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Abstract: A series of eleven 4-substituted 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines were
designed and synthesized and their biological activities were evaluated. Synthesis involved the
Gewald reaction to synthesize ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate ring,
and SNAr reactions. Compound 4 was 1.6- and ~7-fold more potent than the lead compound 1 in
cell proliferation and microtubule depolymerization assays, respectively. Compounds 4, 5 and 7
showed the most potent antiproliferative effects (IC50 values < 40 nM), while compounds 6, 8, 10, 12
and 13 had lower antiproliferative potencies (IC50 values of 53–125 nM). Additionally, compounds
4–8, 10 and 12–13 circumvented Pgp and βIII-tubulin mediated drug resistance, mechanisms that
diminish the clinical efficacy of paclitaxel (PTX). In the NCI-60 cell line panel, compound 4 exhibited
an average GI50 of ~10 nM in the 40 most sensitive cell lines. Compound 4 demonstrated statistically
significant antitumor effects in a murine MDA-MB-435 xenograft model.

Keywords: microtubules; colchicine site; microtubule targeting agents; Gewald reaction

1. Introduction

Microtubules have long been recognized as effective targets for the treatment of many
human malignancies [1,2]. Microtubules are involved in a variety of cellular functions
including mitosis, motility, intracellular transport, trafficking and organization, including
positioning of organelles [1,3,4]. Molecules binding to tubulin and interrupting tubulin
dynamics are recognized as microtubule targeting agents (MTAs), and they have been
used clinically as single agents or in combinatorial regimens for the effective treatment of
leukemia, lymphoma and various solid tumors [2,3,5]. MTAs are a highly diverse class of
cytotoxic agents that include a variety of different chemical scaffolds (Figure 1) [2,3,6].

MTAs can be classified into two major groups: (1) microtubule destabilizers that initiate
microtubule depolymerization; and (2) microtubule stabilizers that promote the polymer-
ization of tubulin into microtubules [1,2]. Additionally, MTAs are further divided into
seven groups based on their binding sites [6,7]. Two binding sites on tubulin/microtubules
have been identified for microtubule stabilizers [8]. First, the taxane site is located on the
interior of the microtubule, and all clinically approved microtubule stabilizers, including
paclitaxel (Figure 1), docetaxel (Figure 1), cabazitaxel and ixabepilone, bind to this site [8].
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The taccalonolides (Figure 1), zampanolide and cyclostreptin are compounds that bind
covalently within the taxane site, but to date have not been evaluated clinically [8–10]. The
second stabilizer site is the laulimalide/peloruside site, which is located on the exterior of
the microtubule and named for the natural products that bind to this site [8]. The clinical
development of compounds binding to this site has been limited by a lack of in vivo efficacy
for laulimalide [11] and supply challenges for peloruside A [12]. In the class of microtubule
destabilizers, five sites have been identified: the vinca site, the colchicine site (CS), the
maytansine site, the pironetin site [6], and more recently the gatorbulin site (gatorbulin-1,
Figure 1) defined by the cyclic peptide of the same name [7]. The vinca alkaloids vinblas-
tine, vincristine, vindesine, and vinorelbine, as well as other structurally unique/unrelated
compounds, including eribulin (Figure 1), bind within the vinca site, which is located at
the interdimer interface between two tubulin heterodimers in a protofilament [6]. The
colchicine binding site is located on β-tubulin at the intradimer interface of the αβ-tubulin
heterodimer [6]. The maytansine site is also on β-tubulin, in close proximity but nonover-
lapping with the vinca site [13]. The gatorbulin site is located at the intradimer interface
of tubulin similarly to the vinca alkaloids, but binding within this site is differentiated
by extensive contacts with α-tubulin [7]. The pironetin site is the only MTA localized
exclusively on α-tubulin [14].
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While the clinically useful vinca alkaloids vinblastine and vincristine were approved
decades ago, new MTAs have been approved more recently for clinical use. Eribulin
(Figure 1), a simplified synthetic analogue of the natural product halichondrin B, is a
microtubule depolymerizer that has unique properties [5,15] and significant utility in
the treatment of advanced breast cancer [15]. The dolastatin 10 analogue monomethyl
auristatin E and maytansine (Figure 1) analogues are employed as the cytotoxic payloads of
antibody-drug conjugates (ADCs) that have found clinical utility [16]. These unconjugated
MTAs were too toxic for systemic administration, but their antibody-directed delivery
to cancers was designed to reduce off-target toxicities [16]. Continuing challenges with
clinically approved MTAs, including the taxanes and vinca alkaloids, are the incidence of
dose-limiting side effects and limited efficacy due to multidrug resistance [17]. Cancer cells
and patients demonstrate resistance to clinically used agents as a result of the expression of
the drug efflux pump P-glycoprotein (Pgp) and the βIII-tubulin isotype [2,18,19], leading
to efforts to identify new MTAs that can overcome these mechanisms of drug resistance.
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CS inhibitors, including derivatives of combretastatin A-4 (CA-4, Figure 1), have
been extensively studied, and several have been evaluated in clinical trials, including
combretastatin A-4 phosphate (CA-4P/fosbretabulin), the combretastatin CA-1P prodrug
(OXi4503), 2-methoxyestradiol, AVE8062, CKD-516, BNC105P, ABT-751, CYT-997, ZD6126,
plinabulin (NPI-2358) and MN-029 [20–22]. Colchicine itself is approved for the treatment
of gout but is not employed as an anticancer agent due to toxic side effects at the doses
necessary for efficacy [23]. However, other CS agents have exhibited promising potential
as anticancer candidates [20–22]. Many compounds that interact with the CS are able to
overcome multiple mechanisms of drug resistance [24]. This suggests that the development
of MTAs targeting the CS has the potential to overcome limitations associated with existing
drugs and perhaps improve clinical outcomes. This has been challenging, however, and
to date no CS agent has received FDA approval for anticancer indications [22]. There is
an urgent need to develop new tubulin inhibitors with fewer side effects and good oral
bioavailability that are less prone to clinically relevant drug resistance mechanisms.

2. Results and Discussion
2.1. Rationale

We previously reported [25,26] N4-substituted-pyrimido[4,5-b]indole-4-amines (1–3)
(Figure 2) with potent microtubule depolymerization activity, with EC50 values of 130,
1100 and 1200 nM for the lead compounds 1, 2 and 3, respectively. In MDA-MB-435 human
cancer cells, the IC50 values for antiproliferative effects for compounds 1, 2 and 3 were
14.7, 89.1 and 130 nM, respectively. This study exploits four medicinal chemistry strategies
for the design of potent MTAs based on the lead compounds 1–3. The strategies are
(1) isosteric replacement; (2) decrease numbers of sp2 bonds; (3) variation of substitutions
at the 2-position; and (4) conformational restriction.

(1) Isosteric replacement: To explore the activities of compounds with the 4,5,6,7-
tetrahydrobenzo thiophene scaffold on both inhibition of cancer cell proliferation
and microtubule depolymerization, we carried out the isosteric replacement of the
scaffold -NH- of the lead compounds 1–3 by sulfur (-S-) to afford target compounds
4–14 (Table 1). Isosteric replacement of -NH with (-S-) has literature precedence in
improving antiproliferative and microtubule depolymerizing activities [27]. Moreover,
pharmacological applications of 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines
have been extensively illustrated in various reports in the literature [28–38]. In addi-
tion, the lead tricyclic compounds and the proposed target compounds incorporate
a p-methoxyphenyl substitution akin to colchicine and CA-4 (Figure 1). The nature
of the heteroatom substitution (S for NH) affects hydrogen bond (HB) strength [39].
Thus, it was also of interest to isosterically replace the oxygen atom of the 4′-OCH3 of
4, 8 and 9 with a sulfur moiety to afford 5, 10, and 11, in analogy to 2.

