, as

well as the allocated developer for the task. Due to the limited space, we do not

present the whole plan here. Part of it is shown in Figure 3.

Figure 3. Part of the initial software project plan

We collected the change data of Qone 5.1, as summarized in Table 5. It has 10

requirement changes. Effort deviation and schedule deviation information is also

recorded in change database. Effort deviation denotes the difference between the new

total effort under requirement changes and the planned total effort. Schedule deviation

is the difference between the new project duration after changes and the planned

project duration. The ModifyLevel is obtained based on the actual change degree and

expert judgement.

Table 5. Change data of Qone 5.1

ReqId ModifyLevel
Effort deviation

(man hour)

Schedule deviation

(hour)

R14 MAJOR 176 49

R15 MAJOR 176 49

R16 MAJOR 176 49

R17 MAJOR 176 49

R18 MAJOR 176 49

R19 MAJOR 176 49

R20 MAJOR 176 49

R11 MODERATE 115 38

R12 MODERATE 115 38

R13 MODERATE 115 38

The parameters defined in Section 2 are set as follows: dperMin =0, dperMax = 0.4;

major = 0.45, moderate = 0.3, minor = 0.15; reworkRate = 0.5; fAdd = 0.15. These

parameters are determined by the project manager of Qone 5.1. Take reworkRate as

an example, this parameter works in Step 1 of modification routine. Together with the

parameter emp, this parameter decides the rework effort for the finished tasks. Project

manager can refer to similar circumstances of historical projects to obtain such

information as the added workload of rework task. This parameter can then be

determined through statistical techniques utilizing these project data.

3.2 Simulation Scenario and Impact Analysis

Due to limit space, we only demonstrate how Requirements Modification Event

Routine works. This scenario is based on actual change data in Table 5. During

project development, customers request the requirement “import and export project”

to be enhanced and refined. Hence, the modification to R15 is adding its content. The

change time is 130 hours and ModifyLevel for R15 is MAJOR, which is obtained in
the change databases.

Note that, many of the parameters below are just random values generated based

on certain distribution during this certain simulation scenario. We applied these

parameters to illustrate how DepRVSim works. The ultimate simulation outcome is

based 10000 simulation scenario of this kind, in which these parameters might differ

among simulation scenarios. According to Requirement Modification Event Routine,

there are four steps to handle this change event.

 Step1: Modify corresponding tasks’ effort of R15
R15 has three tasks, respectively Desing15, Code15 and Test15. When this change

event happens at 130 hours, Design15 has been finished, as Figure3 shows, and the

other two tasks have not been started. The original effort for Design15 is 20 hours, as

Table 3 shows. The rework effort for Design15 is 20*emp*reworkRate. Suppose the

randomly generated emp is 0.38 in this simulation scenario based on UNIFORM(0.3,

0.45). The reworkRate is 0.5, so the rework effort for Design15 is 4 hours. The new

effort for Code15 and Test15 can be calculated in the similar way, which is not shown

due to space limit.

 Step2: Modify the dependency relationship of R15

Current dependency relationship of R15 is {(R14, IN, WEAK), (R19, IN, WEAK),

(R20, IN, STRONG)} as Figure 2 shows. DepRVSim would utilize Rule1 and Rule2

to handle dependency change of R15.

According to Rule1, R15 might newly depend on other requirements. Suppose the

generated dperAdd is 0.32 in this simulation scenario based on UNIFORM(0.3, 0.45).

The input parameter fAdd is 0.15. So the number of newly added dependency is

24*0.32*0.15 ≈ 1. Suppose the newly added dependency is (R10, OUT, WEAK) in

this simulation scenario.

According to Rule2, the current dependency relationship of DepDirection = IN is
strengthened. dper for R15 is 3/24 = 0.125, suppose the generated dpermp is 0.36 in

this simulation scenario, the number of changed dependency is 24*0.125*0.36 ≈1.

Suppose the randomly chosen dependency is (R14, IN, WEAK), change it to (R14, IN,

STRONG). The dependency relationship of R15 after change happens is {(R10, OUT,

WEAK), (R14, IN, STRONG), (R19, IN, WEAK), (R20, IN, STRONG)}.

 Step3: Modify the influenced requirements

There are requirement changes in these requirements that depend on R15, which are

R14, R19 and R20. These requirement changes are reflected through the changes in

corresponding tasks’ effort. When this change event happens at 130 hours, Design14,

Design19 and Design20 are all on-going tasks, as Figure 3 shows. The effort after

modification can be calculated similar with Step1.

 Step4: Adjust the Software Project Plan
The adjusted project plan of Figure 3 is shown in Figure 4. The red box denotes the

rework for finished tasks, while the green box denotes the modification for unfinished

tasks. The purple box denotes the tasks which are indirectly influenced. We can see

from Figure 4 that due to the postponement of Design14 and rework of Design15, Dev1

is late for conducting Design16. And the follow-up tasks would be influenced.

