Abstract

We consider players that have very limited knowledge about their own valuations. Specifically, the only information that a Knightian player i has about the profile of true valuations, θ^*, consists of a set of distributions, from one of which θ_i^* has been drawn.

We prove a “robustness” theorem for Knightian players in single-parameter domains: every mechanism that is weakly dominant-strategy truthful for classical players continues to be well-behaved for Knightian players that choose undominated strategies.
1 Introduction

In [CMZ14] we motivate the problem of mechanism design for Knightian players, and prove that (1) dominant-strategy mechanisms for single-good and multi-unit auctions cannot provide good social-welfare efficiency, but (2) the second-price and Vickrey mechanisms deliver good social-welfare performance, for these two settings, in undominated strategies.

In this report, we prove a “robustness” theorem for single-parameter domains. Namely, consider a mechanism M for a single-parameter domain and suppose that M, when players have perfect information about their own valuations, is weakly dominant-strategy truthful. Now consider the same mechanism M, but with Knightian players that, not having any dominant strategy to play, choose to play undominated strategies. We prove that the set of undominated strategies is well-behaved, in the sense that these strategies do not deviate from the players’ approximate information about his own valuation.

2 Model

In a classical single-parameter domain, there is a set A, the set of all possible allocations; for each player i there exists a publicly known subset $S_i \subseteq A$; and the set of possible valuations for player i, Θ_i, consists of all functions mapping A to the reals, subject to the following constraints: for each $\theta_i \in \Theta_i$,

1. $\theta_i(x) = 0 \quad \forall x \notin S_i$ and
2. $\theta_i(x) = \theta_i(y) \quad \forall x, y \in S_i$.

We denote the true valuation of player i by θ_i^*.

(The term “single-parameter” derives from the fact that each $\theta_i \in \Theta_i$ coincides with a single number: i’s value for, say, the lexicographically first element of S_i. The term “classical” emphasizes that each player knows exactly his own true valuation.)

The set of possible outcomes is $\Omega \defeq A \times \mathbb{R}_{\geq 0}^n$. If $(A, P) \in \Omega$, we refer P_i as the price charged to player i. We assume quasi-linear utilities. That is, the utility function U_i of a player i maps a valuation θ_i and an outcome $\omega = (A, P)$ to $U_i(\theta_i, \omega) \defeq \theta_i(A) - P_i$.

1
If ω is a distribution over outcomes, we also denote by \(U_i(\theta_i, \omega) \) the expected utility of player \(i \).

Single-parameter domains are general enough to include several settings of interest: in particular, provision of a public good\(^1\) [Cla71], bilateral trades [MS83], and buying a path in a network [NR01].

2.1 Knightian Valuation Uncertainty

In our model, a player \(i \)'s sole information about \(\theta^* \) consists of \(K_i \), a set of distributions over \(\Theta_i \), from one of which \(\theta_i^* \) has been drawn. (The true valuations are uncorrelated.) That is, \(K_i \) is \(i \)'s sole (and private) information about his own true valuation \(\theta_i^* \). Furthermore, for every opponent \(j \), \(i \) has no information (or beliefs) about \(\theta_j^* \) or \(K_j \).

Given that all he cares about is his expected (quasi-linear) utility, a player \(i \) may 'collapse' each distribution \(D_i \in K_i \) to its expectation \(\mathbb{E}_{\theta_i \sim D_i}[\theta_i] \). Therefore, for single-parameter domains, a \textit{mathematically equivalent} formulation of the Knightian valuation model is the following:

Definition 2.1 (Knightian valuation model). For each player \(i \), \(i \)'s sole information about \(\theta^* \) is a set \(K_i \), the candidate (valuation) set of \(i \), such that \(\theta_i^* \in K_i \subset \Theta_i \).

We refer to an element of \(K_i \) as a candidate valuation.

In Knightian valuation model, a mechanism’s performance will of course depend on the inaccuracy of the players’ candidate sets, which we measure as follows.

Definition 2.2. Let \(K_i^\perp \overset{\text{def}}{=} \inf K_i \) and \(K_i^\top \overset{\text{def}}{=} \sup K_i \).

The candidate set \(K_i \) of a player \(i \) is (at most) \(\delta \)-approximate if \(K_i^\top - K_i^\perp \leq \delta \).

A single-parameter domain is (at most) \(\delta \)-approximate if each \(K_i \) is \(\delta \)-approximate.

\(^1\)Indeed, in the provision of a public good, \(A \) has just two elements, \(a \) (i.e., the good is provided), which different players may value differently, and \(b \) (i.e., the good is not provided), which all players value 0.

\(^2\)Whatever the auction mechanism used, this equivalence holds for any auction where each \(\Theta_i \) is a \textit{convex} set. In particular, this includes unrestricted combinatorial auctions of \(m \) distinct goods.
2.2 Social Welfare, Mechanisms, and Knightian Dominance

Social welfare. The social welfare of an allocation \(A \in \mathcal{A} \), \(SW(A) \), is defined to be \(\sum_i \theta_i^*(A) \); and the maximum social welfare, \(MSW \), is defined to be \(\max_{A \in \mathcal{A}} SW(A) \). (That is, \(SW \) and \(MSW \) continue to be defined relative to the players’ true valuations \(\theta_i^* \), whether or not the players know them exactly.)