(2) Decrease numbers of sp2 bonds: Drug candidates show a higher clinical success rate
with one or more sp3 hybridized carbon atoms as compared to “flat” molecules, due to
low aqueous solubility of purely aromatic compounds [40]. One of the major limitation
of some MTAs, particularly the taxanes, is their poor water solubility [41]. Thus, water-
soluble MTAs are highly coveted, and an enormous effort continues to chemically
modify and/or formulate analogues to increase their water solubility. Increasing
‘aromatic proportion’ in a molecule has a detrimental effect on the solubility [40]. The
fraction of sp3 hybridized carbon atoms (Fsp3), in other words, the fraction of carbon
atoms that are saturated, correlates positively with water solubility [40]. In an attempt
to both increase the water solubility as well to probe the potential interactions with the
hydrophobic pocket in the CS, we designed target compounds 4–14 by incorporating
sp3 hybridized carbon atoms in the tricyclic scaffold of the lead compounds 1–3.

(3) Variation of the substituents at the 2-position: Compound 7 was specifically designed
to determine the effect of replacing the 2-NH2 in 4 with a 2-H. This allows an explo-
ration of the 2-NH2 and hydrogen bond interactions with corresponding amino acids
at the CS. It was also of our interest to observe the effect of isosteric replacement of
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2-NH2 on compound 4 with a 2-CH3 to afford 8. This would also provide information
regarding the activity on the replacement of H with CH3 at the 2-position in the
tricyclic scaffold.

(4) Conformational restriction: Conformational restriction or rigidification of a ligand can
decrease the entropic penalty [42]. The ligand can adopt a preferred conformation for
binding, which might lead to enhanced potency for a given physiological target [42].
In an effort to better define the conformational requirements for biological activities,
we systematically incorporated various groups to restrict bond rotations. The confor-
mation of 9 (Figure 3) is determined by three rotatable single bonds: the 4-position
C-N bond (bond a), the 1′-position C-N bond (bond b) and the 4′-position C-O bond
(bond c). Conformational analysis via molecular modeling and 1H NMR studies [25]
suggest that the methyl group on the aniline nitrogen in 1 restricted the free rotation
of bond a as well as bond b (Figure 2) and consequently restricted the conformation of
the anilino ring. To study the significance of conformational restriction on biological
activities, we first designed compounds 8 and 9. In 9, the rotation of bonds a and b was
restricted by incorporating a methyl group at the N4- position to afford compound 8.
Incorporation of tetrahydroquinoline rings in 6 and 12 further restricted bond b of 4
and 8. The design of compound 13 via the incorporation of a 5-methoxy naphthalene
ring provided a further element of conformational restriction.
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2.2. Molecular Modeling

Computational modeling studies were performed to elucidate the binding mode of
the lead and target compounds 1–14 and probe the possible interactions with the CS.
Compounds 1–14 were docked into the CS (PDB: 6BS2, 2.65 Å) [43] of tubulin using
Maestro, Schrödinger 2020-2, New York, NY, USA [44]. Figure 4a shows the docked pose of
4 (cyan) superimposed with colchicine (pink) in the X-ray crystal structure of the CS [43].
Multiple low-energy conformations (within −9.68 to −10.89 kcal/mol) were obtained on
docking. The pyrimidine and cyclohexene rings of the tricyclic 4,5,6,7-tetrahydrobenzo
thieno[2,3-d]pyrimidine scaffold of 4–14 (compound 4, Figure 4b is a representative of 5–14)
overlapped with the A- and C- rings of the colchicine, respectively. The concave structure
created by the 4,5,6,7-tetrahydrobenzo thieno[2,3-d]pyrimidine scaffold of 4–14 overlapped
well with the B- ring of colchicine. The N1 of the pyrimidine and the 2-NH2 of compounds
4–6 formed water-mediated hydrogen bond interactions with the backbone of Cysβ239.
In compounds 8–14, the 2-CH3 interacted with the hydrophobic amino acids Valβ236 and
Ileβ316. The cyclohexene ring of 4–14 formed hydrophobic interactions with Leuβ246,
Alaβ248 and Metβ257. The N4-Me moiety of 4, 5, 7, 8, 10 and 13 formed hydrophobic
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interactions with Alaβ314 and Alaβ352. The 4′-OMe-Ph of 4, 6–9 and 12–14 is oriented
towards the pocket formed by polar amino acid residues Lysβ350, Thrβ312 and Asnβ256.
The docked score of compound 4 was −10.89 kcal/mol, and for compounds 5–14, the
docked scores were in a range of −9.68 to −10.72 kcal/mol (Supplementary Materials
Table S1). The pyrimidine ring of 4 overlaps with the pyrimidine ring of the crystalized
ligand of 6BS2 (Supplementary Materials Figure S1).
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Figure 4. (a) Docked pose of compound 4 (cyan) and colchicine (pink) in the CS (PDB: 6BS2,
2.65 Å) [43] in Maestro 2020-2 (docked score of compound 4 was −10.89 kcal/mol.); (b) structures of
4 and colchicine.

2.3. Chemistry

Compounds 4–14 were synthesized according to the synthetic routes outlined in
Schemes 1–4. The Gewald reaction (Scheme 1) was carried out on a solution of sulfur in
ethanol, to which cyclohexanone 15 and ethyl cyanoacetate were added. Morpholine was
added dropwise to the solution to obtain 16. Cyclization of 16 with chloro-formamidine
hydrochloride, formamide and acetonitrile afforded 17, 18 and 19, respectively, using
reported methods [25,45,46]. Chlorination [47] of 17–19 with POCl3 and pyridine in toluene
afforded 20–22 in 68–75% yield.
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The monomethylated aniline, 5-methoxy-N-methylnaphthalen-2-amine (26), was syn-
thesized over three steps from 6-aminonaphthalen-1-ol (23) (Scheme 2) [48]. Boc protection
of 23 in THF at r.t. yielded tert-butyl(5-hydroxyaphthalen-2-yl)carbamate (24) in 84% yield,
followed by methylation with methyl iodide and sodium hydride to provide 25. Finally, Boc
deprotection [49] using trifluoracetic acid (TFA) afforded 5-methoxy-N-methylnaphthalen-
2-amine (26) in 91% yield.

Intermediates 20–22 were subjected to SNAr reactions using appropriate anilines
in isopropanol or toluene to afford final compounds 4–7, 9, 11, 12 and 14 (Scheme 3).
Compounds 9, 11 and 14 were dissolved in DMF, followed by portion-wise addition of
sodium hydride and iodomethane. Reaction mixtures were stirred for 2 h at r.t. to afford
final compounds 8, 10 and 13, respectively (Scheme 4).