Figure 4. Part of the adjusted software project plan

We simulated 10000 times for this change event and the simulation outcomes of

effort deviation and schedule deviation are shown in Figure 5 and Figure 6. The

reason for the difference between effort deviation and schedule deviation is that the

added effort may be performed by several developers in parallel.

The real development data in Table 5 showed that the effort deviation and schedule

deviation for this requirement change are respectively 176 man hours and 49 hours.

From Figure 5 and Figure 6, the probability that the simulated effort deviation has 10

man hours offset with real project data is 41.7%, while the probability for 10 hours
offset of schedule deviation is 65.6%.

100 120 140 160 180 200 220 240
0

50

100

150

200

250

300

350

400

450

Effort deviation (man hours)

F
re

q
u

e
n

c
y

Figure 5. Simulation results of

effort deviation

20 30 40 50 60 70 80
0

50

100

150

200

250

300

350

400

450

500

Schedule deviation (hours)

F
re

q
u

e
n

c
y

Figure 6. Simulation results of
schedule deviation

3.3 Evaluation of DepRVSim

We utilize the change data in Table 5 to carry out the evaluation of DepRVSim. We

simulate these requirement change events and generate the effort deviation and

schedule deviation information. Our work obtains the minimum, maximum and
average value, as well as the probability of offset with real project data. These results

are listed in Table 6 and Table 7.

Table 6. Effort deviation information of DepRVSim

ReqId Minimum effort

deviation

Maximum

effort deviation

Average effort

deviation

Effort

deviation±10

Effort

deviation±20
R14 110 238 172 42.6% 67.5%

R15 110 235 174 41.7% 66.5%

R16 110 232 172 42.9% 67.2%

R17 105 212 166 41.3% 66.0%

R18 105 218 168 42.1% 68.2%

R19 102 215 172 43.3% 69.2%

R20 102 214 172 43.4% 69.2%

R11 67 155 110 45.0% 63.6%

R12 68 156 110 46.7% 65.5%

R13 57 145 99 49.2% 64.7%

Effort deviation±K signify the probability that simulation results have K man

hours offset from real effort deviation. Take R14 as an example, Table 5 shows that

the real effort deviation is 176 man hours, so effort deviation±10 means the

probability that the simulated effort deviation falls into the interval from 166 man

hours to 186 man hours. The results in Table 6 show that for 10 and 20 man hours

offset from real effort deviation, DepRVSim can predict correctly in the probability of

around 45% and approximately 70%.

Table 7. Schedule deviation information of DepRVSim

ReqId Minimum

schedule

deviation

Maximum

schedule

deviation

Average

schedule

deviation

Schedule

deviation ±5

Schedule

deviation ±10

R14 34 75 52 40.2% 68.5%

R15 34 77 52 37.9% 65.6%

R16 34 76 54 37.8% 64.0%

R17 35 73 54 39.7% 63.9%

R18 36 76 54 40.9% 66.4%

R19 33 74 50 41.1% 68.9%

R20 33 73 51 41.3% 68.7%

R11 32 58 42 45.2% 69.2%

R12 29 58 43 48.8% 67.4%

R13 32 55 40 46.3% 64.4%

Similar with effort deviation information, the results in Table 7 show that for 5 and

10 hours offset from real schedule deviation, DepRVSim can reach a correct rate of

49% and 70%.

We can notice that the simulated schedule deviation is often bigger than the actual

project data. Through interviews with the project manger of this project, we found

that there is rescheduling process to better utilize the human resources during

requirement changes in real software project. However, in our work, the added task

effort caused by changes is assigned to the original developer. Even so, the simulation

results accord well with the real effort deviation and schedule deviation. Project
manager can refer to these simulation results to decide whether to accept a particular

change request or not.

4 Threats to Validity

From running a series of simulation scenarios we have gained additional insight into
the nature of requirement volatility. The results from our case study provide an
indication that there is a good chance to support project managers in decision making
about requirement change request. In order to better judge the meaningfulness and
applicability of the results, we have to carefully check their validity status.

Construct validity: a central construct in our work is the mechanism for impact of
requirement volatility. Since no generally accepted mechanism for requirement
change, we had to base our routines on empirical study and real software development
process. We assume that this impact can be model through dependency relationship
and traceability relationship. Another construct in our work is the mechanism for
changes in dependency relationship. We assume that deleting requirement content
might weaken its current dependency, while adding requirement content might
strengthen its dependency generally. We also distinguish the direction of these
dependency relationships. It is shown that the applied routines work well in general.
However, as is the case for routines in general, we cannot precisely evaluate the
quality of the solution for other particular project process. This might also impact the
comparability between the different projects slightly.