More generally, the social welfare of an allocation \(A \) relative to a valuation profile \(\theta \), \(SW(\theta, A) \), is \(\sum_i \theta_i(A) \); and the maximum social welfare relative to \(\theta \), \(MSW(\theta) \), is \(\max_{A \in \mathcal{A}} SW(\theta, A) \). Thus, \(SW(A) = SW(\theta^*, A) \) and \(MSW = MSW(\theta^*) \).

General mechanisms and strategies. A mechanism \(M \) specifies, for each player \(i \), a set \(S_i \). We interchangeably refer to each member of \(S_i \) as a pure strategy/action/report of \(i \), and similarly, a member of \(\Delta(S_i) \) a mixed strategy/action/report of \(i \).

After each player \(i \), simultaneously with his opponents, reports a strategy \(s_i \) in \(S_i \), \(M \) maps the reported strategy profile \(s \) to an outcome \(M(s) \in \Omega \).

If \(M \) is probabilistic, then \(M(s) \in \Delta(\Omega) \). Thus, as per our notation, \(U_i(\theta_i, M(s)) \overset{\text{def}}{=} \mathbb{E}_{\omega \sim M(s)}[U_i(\theta_i, \omega)] \) for each player \(i \).

Note that \(S_i = \Theta_i \) for the direct mechanisms in the classical setting, but may be arbitrary in general.

Knightian undominated strategies. Given a mechanism \(M \), a pure strategy \(s_i \) of a player \(i \) with a candidate set \(K_i \) is (weakly) undominated, in symbols \(s_i \in UD_i(K_i) \), if \(i \) does not have another (possibly mixed) strategy \(\sigma_i \) such that

1. \(\forall \theta_i \in K_i \forall s_{-i} \in S_{-i} \quad \mathbb{E}U_i(\theta_i, M(\sigma_i, s_{-i})) \geq U_i(\theta_i, M(s_i, s_{-i})) \), and
2. \(\exists \theta_i \in K_i \exists s_{-i} \in S_{-i} \quad \mathbb{E}U_i(\theta_i, M(\sigma_i, s_{-i})) > U_i(\theta_i, M(s_i, s_{-i})) \).

If \(K \) is a product or a profile of candidate sets, that is, if \(K = (K_1, \ldots, K_n) \) or \(K = K_1 \times \cdots \times K_n \), then \(UD(K) \overset{\text{def}}{=} UD_1(K_1) \times \cdots \times UD_n(K_n) \).

Note that the above notion of an undominated strategy is a natural extension of its classical counterpart, but other extensions are possible.

Weakly dominant-strategy truthfulness in classical settings. Finally, let us recall what it means for a mechanism \(M \) to be weakly dominant-strategy truthful.
(weakly DST) when every player i knows θ_i^* exactly. Namely, for each player i:

(0) $S_i = \Theta_i$

(1) $\forall v_i \in \Theta_i \forall v'_i \in \Theta_i \forall v_{-i} \in \Theta_{-i} \quad U_i(v_i, M(v_i, v_{-i})) \geq U_i(v_i, M(v'_i, v_{-i}))$

(2) $\forall v_i \in \Theta_i \forall v'_i \in \Theta_i \setminus \{v_i\} \exists v_{-i} \in \Theta_{-i} \quad U_i(v_i, M(v_i, v_{-i})) > U_i(v_i, M(v'_i, v_{-i}))$.

(For comparison, the notion of a DST mechanism omits the last condition above.)

3 Result

We prove the Knightian robustness of many mechanisms at once as follows.

Theorem 1. Let M be a weakly dominant-strategy truthful mechanism for classical single-parameter domains. Then, in this domain with Knightian valuation uncertainty, for every player i, $\text{UD}(K_i) \subseteq [K_i^\perp, K_i^\top]$.

Discussion. The above theorem implies that the behavior of (weakly dominant-strategy truthful) mechanisms in a δ-approximate single-parameter domains gracefully degrades with δ. In particular, it implies that, when applied to the provision of a public good in the presence of n Knightian players, the VCG mechanism guarantees, in undominated strategies, a social welfare $\geq \text{MSW} - 2n\delta$. As another example, when applied to buying paths in a network, the VCG mechanism guarantees a social welfare $\geq \text{MSW} - 2m\delta$, where m is the number of edges in the network. Finally, we note that the proof of Theorem 1 easily extends to imply an analogous result for the VCG mechanism for single-minded combinatorial auctions, which are not quite single-parameter domains.\(^3\)

More generally, Theorem 1 implies that, for all weakly dominant-strategy mechanisms M (which include those of [Cla71, MS83, NR01])

\begin{quote}
the outcome $M(v)$ is sufficiently good whenever $\max_i |v_i - \theta_i^*|$ is sufficiently small for all i and $\theta_i^* \in K_i$.
\end{quote}

\(^3\)In such an auction, there are m distinct goods, and each player i values, positively and for the same amount θ_i^*, only the supersets of a given subset S_i of the goods. This auction is not single-parameter because S_i is *private*, that is, known solely to i. Accordingly, i’s true valuation can be fully described only by the number θ_i^* and the subset S_i. The VCG mechanism for single-minded auctions ensures, in undominated strategies, a social welfare that is at least $\text{MSW} - 2\min\{n, m\}\delta$.