2.4. Biological Evaluations and Discussion
2.4.1. Antiproliferative and Microtubule Depolymerization Effects

We investigated the microtubule depolymerization and the antiproliferative activities
of compounds 4–14 (Table 2). At a concentration of 10 µM, the compounds that caused at
least 50% microtubule depolymerization were further evaluated to determine their EC50
values, the concentration that causes the loss of 50% of cellular microtubules as visualized
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microscopically. Compounds that caused microtubule depolymerization at 10 µM were
further evaluated for antiproliferative potency in the drug-sensitive MDA-MB-435 cancer
cell line, and the IC50 (concentration required to cause 50% inhibition of proliferation)
values were determined using the sulforhodamine B assay (SRB assay). Compound 4,
the 2-NH2 analogue of 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine, was the most
potent compound of this series for both microtubule depolymerizing and antiproliferative
effects, with an EC50 of 19 nM and an IC50 of 9.0 nM (Table 2). Compound 4 was 7-fold
more potent than 1 for microtubule depolymerizing effects, indicating that the 5,6,7,8-
tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine ring is significantly better for microtubule
depolymerizing activity than the pyrimido[4,5-b]indole ring of 1 (Table 2) and that it ad-
ditionally contributes to improvements in antiproliferative potency. We next evaluated
the importance of the 4′-OMe group of compound 4 by replacing it with an isosteric 4′-
SMe (5). The resulting compound 5 was 15-fold more potent than the corresponding lead
compound 2 with respect to microtubule depolymerization activity and was addition-
ally 2.3-fold more potent for antiproliferative effects compared to 2. Clearly, this further
substantiated the importance of an S in the scaffold over an NH. However, comparing
compounds 4 and 5 indicated that the 4′-OMe was better than the 4′-SMe. Compound 6,
the tetrahydroquinoline-substituted compound, a conformationally restricted analogue of
4 around bond b, was 6-fold less potent for antiproliferative effects and for microtubule
depolymerizing effects than 4, indicating that conformational restriction in 6 is detrimental
to these biological activities.

Table 2. Antiproliferative and microtubule depolymerization effects.

Compound No IC50 ± SD in
MDA-435 Cells (nM)

EC50 for Microtubule
Depolymerization in A-10

Cells (nM)
EC50/IC50 Ratio

1 a 14.7 ± 1.5 130 8.8

2 b 89.1 ± 10 1100 12

3 c 130 ± 7.8 1200 9.2

4 9.0 ± 0.2 19 2.2

5 38.6 ± 5.6 70 1.8

6 59.6 ± 11.8 121 2.0

7 36.8 ± 5.2 45 1.2

8 53.0 ± 0.3 52 1.0

9 ND Not MT active c ND

10 87.7 ± 4.7 157 1.8

11 ND Not MT active c ND

12 125 ± 14 150 1.2

13 81.3 ± 8.4 118 1.5

14 ND Not MT active c ND

CA-4 3.4 ± 0.6 13 3.8
a Results previously published [26]; b Results previously published [25]; c At a 10 µM concentration.

We next focused on substituting the 2-position of the 5,6,7,8-tetrahydrobenzo[4,5]
thieno[2,3-d]pyrimidine. The corresponding 2-H analogue 7 of lead compound 3 displayed
~27-fold increased potency in the microtubule depolymerizing assay as compared with 3
(Table 2), indicating a more effective engagement with tubulin. Compound 7 was 3.5-fold
more potent than compound 3 for antiproliferative effects. The 2-Me analogue 8 displayed
slightly less potency compared to the 2-H compound 7 for both microtubule depolymeriz-
ing and antiproliferative effects, yet it had 2.7- and 5.8-fold lower potency than the 2-NH2
compound 4 in the microtubule depolymerization assay and antiproliferative assay, re-
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spectively. Compound 8 however, with a 2-Me, had a lower EC50/IC50 ratio (1.0 for 8 as
compared to 2.2 for 4), indicating a tighter correlation between the microtubule depoly-
merizing effects and the cancer cell cytotoxicity. Compound 10 with a 4′-SMe group and a
2-Me analogue of compound 5 had 2-fold lower potency than 5 in both assays.

In compounds 12 and 13, conformational restrictions of the N4-phenyl moiety of
8 about bond b with a 1,2,3,4-tetrahydroquinoline moiety and 5′-methoxy naphthalene,
respectively, caused a 2.3–3-fold decrease in potency for 12 in antiproliferative and mi-
crotubule depolymerizing effects compared to 8 and a 1.5- to 2-fold drop in potency for
13 as compared to 8. Compounds 9, 11, and 14 did not show any activity in the micro-
tubule depolymerization assay, and these were not evaluated for antiproliferative effects,
corroborating our previous reports that the N4-Me is crucial for MT activity [26].

For compounds 4–8, 10, 12 and 13, the EC50/IC50 ratios (Table 2) ranged from 1 to 2.2,
which is better than the EC50/IC50 ratios for lead compounds 1–3 (8.8, 12 and 9.2 for lead
compounds 1, 2 and 3, respectively). These lower values for compounds 4–8, 10, 12 and 13
suggest a cytotoxic mechanism of action that is primarily microtubule-dependent.

2.4.2. Inhibition of Tubulin Assembly and Colchicine Binding

Compounds 4, 5, 7, 8 and 10 were evaluated for their direct effects on purified tubulin
assembly and for inhibition of colchicine binding (Table 3). Compounds 4, 5, 7, 8 and 10
inhibited tubulin assembly with activities better than those of the lead compounds 1–3 as
well as CA-4. Compound 4 was 2-fold more potent than the lead 1 as an inhibitor of tubulin
assembly. On the other hand, compounds 5, 7, 8 and 10 were 2-fold more potent than the
standard CA-4. Moreover, compounds 5 and 7 were 5-fold more potent as inhibitors of tubu-
lin assembly than the corresponding lead compounds 2 and 3, respectively. Compounds
4, 5, 7, 8 and 10 inhibited the binding of [3H]colchicine to tubulin by 89–99%, whereas the
lead compounds 1, 2 and 3 showed 84, 67, and 62% inhibition of [3H]colchicine binding,
respectively. Thus 4, 5, 7, 8 and 10 were more active than the initial lead compounds 1–3.
These results clearly demonstrated that these compounds are CS MTAs.

Table 3. Inhibition of tubulin assembly and colchicine binding.

Compound Inhibition of Tubulin Assembly
IC50 ± SD (µM)

Inhibition of Colchicine Binding
(% inhibition ± SD) at 5 µM

1 a 1.4 ± 0.007 84 ± 0.50

2 b 2.3 ± 0.30 67.0 ± 5.0

3 b 2.3 ± 0.40 62.0 ± 4.0

4 0.82 ± 0.04 99.0 ± 1.0

5 0.49 ± 0.08 94.0 ± 2.0

7 0.49 ± 0.06 95.0 ± 0.40

8 0.56 ± 0.09 96.0 ± 0.40

10 0.54 ± 0.08 89.0 ± 0.20

CA-4 1.0 ± 0.09 99.0 ± 0.20
a Results previously published [26]; b Results previously published [25].

2.4.3. Effect on βIII-Tubulin and Pgp-Mediated Cancer Cell Resistance

Compounds 4–8, 10, 12, and 13 were evaluated for their abilities to overcome βIII-
tubulin mediated drug resistance using an isogenic HeLa cell line pair (Table 4). Consistent
with the results obtained in MDA-MB-535 cells, compound 4 was the most potent in the
series in the HeLa and HeLa WT βIII cell lines, with 1.6-fold higher potency than the lead
compound 1. Compounds 5 and 7 showed 2-fold higher potency than the lead compounds
2 and 3 in HeLa and HeLa WT βIII cell lines. The Rr values (Table 4) were calculated by
dividing the IC50 of the βIII-tubulin expressing line by the IC50 obtained in the parental
HeLa cells. The expression of βIII-tubulin is known to lead to paclitaxel resistance, and
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paclitaxel has an Rr value of 8.6 in this cell line pair (Table 4). The target compounds 3–8,
10, 12, and 13 have Rr values ~1.0 (Table 4), suggesting that they circumvent βIII-tubulin
mediated drug resistance, in contrast to paclitaxel.