Internal validity concerns the extent to which observed differences can be
attributed to an experimental manipulation. Since our work heavily relies on a
computerized simulation model, in principle, this should be one of the easiest types of
validity to maximize. The simulated environment offers the experimenter a sterile
setting in which entities adhere strictly to whatever routines they are assigned and
within selected parameter bounds.

External validity is the degree to which the findings in a local setting, containing a
single set of sampling units, are applicable to the population of sampling units as well
as other setting. In our particular case, external validity is enhanced in many ways.
First of all, we base our study on real software project and apply real project change
data to do the evaluation. Apart from that, we provide customizable parameters in our
model and users can assign their own value according to their specific software
projects. These all increase the external validity of our results. However, to further
prove external validity, we need to conduct our evaluation on more software projects.

While stressing the limitations of the applicability of the results, we also want to
emphasize that the overall methodology is applicable more broadly in the context of
simulation-based analysis. The only difference would be the adjustment of the
simulation model and the inherent heuristics.

5 Related Work

The idea of using software process simulation for predicting project performance or
evaluating processes is not new. Beginning with pioneers like Abdel-Hamid [13],
Bandinelli [14], Gruhn [15], Kellner [16], Scacchi [17], dozens of process simulation
models have been developed for various purposes. The primary purposes of
simulation models are summarized as: strategic management, planning, control and
operational management, process improvement and technology adoption, as well as
training and learning [18].

Planning involves the prediction of project effort, cost, schedule, quality, and so on.
The impact analysis of requirement volatility is among this purpose. Pfahl et al. [6]
built a simulation model for Siemens Corporate Technology to demonstrate the
impact of requirement volatility on project cost and effort. Ferreira et al. [7] derived
related factors from empirical survey and built a system dynamic simulation model to
demonstrate the impact of requirement volatility on cost, schedule and quality.

Control and operational management involves project tracking and oversight.
Project can be monitored and compared against planned values computed by
simulation, to help determine when corrective action may be needed. The
management of software development risks is within this purpose. Houston et al. [5]
described an approach to modeling risk factors and simulating their effects as a means
of supporting certain software development risk management activities. His approach
considered requirements volatility as one of the six risk factors and simulated its
influence on project cost and duration.

Apart from software process simulation, empirical study is often applied in the
impact analysis of requirement volatility on development productivity [19], project
cost [20], defect density [21], project effort [20], project schedule [22], change effort
[23] and software release planning [24]. Zowghi et al. [19] conducted a survey of 430
software development companies in Australia, and the results showed that over 80%
projects were late because of requirement volatility. Stark et al. [22] developed a
regression analysis model to predict the schedule change percent due to requirements
volatility. These empirical studies can serve as the basis for parameter calibration and
general mechanism of simulation model.

The simulation method presented above focus on phenomenological observations
of external behaviors of software process. Our model focused on the study of the
internal details and working of process. We modeled the changes in dependency
relationship when requirement changes occur. This is common in software
development and a key factor for impact analysis of requirement volatility, but is not
well explored yet. We abstracted the general patterns of dependency changes and
provide customizable parameters for users’ own process models.

6 Conclusions and Future Work

In this paper, we presented a simulation approach DepRVSim which can predict the
impact of requirement volatility on software project plans. DepRVSim adopts
discrete-event simulation which is able to provide many kinds of project data for users
besides the project effort and schedule in the case study.

Our primary contribution is modeling the dependency relationship to assist the
impact analysis of requirement volatility. Besides, we evaluate the effectiveness and
applicability of DepRVSim applying the real software development data.

One significant feature of DepRVSim is that it supports fine-grained requirement
change and detail change impact analysis. This feature not only provides users with
such information as probability distribution of effort deviation and schedule deviation,
but also assists project managers to understand the impact of requirements volatility
deeply.

It should be pointed out, however, that the presented material is just the starting
point of the work in progress. Future work will focus on calibration of model
parameters applying data mining techniques. Another enhancement aims at validation
of the proposed approach in more industrial environment, improvement of model
usability, and – more importantly – enhancement of the DepRVSim model.
Enhancement of DepRVSim will in particular aim at adding a heuristic that take
manpower resources into consideration.

Acknowledgment

This work is supported by the National Natural Science Foundation of China
under grant No.60903050, No.60803023 and No.90718042, the National Basic

Research Program (973 Program) of China under grant No.2007CB310802, the

National Hi-Tech Research and Development Program (863 Program) of China under

grant No.2007AA010303, as well as the Graduate Foundation of ISCAS under grant

No.ISCAS2009-GR.