4
Proof. The theorem is obvious when $K_i = \{\theta_i^*\}$ is a singleton: since reporting
the truth is a weakly dominant strategy, it dominates all other strategies so that
UD(K_i) = $\{\theta_i^*\}$ must also be a singleton. For the rest of the proof we assume that K_i
has at least two distinct valuations.

We begin by recalling the following fact about dominant-strategy truthful mechan-
isms in single-parameter domains where each player perfectly knows his own true
valuation [AT01]:

Let M be a mechanism for a single-parameter domain, and let $f_i(v) \in [0, 1]$
be the probability that the allocation chosen by M, under strategy profile v, is in player i’s set S_i. Then, M is dominant-strategy truthful if and only if
(a) f is monotonically non-decreasing, i.e., $f_i(v_i, v_{-i}) \leq f_i(v_i', v_{-i})$ whenever $v_i \leq v_i'$, and (b) player i’s expected price on input v, denoted by $p_i(v)$, equals
to $v_i \cdot f_i(v_i, v_{-i}) - \int_0^{v_i} f_i(z, v_{-i})dz$.

Having recalled the above fact, we now prove that, for any Knightian player i with
candidate set $K_i = [K_i^+, K_i^-]$,

$v_i \in \text{UD}_i(K_i) \implies v_i \in [K_i^+, K_i^-]$.

Let $v_i^+ \overset{\text{def}}{=} K_i^+$ and $v_i^- \overset{\text{def}}{=} K_i^-$, and consider any strategy $v_i \in \text{UD}_i(K_i)$. If $v_i \in K_i = [v_i^+, v_i^-]$ then we are done. Otherwise, suppose that $v_i < v_i^+$. (The other case, $v_i > v_i^-$, can be shown analogously.)

We first claim that, for player i, reporting v_i^+ is no worse than reporting v_i. Indeed, fixing any (pure) strategy sup-profile v_{-i} for the other players and any possible true
valuation $\theta_i \in K_i$, and letting $v^+ = (v_i^+, v_{-i})$ and $v = (v_i, v_{-i})$, we compute that

\[
\mathbb{E}[U_i(\theta_i, M(v^+))] - \mathbb{E}[U_i(\theta_i, M(v))] = (f_i(v^+) - f_i(v)) \cdot \theta_i - (p_i(v^+) - p_i(v))
\]

\[
= (f_i(v^+) - f_i(v)) \cdot \theta_i - \left(v_i^+ \cdot f_i(v^+) - \int_0^{v_i^+} f_i(z, v_{-i})dz - v_i \cdot f_i(v) + \int_0^{v_i} f_i(z, v_{-i})dz \right)
\]

\[
= (f_i(v^+) - f_i(v)) \cdot (\theta_i - v_i^+) + \int_{v_i}^{v_i^+} (f_i(z, v_{-i}) - f_i(v))dz.
\]

Now note that $\theta_i \in K_i$ implies that $\theta_i - v_i^+ = \theta_i - K_i^+ \geq 0$. Moreover, by the
monotonicity of f, whenever $z \geq v_i$, it holds that $f_i(z, v_{-i}) \geq f_i(v)$. Therefore we
deduce that the above difference is greater than or equal to zero. We conclude that reporting \(v_i^+ \) is no worse than reporting \(v_i \).

Next there are two subcases. If \(\mathbb{E}[U_i(\theta_i, M(v^+))] - \mathbb{E}[U_i(\theta_i, M(v))] \) equals to zero for all \(\theta_i \in K_i \) and for all \(v_{-i} \), then, using the fact that \(K_i \) has at least two distinct valuations, we conclude that for \(i \), the allocation probability and (expected) price in outcomes \(M(v_i, v_{-i}) \) and \(M(v_i^+, v_{-i}) \) are the same, independent of \(v_{-i} \). This contradicts the fact that \(M \) is weakly dominant-strategy truthful in the classical setting, since \(U_i(v_i, M(v_i, v_{-i})) \) must be strictly greater than \(U_i(v_i, M(v_i^+, v_{-i})) \) at least for some \(v_{-i} \).

Otherwise, if there exist some \(\theta_i^* \) and some \(v_{-i}^* \) that make the difference \(\mathbb{E}[U_i(\theta_i, M(v^+))] - \mathbb{E}[U_i(\theta_i, M(v))] \) non-zero, it must follow that the difference is strictly positive. For such \(\theta_i^* \) and \(v_{-i}^* \), reporting \(v_i^+ \) is therefore strictly better than reporting \(v_i \), so by definition \(v_i^+ \) weakly dominates \(v_i \) for player \(i \), leading to a contradiction to \(v_i \in UD_i(K_i) \).

This concludes the proof of Theorem 1.

References