Table 4. Effect on βIII-Tubulin and Pgp-Mediated Cancer Cell Resistance.

No. IC50 ± SD in
HeLa (nM)

IC50 ± SD in
HeLa WTβ3

(nM)

Rr Value (WT
β3/HeLa)

IC50 ± SD in
SK-OV-3 Cells

(nM)

IC50 ± SD in
SK-OV-3

MDR1-M6/6 Cells
(nM)

Rr Value
(M6/6/SK-OV-3)

1 a 21.3 ± 2.2 21.4 ± 3.5 1.0 27.6 ± 1.8 34.4 ± 5.9 1.2

2 b 118 ± 13 78.4 ± 4 0.7 156 ± 16 160 ± 15 1

3 b 142 ± 8.1 99.5 ± 12 0.8 173 ± 8.6 224 ± 21 1.4

4 13.5 ± 1.5 10.6 ± 1.8 0.8 11.8 ± 1.1 17.5 ± 0.8 1.5

5 64.3 ± 4.3 44.1 ± 4.8 0.7 71.8 ± 5.3 74.1 ± 11 1

6 123 ± 12 80.3 ± 6.4 0.7 92.5 ± 3.3 91.7 ± 12 1

7 57.2 ± 8.5 38.0 ± 3.9 0.7 37.0 ± 6.2 47.1 ± 7.6 1.3

8 87.9 ± 8.8 81.3 ± 5.2 0.9 47.7 ± 1.2 57.5 ± 0.5 1.2

10 146 ± 14 108 ± 8.6 0.7 136 ± 15 209 ± 40 1.5

12 191 ± 8.1 203 ± 12 1.1 178 ± 1.1 223 ± 9.4 1.3

13 170 ± 34 139 ± 20 0.8 142 ± 22 143 ± 244 1

Paclitaxel 2.8 ± 0.4 24.0 ± 3 8.6 5.0 ± 0.6 1200 ± 58 240

CA-4 c 3.3 ± 0.4 3.3 ± 0.3 1 5.5 ± 0.5 7.2 ± 1.1 1.3
a Results previously published [26], b Results previously published [25], c Results previously published [25],
WT= Wild type, M6/6 = SK-OV-3 MDR1- M6/6.

The potent MTAs 4–8, 10, 12, and 13 were also evaluated for their activity in the
SK-OV-3 ovarian carcinoma cell line and the Pgp-expressing subline SK-OV-3 MDR1-M6/6
(Table 4). In these cell lines, compound 4 was again the most potent compound in the
series. Comparison of the IC50 values in the parental SK-OV-3 and genetically manipulated
SK-OV-3 MDR1-M6/6 cell line allows for the calculation of a relative resistance value,
designated Rr. This value is calculated by dividing the IC50 value obtained in the Pgp-
expressing SK-OV-3 MDR1-M6/6 cells by the IC50 obtained in the parental SK-OV-3 cells.
Paclitaxel, a known Pgp substrate, has an Rr value of 240, while CA-4, a poor Pgp substrate,
has an Rr value of 1.3 (Table 4). Compound 4 had IC50 values in SK-OV-3 and SK-OV-3
MDR1-M6/6 cells comparable to that of CA-4 and an Rr of 1.5, indicating that it is able to
overcome drug resistance mediated by Pgp. Here, a correlation between a cell-based assay
and a biochemical assay is not always observed, which might be due in part to the ability
of the compounds to cross the cell membrane and accumulate intracellularly. Compounds
5–8, 10, 12, and 13 also had Rr values ≤ 1.5, suggesting that they are all poor substrates
for Pgp-mediated transport and have advantages over the taxanes and vinca alkaloids in
multidrug-resistant cancer cells.

2.4.4. Activity of Compound 4 in the NCI Cancer Cell Line Panel

Compound 4, the most potent compound of the series, was selected for evaluation
in the NCI-60 cancer cell line panel [50], and it had a GI50 (concentration causing 50%
inhibition of cell proliferation) of ~10 nM against 40 of the 60 cancer cell lines (Table 5).
Compound 4 had better potency than the lead compound 1 in 50 cancer cell lines. (better
by 5 to 6-fold in leukemia, 2 to 17-fold in NSCLC, 2 to 6-fold in colon cancer, 2 to 5-fold
in CNS cancer, 2 to 25-fold in melanoma, 2 to 5-fold in ovarian cancer, 2 to 9-fold in renal
cancer, 2 to 5-fold in prostate cancer, and 2 to 6-fold in breast cancer compared to lead
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compound 1) [26]. Thus 4, the thiophene-fused analogue, is up to 25-fold more potent than
our previously published lead [26].

Table 5. Human Cancer Cell Growth Inhibitory Activity GI50 (nM) of 4 in the NCI-60 Cell Line Panel.

Panel/Cell Line GI50
(nM) Panel/Cell Line GI50

(nM) Panel/Cell Line GI50
(nM) Panel/Cell Line GI50

(nM)

Leukemia Colon Cancer Melanoma Renal Cancer

CCRF-CEM 7.12 COLO 205 10.85 LOX IMVI 10.05 786-0 12.44

HL-60(TB) 4.38 HCC-2998 11.78 MALME-3M 12.24 A498 12.01

K-562 2.72 HCT-116 5.46 M14 4.32 ACHN 10.23

MOLT-4 8.80 HCT-15 8.85 MDA-MB-435 4.89 CAKI-1 16.84

RPMI-8226 12.67 HT29 6.21 SK-MEL-2 11.77 RXF 393 7.65

NSCLC KM12 13.45 SK-MEL-28 12.11 SN12C 14.36

A549/ATCC 11.98 SW-620 5.63 SK-MEL-5 10.83 TK-10 14.21

EKVX 11.24 CNS Cancer UACC-257 18.42 UO-31 11.82

HOP-62 17.67 SF-268 15.89 UACC-62 14.88 Breast Cancer

HOP-92 14.05 SF-295 10.23 Ovarian Cancer MCF7 8.01

NCI-H226 17.46 SF-539 7.93 IGROVI 12.83 MDA-MB-
231/ATCC 10.93

NCI-H23 11.32 SNB-19 9.04 OVCAR-3 17.08 HS 578T 13.46

NCI-H322M 11.58 SNB-75 8.42 OVCAR-4 9.98 BT-549 17.48

NCI-H460 10.39 U251 9.60 OVCAR-5 10.78 MDA-MB-468 6.05

NCI-H522 6.87 Prostate Cancer OVCAR-8 18.10

PC-3 7.67 NCI/ADR-RES 6.19

DU-145 15.64 SK-OV-3 15.60

2.4.5. Antitumor Activity of Compound 4 in MDA-MB-435 Xenografts

Compound 4 was selected for further evaluation in an in vivo xenograft mouse study
in light of its nanomolar potency in vitro in the NCI-60 cancer cell line panel and its potent
microtubule depolymerization activity. The in vivo effects of 4 were tested in the MDA-
MB-435 xenograft model (Figure 5). After conducting initial dose tolerance testing, 4 was
administered at a dose of 75 mg/kg 3 × a week where it caused moderate weight loss
yet had statistically significant antitumor effects as compared to the control at day 14, the
end of the trial. In this trial, there was a trend toward antitumor effects with paclitaxel
(15 mg/kg), but this did not reach statistical significance at any day or at trial conclusion.
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Figure 5. Effects of 4 and paclitaxel on the growth of MDA-MB-435 tumors. MDA-MB-435 tumors
were implanted into the flanks of nude mice and allowed to grow until they reached a volume of
~200 mm3. The mice were treated i.p. with 4 (75 mg/kg) or paclitaxel (15 mg/kg) three times a week.
Tumor volumes and mouse weights were measured 2–3 times a week. Statistical significance was
evaluated by two-way ANOVA (time vs. drug) with Dunnett’s post-hoc tests. A statistically signifi-
cant difference in tumor volume was detected on day 14 between mice treated with 4 (* p = 0.0384)
and untreated control tumors.