References

1. Boehm, B. W.: Software Risk Management: Principles and Practices. IEEE Software 8(1), 32-41
(1991)

2. Kotonys , G., Sommerville, I.: Requirements Engineeringn Process & Techniques. John Wiley &

Sons (2002)

3. Houston, D. X., Mackulak, G. T., Collofello, J. S.: Stochastic simulation of risk factor potential
effects for software development risk management. JSS 59(3), 247–257 (2001)

4. Dahlstedt, Å., Persson, A.: Requirements interdependencies - Moulding the State of Research into a

Research Agenda. The Ninth International Workshop on Requirements Engineering: Foundation for
Software Quality (REFSQ 2003), Klagenfurt/Velden, Austria, 71-80 (2003)

5. Wohlin, C., Aurum, A.: What is important when deciding to include a software requirement in a

project or a release? Fourth International Symposium on Empirical Software Engineering, Noosa
Heads, Australia, 17– 18 November (2005)

6. Pfahl, D., Lebsanft, K.: Using Simulation to Analyze the Impact of Software Requirements Volatility
on Project Performance. Information and Software Technology 42(14), 1001–1008 (2000)

7. Ferreira, S., Collofello, S. J., Shunk, D., Mackulak, G.: Understanding the Effects of Requirements

Volatility in Software Engineering by Using Analytical Modeling and Software Process Simulation.
The Journal of Systems and Software 82 (2009), 1568–1577

8. Zhang, H., Kitchenham B., Pfahl, D.: Software Process Simulation Modeling: An Extended

Systematic Review. Proc. International Conference on Software Process (ICSP 2010), LNCS, vol.
6195, 309–320. Springer, Heidelberg (2010)

9. Liu, D., Wang, Q., Xiao, J., Li, J., Li, H.: RVSim: A Simulation Approach to Predict the Impact

of Requirements Volatility on Software Project Plans. International Conference on Software Process
(ICSP 2008), LNCS, vol. 5007, 307–315. Springer, Heidelberg (2008)

10. Nurmuliani, N., Zowghi, D., Powell, S.: Analysis of Requirements Volatility During Software

Development Life Cycle. In: Proceedings of the 2004 Australian Software Engineering Conference
(ASWEC 2004), Melbourne, Australia (2004)

11. Nurmuliani, N., Zowghi, D., Williams, S.P.: Characterising Requirements Volatility: An Empirical
Analysis. In: Proceedings of the 4th International Symposium on Empirical Software Engineering

(ISESE 2005), Noosa, Australia (2005)

12. http://qone.nfschina.com/qone/

13. Abdel-Hamid, T. K., Madnick, S. E.: Software Projects Dynamics – an Integrated Approach.
Prentice-Hall, Englewood Cliffs (1991)

14. Bandinelli, S., Fuggetta, A., Lavazza, L., Loi, M., Picco, G. P.: Modeling and Improving an Industrial

Software Process. IEEE Trans. on Soft. Eng. 21(5), 440–453 (1995)

15. Gruhn, V., Saalmann, A.: Software Process Validation Based on FUNSOFT Nets. Proc.EWSPT
1992, 223–226 (1992)

16. Kellner, M. I., Hansen, G. A.: Software Process Modeling: A Case Study. Proc. AHICSS 1989, vol. II

- Software Track, 175–188 (1989)

17. Mi, P., Scacchi, W.: A knowledge-based environment for modeling and simulating software

engineering processes. IEEE Trans. on Know. and Data Eng. 2(3), 283–294 (1990)

18. Kellner, M. I., Madachy, R. J., Raffo, D. M.: Software process simulation modeling: Why? What?
How? The Journal of Systems and Software 46(2/3), 91–105 (1999)

19. Zowghi, D., Offen R., Nurmuliani, N.: The Impact of Requirements Volatility on the Software

Development Lifecycle. Proc. International Conference on Software Theory and Practice (IFIP World
Computer Congress 2000)

20. Zowghi, D., Nurmuliani, N.: A Study of the Impact of Requirements Volatility on Software Project

Performance. Proc. Asia-Pacific Software Engineering Conference (APSEC 2002), Gold Coast,
Australia, 3–11(2002)

21. Malaiya, Y. K., Denton, J.: Requirements Volatility and Defect Density. Proc. International

Symposium on Software Reliability Engineering (ISSRE 1999), 285–294

22. Stark, G., Skillicorn, A., Ameele, R.: An Examination of the Effects of Requirements Changes on
Software Releases. CROSSTALK, The Journal of Defense Software Engineering, 11–16 (December

1998)

23. Nurmuliani, N., Zowghi, D., Williams, S.: Requirements Volatility and Its Impact on Change Effort:

Evidence Based Research in Software Development Projects. Proc. Australian Workshop on
Requirements Engineering (AWRE 2006), Adelaide,Australia

24. Al-Emran, A., Pfahl, D., Ruhe, G.: Decision Support for Product Release Planning based on

Robustness Analysis. Proc. IEEE International Requirements Engineering Conference (RE 2010),
157-166

http://qone.nfschina.com/qone/