3. Materials and Methods
3.1. Chemistry

All evaporations were carried out under a vacuum using a rotary evaporator. Analyti-
cal samples were dried in vacuo (0.2 mmHg) in a CHEM-DRY drying apparatus over P2O5
at 50 ◦C. Thin-layer chromatography (TLC) was performed on Whatman Sil G/UV254
silica gel plates (Whatman International Ltd., Maidstone, England), and the spots were
visualized by irradiation at 254 nm. Proportions of solvents used for TLC are by volume.
All analytical samples were homogeneous on TLC in at least two different solvent systems.
Column chromatography was performed on a 70–230 mesh silica gel (Fisher Scientific,
Waltham, MA, USA) column. The amount (weight) of silica gel for column chromatog-
raphy was in the range of 50–100 times the amount (weight) of the crude compounds
being separated. Columns were wet-packed with appropriate solvent unless specified
otherwise. Melting points were determined using a digital MEL-TEMP II melting point
apparatus with FLUKE 51 K/J electronic thermometer or using an MPA100 OptiMelt (Stan-
ford Research Systems, Sunnyvale, CA, USA) automated melting point system and are
uncorrected. Nuclear magnetic resonance spectra for protons (1H NMR) were recorded on
Bruker Avance II 400 (Billerica, MA, USA) (400 MHz) and 500 (500 MHz) systems and were
analyzed using MestReC NMR (Mestrelab research, San Diego, CA, USA, data processing
software. The chemical shift (δ) values are expressed in ppm (parts per million) relative
to tetramethylsilane as an internal standard: s, singlet; d, doublet; t, triplet; q, quartet; m,
multiplet; br, broad singlet; exch, protons exchangeable by addition of D2O.

Elemental analyses or high-performance liquid chromatography (HPLC)/mass analy-
sis were used to determine the purities of the target compounds. Elemental analyses were
performed by Atlantic Microlab, Inc., Norcross, GA, USA. Elemental compositions are
within ±0.4% of the calculated values and indicate >95% purity. Fractional moles of water
or organic solvents found in some analytical samples could not be removed despite 24–48
h of drying in vacuo and were confirmed where possible by their presence in the 1H NMR
spectra. Mass spectral data were acquired on an Agilent G6220AA TOF LC/MS system
using the nano ESI (Agilent chip tube system with infusion chip). HPLC analysis was
performed on a Waters HPLC system using a XSelect CSH C18 column. Peak area of the
major peak versus other peaks was used to determine purity. All solvents and chemicals
were purchased from Sigma-Aldrich Co, USA. or Fisher Scientific Inc, USA. and were used
as received.
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Ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate (16): 4-Cyclohexanone
15 (5.27 mL, 50.95 mmol) and morpholine (4.39 mL, 50.95 mmol) were added to a mixture
of ethyl cyanoacetate (5.42 mL, 50.95 mmol) and sulfur (13.07 g, 50.95 mmol) in ethanol
(25 mL). The mixture was stirred at room temperature for 1 h, then at 60 ◦C for 12 h.
The reaction mixture was cooled to room temperature, and the solvent was removed in
vacuo. The crude product was purified by flash column chromatography on a silica column
using hexane/ethyl acetate (10:1) as eluent to obtain compound 16 (7.80 g, 34.64 mmol,
68% yield) as a light-yellow solid. TLC Rf = 0.67 (hexane: EtOAc, 3:1); mp, 194–195.7 ◦C
(lit. [51]192–193 ◦C); 1H NMR (400 MHz, DMSO-d6) δ 6.66 (s, 2H, br, exch., NH2), 4.36 (q,
J = 7.0 Hz, 2H, -CH2CH3), 2.60 (m, 2H, -CH2), 2.41 (m, 2H, -CH2), 1.68–1.65 (m, 4H, -CH2),
1.42 (t, J = 7.0 Hz, 3H, -CH2CH3). The 1H-NMR matches the 1H-NMR of the reported
compound in the literature [51]. This compound was used for the next reaction without
further characterization.

2-Amino-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (17): Methyl
sulfone (15 g), intermediate 16 (5.0 g, 22.19 mmol) and chloroformamidine hydrochloride
(5.10 g, 44.38 mmol) were mixed in a round bottom flask. The reaction mixture was stirred
at 140 ◦C for 4 h. The reaction was quenched with 100 mL water, cooled in an ice bath
and basified to pH 8.0 using an aqueous NH4OH solution. The precipitate was collected
by filtration, dried (using Na2SO4) and afforded 3.24 g (66%) of 17 as a brown solid. TLC
Rf = 0.60 (CHCl3: MeOH, 5:1). The product 17 was not purified further and taken to the
next step without characterization.

4-Chloro-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-2-amine (20): Compound
17 (1.96 g, 8.84 mmol) was chlorinated with phosphorus oxychloride (0.80 mL, 8.84 mmol)
and pyridine (0.7 mL, 8.84 mmol) in toluene (15 mL). The reaction was kept at reflux for 4 h.
The POCl3 was evaporated, and the mixture was cooled in an ice bath. The mixture was
neutralized using an aqueous NH4OH solution to yield a precipitate. The precipitate was
collected by filtration, washed with water, dried and dissolved in MeOH. To the solution
was added silica gel (1 g), and the solvent was removed under reduced pressure to provide
a silica gel plug. Column chromatography was performed with hexane and ethyl acetate
(10:1) to generate 20 (2.0 g, 6.19 mmol, 70%) as a brown solid. TLC Rf = 0.68 (hexane: EtOAc,
3:1); mp 234 ◦C; 1H NMR (400 MHz, DMSO-d6): δ 5.28 (s, br, 2H, exch., 2-NH2), 2.74 (t, 2H,
-CH2), 1.92 (t, 2H, -CH2), 1.56–1.50 (m, 2H, -CH2), 1.43–1.38 (m, 2H, -CH2). This compound
was used for the next reaction without further characterization.

4-Chloro-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (21): Treatment of 16
(5.0 g, 22.19 mmol) with formamide (4.42 mL, 110.96 mmol) was carried out in a microwave
vessel at 180 ◦C for 12 h. The reaction was cooled to room temperature, and 50 mL water
was added to the mixture. The precipitate was collected and dried under high vacuum
to afford 18 as a white solid in 72% yield (3.30 g). The product 18 was taken to the next
step without characterization. Chlorination of 18 (3.0 g, 14.54 mmol) was performed using
POCl3 (1.4 mL, 14.54 mmol) and pyridine (1.17 mL, 14.54 mmol), and the mixture was kept
at reflux for 8 h. The solvent was removed by evaporation, and the residue was neutralized
with ammonia in water solution to generate a pale-yellow precipitate. The precipitate was
collected by filtration. To the precipitate was added methanol and 2.0 g of silica gel. The
solvent was removed under reduced pressure, and a silica plug was prepared. A flash
column chromatographic separation was performed using ethyl acetate-hexane as eluent to
afford 1.96 g of 21 (8.73 mmol, 60%) as a pale-yellow solid. TLC Rf = 0.77 (Hexane: EtOAc,
3:1); mp, 210–112 ◦C; 1H NMR (400 Hz) (Me2SO-d6) δ 8.51 (s, 1H, Ar), 2.86–2.82 (m, 2H,
-CH2), 2.78–2.74 (m, 2H, -CH2), 1.84–1.78 (m, 4H, -CH2CH2). Anal. Calcd. for C10H9ClN2S:
C, 53.45; H, 4.04; Cl, 15.78, N, 12.47; S, 14.27. Found: C, 53.58; H, 4.07; Cl, 15.57, N, 12.37;
S, 14.12.

2-Methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one (19): Com-
pound 16 (2.5 g, 11.10 mmol) was dissolved in 20 mL of acetonitrile and hydrogen chlo-
ride gas was bubbled through for 30 min. The mixture was stirred at room temperature
overnight. The residue was dissolved in 10 mL distilled water and treated with ammonia
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in water solution to generate a white precipitate. The precipitate was collected by filtration
to afford 1.27 g (5.77 mmol, 52%) of 19 as a white solid. TLC Rf = 0.11 (hexane: EtOAc, 3:1);
mp >250 ◦C (lit. [51] 285 ◦C) 1H NMR (400 MHz, DMSO-d6): δ 12.10 (s, 1H, exch., -NH),
3.02–2.95 (m, 2H, -CH2-), 2.87–2.84 (m, 2H, -CH2-), 2.66 (s, 3H, -CH3), 1.84 (t, J = 3.1 Hz, 4H,
-CH2-). This compound was used for the next reaction without further characterization.

4-Chloro-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine (22): Chlori-
nation of 18 (1.0 g, 4.54 mmol) was carried out using POCl3 (0.63 mL, 6.81 mmol) and
pyridine (0.54 mL, 6.81 mmol) in 15 mL of xylene under reflux for 6 h. The solvent was
evaporated and neutralized with ammonia in water solution to generate a light-yellow
precipitate. The precipitate was collected by filtration to afford 22 as a light-yellow solid
(704.42 mg, 2.95 mmol, 65%). TLC Rf = 0.83 (hexane: EtOAc, 3:1); mp, 228–230 ◦C; 1H
NMR (400 Hz) (Me2SO-d6) δ 2.79–2.85 (m, 2H, -CH2-), 2.84–2.80 (m, 2H, -CH2-), 2.58 (s, 3H,
-CH3), 1.81–1.77 (m, 4H, -CH2-). This compound was used for the next reaction without
further characterization.

General Procedure for Synthesis of 4–14

Compounds 20–22 were dissolved in isopropanol, followed by addition of 1–2 drops
of HCl and the appropriate anilines. The reaction mixture was stirred for 4–8 h at reflux.
The reaction mixture was cooled, and silica gel was added to the solvent mixture to prepare
a silica gel plug. A flash column chromatographic separation was performed using ethyl
acetate-hexane as eluent to afford 4–7, 9, 11, 12 and 14 with yields of 48–68%. Compounds
9, 11 and 14 were added to NaH in DMF with drop-wise addition of iodomethane to obtain
8, 10 and 13, respectively, in 57–70% yield.

N4-(4-methoxyphenyl)-N4-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimi-
dine-2,4-diamine (4): To a solution of 20 (250 mg, 1.04 mmol) in isopropanol (20 mL),
1–2 drops of HCl were added, followed by addition of 4-methoxy-N-methylaniline (157.3 mg,
1.15 mmol), followed by reflux for 6 h. The reaction mixture was cooled to room tempera-
ture, silica gel (500 mg) was added, and the solvent was removed under reduced pressure.
Purification was performed by column chromatography using 1% MeOH in CHCl3 as
the eluant, and fractions containing the product (TLC) were pooled. The solvent was
evaporated to give a white solid that was washed with CHCl3 to afford 230.0 mg (65%
yield) of 4. TLC Rf = 0.40 (CHCl3: MeOH, 20:1); mp 167–168.1 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 6.93 (d, J = 9.0 Hz, 2H, Ar), 6.82 (d, J = 9.0 Hz, 2H, Ar), 5.19 (s, br, 2H, exch.,
2-NH2), 3.81 (s, 3H, -OCH3), 3.46 (s, 3H, N4-CH3), 2.67–2.63 (m, 2H, -CH2), 1.66–1.60 (m,
4H, -CH2CH2), 1.49–1.45 (m, 2H, -CH2). Anal. Calcd. for C18H20N4OS 0.29 H2O: C, 62.54;
H, 6.00; N, 16.20; S, 9.27. Found: C, 62.58; H, 6.03; N, 16.10; S, 9.21.

N4-methyl-N4-(4-(methylthio)phenyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d] pyrimi-
dine-2,4-diamine (5): To a solution of 20 (150 mg, 0.625 mmol) in toluene (8 mL), 1–2 drops
of HCl were added, followed by addition of N-methyl-4-(methylthio)aniline (105.5 mg,
0.688 mmol), and the mixture was kept under reflux for 6 h. The reaction mixture was
cooled to room temperature, silica gel (500 mg) was added, and the solvent was removed
under reduced pressure. Purification was performed by column chromatography using 1%
MeOH in CHCl3 as the eluant, and the fractions containing the product (TLC) were pooled.
The solvent was evaporated to give a pale-yellow solid that was washed with CHCl3 to
afford 109.0 mg (49% yield) of 5. TLC Rf = 0.35 (CHCl3: MeOH, 20:1); mp 172–173.5 ◦C;
1H NMR (400 MHz, DMSO-d6) δ 7.12 (d, J = 9.0 Hz, 2H, Ar), 6.97 (d, J = 9.0 Hz, 2H, Ar),
5.53 (s, br, 2H, exch., 2-NH2), 3.51 (s, 3H, N4-CH3), 2.39 (s, 3H, -CH3), 2.68–2.64 (m, 2H,
-CH2-), 1.67–1.59 (m, 4H, -CH2CH2-), 1.48–1.44 (m, 2H, -CH2). Anal. Calcd. for C18H20N4S2
0.18 CH3OH: C, 60.26; H, 5.77; N, 15.46; S, 17.69. Found: C, 60.24; H, 5.82; N, 15.47; S, 17.72.

4-(6-Methoxy-3,4-dihydroquinolin-1(2H)-yl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]-
pyrimidin-2-amine (6): To a solution of 20 (100 mg, 0.417 mmol) in isopropanol (8 mL),
1–2 drops of HCl were added, followed by addition of 6-methoxy-1,2,3,4-tetrahydroquinoline
(75.0 mg, 0.458 mmol), and the mixture was kept under reflux. The reaction mixture was
cooled to room temperature, silica gel (250 mg) was added, and the solvent was removed
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under reduced pressure. Purification was performed by column chromatography using 1%
MeOH in CHCl3 as the eluant, and the fractions containing the product (TLC) were pooled.
The solvent was evaporated to give an off-white solid that was then washed with CHCl3
to afford 81.48 mg (48% yield) of 6. TLC Rf = 0.32 (CHCl3: MeOH, 20:1); mp 190–191.8 ◦C;
1H NMR (500 MHz, DMSO-d6) δ 6.79 (d, J = 2.9 Hz, 1H, Ar), 6.56 (dd, J = 8.9, 3.0 Hz, 1H,
Ar), 6.39 (d, J = 8.8 Hz, 1H, Ar), 5.18 (s, br, 2H, exch., 2-NH2), 3.95–3.88 (m, 2H, -CH2),
3.82 (s, 3H, -OCH3), 2.75 (t, J = 6.5 Hz, 2H, -CH2), 2.68–2.64 (m, 2H, -CH2), 1.94–188 (m, 2H,
-CH2), 1.68–1.61 (m, 4H, -CH2CH2), 1.49–1.45 (m, 2H, -CH2). HRMS (ESI) calculated for
C20H22N4OS [M+H]+, 367.48. Found: 366.80. HPLC analysis: retention time, 13.63 min;
peak area, 95.51%; eluent A, H2O: eluent B, ACN; gradient elution (100% H2O to 10% H2O)
over 60 min with flow rate of 0.5 mL/min and detection at 245 nm; column temperature,
room temperature.

N-(4-methoxyphenyl)-N-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-
amine (7): To a solution of 22 (200 mg, 0.890 mmol) in isopropanol (10 mL), 1–2 drops of HCl
were added, followed by addition of 4-methoxy-N-methylaniline (134.0 mg, 0.979 mmol),
and the mixture was kept under reflux for 6 h. The reaction mixture was cooled to room
temperature, silica gel (400 mg) was added, and the solvent was removed under reduced
pressure. Purification was performed by column chromatography using hexane and ethyl
acetate (10:1) to give 98.50 mg (68% yield) of 7 as a white solid. TLC Rf = 0.48 (hexane:
EtOAc, 3:1); mp 186.0–188.0 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.58 (s, 1H, Ar), 6.93 (d,
J = 9.1 Hz, 2H, Ar), 6.86 (d, J = 9.1 Hz, 2H, Ar), 3.71 (s, 3H, -OCH3), 3.42 (s, 3H, N4-CH3),
2.72 (t, 2H, -CH2), 1.74 (t, J = 6.1 Hz, 2H, -CH2), 1.61–1.50 (m, 2H, -CH2), 1.46–1.35 (m, 2H,
-CH2). Anal. Calcd. for C18H19N3OS: C, 66.43; H, 5.88; N, 12.91; S, 9.85. Found: C, 66.72; H,
5.79; N, 12.88; S, 9.66.

N-(4-methoxyphenyl)-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4-
amine (9): Compound 22 (250 mg, 1.05 mmol) was dissolved in isopropanol (10 mL),
followed by the addition of 1–2 drops of HCl and reacted with p-anisidine (0.15 mL,
1.36 mmol) for 4 h at reflux. The reaction mixture was cooled, and silica gel was added to
the solvent mixture to prepare a silica gel plug. A flash column chromatographic separation
was performed using ethyl acetate-hexane as eluent to afford intermediate 9 as a white solid
(170.0 mg, 50% yield); TLC Rf = 0.22 (hexane: EtOAc, 3:1). mp, 208.4–210.1 ◦C; 1H NMR
(400 MHz, DMSO-d6) δ 8.04 (s, 1H, br, exch., NH), 7.71 (d, J = 8.8 Hz, 2H), 7.31 (d, J = 8.8 Hz,
2H), 3.82 (s, 3H, -OCH3), 3.16–3.08 (m, 2H, -CH2), 2.85–2.76 (m, 2H, -CH2), 2.48 (s, 3H,
-CH3), 1.88–1.78 (m, 4H, -CH2). HRMS (ESI) calculated for C18H19N3OS [M+H]+, 326.12.
Found: 326.08. HPLC analysis: retention time, 10.10 min; peak area, 95.10%; eluent A, H2O:
eluent B, ACN; gradient elution (100% H2O to 10% H2O) over 60 min with flow rate of
0.5 mL/min and detection at 240 nm; column temperature, room temperature.

N-(4-methoxyphenyl)-N,2-dimethyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-
4-amine (8): Compound 9 (150 mg, 0.460 mmol) was dissolved in DMF (10 mL), followed
by portion-wise addition of sodium hydride (60% in mineral oil) (18.44 mg, 0.460 mmol).
Iodomethane (0.29 mL, 0.460 mmol) dissolved in 5 mL of DMF was added drop-wise to the
suspension. The reaction was stirred for 2 h at room temperature. Silica gel was added to
the solvent mixture and a plug was prepared. A flash column chromatographic separation
was performed using ethyl acetate hexane as eluent to afford 8 as a white solid (106.0 mg,
68% yield); TLC Rf = 0.41 (hexane: EtOAc, 3:1); mp, 198–199.6 ◦C; 1H NMR (400 MHz,
DMSO-d6) δ 6.92 (d, J = 9.1 Hz, 2H, Ar), 6.86 (d, J = 9.1 Hz, 2H, Ar), 3.72 (s, 3H, -OCH3),
3.42 (s, 3H, N4-CH3), 2.70 (t, J = 6.4 Hz, 2H,-CH2), 2.56 (s, 3H, 2-CH3), 1.72 (t, J = 6.0 Hz, 2H,
-CH2), 1.60–1.52 (m, 2H, -CH2), 1.46–1.34 (m, 2H, -CH2). Anal. Calcd. for C19H21N3OS: C,
67.22; H, 6.24; N, 12.37; S, 9.45. Found: C, 67.38; H, 6.23; N, 12.31; S, 9.44.

2-Methyl-N-(4-(methylthio)phenyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-
4-amine (11): Compound 22 (300 mg, 1.26 mmol) was dissolved in toluene (10 mL), fol-
lowed by addition of 1–2 drops of HCl and reacted with 4-(methylthio)aniline (227.43 mg,
1.63 mmol) for 6 h at reflux. The reaction mixture was cooled, and silica gel was added
to the solvent mixture with the preparation of a plug. A flash column chromatographic
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separation was performed using ethyl acetate-hexane as eluent to afford intermediate 11
as a pale yellow solid (266.0 mg, 62% yield); TLC Rf = 0.15 (hexane: EtOAc, 3:1). mp,
201–202 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 8.02 (s, 1H, br, exch., NH), 7.67 (d, J = 8.7 Hz,
2H, Ar), 7.27 (d, J = 8.7 Hz, 2H, Ar), 3.14–3.05 (m, 2H, -CH2), 2.83–2.77 (m, 2H, -CH2), 2.48
(s, 3H, -CH3), 2.45 (s, 3H, -CH3), 1.89–1.79 (m, 4H, -CH2). Anal. Calcd. for C18H19N3S2 0.17
C6H5CH3 0.12 HCl: C, 63.76; H, 5.71; N, 11.63; S, 17.75. Found: C, 63.77; H, 5.56; N, 11.76;
S, 17.65.

N,2-dimethyl-N-(4-(methylthio)phenyl)-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]
pyrimidin-4-amine (10): Compound 11 (200 mg, 0.585 mmol) without further charac-
terization was dissolved in DMF (10 mL), followed by portion-wise addition of sodium
hydride (60% in mineral oil) (23.42 mg, 0.585 mmol). To the suspension was added drop-
wise iodomethane (0.37 mL, 0.585 mmol) dissolved in 5 mL of DMF. The reaction was
stirred for 2 h at room temperature. Silica gel was added to the solvent mixture, and a plug
was prepared. A flash column chromatographic separation was performed using ethyl
acetate hexane as eluent to afford 10 as a yellow solid (145.0 mg, 70% yield); TLC Rf = 0.45
(hexane: EtOAc, 3:1); mp, 189–191 ◦C; 1H NMR (500 MHz, DMSO-d6) δ 7.16 (d, J = 8.8 Hz,
2H, Ar), 6.85 (d, J = 8.8 Hz, 2H, Ar), 3.41 (s, 3H, N4-CH3), 2.69 (t, J = 6.2 Hz, 2H, -CH2), 2.55
(s, 3H, 2-CH3), 2.41 (s, 3H, -SCH3), 1.83 (t, J = 6.0 Hz, 2H, -CH2), 1.62–1.50 (m, 2H, -CH2),
1.46–1.37 (m, 2H, -CH2). Anal. Calcd. for C19H21N3S2: C, 64.19; H, 5.95; N, 11.82; S, 18.04.
Found: C, 64.44; H, 5.99; N, 11.70; S, 17.78.

4-(6-Methoxy-3,4-dihydroquinolin-1(2H)-yl)-2-methyl-5,6,7,8-tetrahydrobenzo[4,5]
thieno[2,3-d]pyrimidine (12): Compound 22 (250 mg, 1.05 mmol) was dissolved in isopropanol,
followed by addition of 1–2 drops of HCl and 6-methoxy-1,2,3,4-tetrahydroquinoline (188 mg,
1.15 mmol). The reaction mixture was stirred for 8 h at reflux. The reaction mixture was
cooled, and silica gel was added to the solvent mixture with the preparation of a plug. A
flash column chromatographic separation was performed using hexane and ethyl acetate
as eluent to afford 12 as a yellow solid (210 mg, 55% yield); TLC Rf = 0.53 (hexane: EtOAc,
3:1); mp, 199.0–201.0 ◦C; 1H NMR (400 MHz, DMSO-d6) δ 6.78 (d, J = 3.1 Hz, 1H, Ar), 6.54
(dd, J = 8.8 Hz, J = 3.1 Hz, 1H, Ar), 6.34 (d, J = 8.8 Hz, 1H, Ar), 3.80–3.71 (m, 2H, -CH2),
3.69 (s, 3H, -OCH3), 3.48–3.42 (m, 2H, -CH2), 2.82–2.70 (m, 4H, -CH2), 2.54 (s, 3H, 2-CH3),
1.99–1.92 (m, 2H, -CH2), 1.68–1.58 (m, 2H, -CH2), 1.51–1.40 (m, 2H, -CH2). Anal. Calcd. for
C21H23N3OS 0.39 (CH3)2CHOH: C, 68.46; H, 6.77; N, 10.79; S, 8.24. Found: C, 68.78; H, 6.39;
N, 10.52; S, 7.91.

6-((2-Methyl-5,6,7,8-tetrahydrobenzo[4,5]thieno [2,3-d]pyrimidin-4-yl)amino)naph-
thalen-1-ol (14): Compound 22 (300 mg, 1.26 mmol) was dissolved in isopropanol, fol-
lowed by addition of 1–2 drops of HCl and reacted with 6-aminonaphthalen-1-ol (220 mg,
1.38 mmol) for 6 h at reflux. The reaction mixture was cooled, and silica gel was added to
the solvent mixture to prepare a plug. A flash column chromatographic separation was per-
formed using ethyl acetate-hexane as eluent to afford intermediate 14 as a pale-yellow solid
(295.0 mg, 0.892 mmol, 65% yield); TLC Rf = 0.21 (hexane: EtOAc, 3:1); mp, 214.2–215.8 ◦C.
1H NMR (400 MHz, DMSO-d6) δ 8.56 (s, br, 1H, exch., -OH), 7.85 (d, J = 9.2 Hz, 1H, Ar), 7.62
(d, J = 7.5 Hz, 1H, Ar), 7.46 (s, br, 1H, exch., -NH), 7.35–7.22 (m, 2H, Ar), 6.76 (dd, J = 9.2,
2.4 Hz, 1H, Ar), 6.10 (d, J = 7.5 Hz, 1H, Ar), 2.65 (t, 2H, -CH2), 2.58 (s, 3H, 2-CH3), 1.89 (t,
2H, -CH2), 1.58–1.51 (m, 2H, -CH2), 1.45–1.38 (m, 2H, -CH2).Anal. Calcd. for C21H19N3OS
0.19 (CH3)2CHOH 0.13 HCl: C, 68.59; H, 5.51; N, 11.13; S, 8.49. Found: C, 68.78; H, 5.30; N,
11.63; S, 8.87.

N-(5-methoxynaphthalen-2-yl)-N,2-dimethyl-5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]
pyrimidin-4-amine (13): Compound 14 (250 mg, 0.691 mmol) was dissolved in DMF
(10 mL) followed by portion-wise addition of sodium hydride (60% in mineral oil) (28.0 mg,
0.691 mmol). Iodomethane (0.043 mL, 0.691 mmol) dissolved in 5 mL of DMF was added
drop-wise to the suspension. The reaction was stirred for 2 h at room temperature. Silica
gel was added to the solvent mixture, and a plug was prepared. A flash column chromato-
graphic separation was performed using ethyl acetate-hexane as eluent to afford 13 as a
yellow solid (153.56 mg, 57% yield); TLC Rf = 0.46 (hexane: EtOAc, 3:1); mp, 205.1–207.2 ◦C;
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1H NMR (400 MHz, DMSO-d6) δ 7.99 (d, J = 9.2 Hz, 1H, Ar), 7.32 (d, J = 7.8 Hz, 1H, Ar),
7.29–7.24 (m, 2H, Ar), 7.09 (dd, J = 9.1, 2.4 Hz, 1H, Ar), 6.82 (d, J = 7.5 Hz, 1H, Ar), 3.92 (s,
3H, -OCH3), 3.53 (s, 3H, N4-CH3), 2.69 (t, 2H, -CH2), 2.61 (s, 3H, 2-CH3), 1.87 (t, 2H, -CH2),
1.51–1.45 (m, 2H, -CH2), 1.40–1.32 (m, 2H, -CH2). Anal. Calcd. for C23H23N3OS: C, 70.92;
H, 5.95; N, 10.78; S, 8.23. Found: C, 70.75; H, 6.11; N, 10.53; S, 7.95.

3.2. Molecular Modeling

Docking of target compounds 4–14 was carried out in the colchicine site of tubulin
(PDB: 6BS2, 2.65 Å). The crystal structure PDBs were obtained from the protein database.
All docking procedures were performed using various modules of the Schrödinger Maestro
suite (Schrödinger, LLC, New York, NY, USA, 2020–2) [49]. The protein was optimized and
prepared for docking using the Maestro Protein Preparation Wizard to assess bond order
and add missing hydrogens, followed by energy minimization using the OPLS3e force
field. Gaps in the protein structures were ignored, as they were far from the active site. The
Maestro Induced-fit Grid Generation module was then used to define a 15 × 15 × 15 Å
grid from the center of all the ligands. Ligands used in the computational docking study
were built using the Maestro 2D Build module. The Maestro LigPrep module was then
used to generate conformers of each compound subjected to energy minimization using
the OPLS3e force field protocol. The resulting compounds were docked into the prepared
protein using the Maestro Induced Fit Docking. Induced Fit Docking was performed with
standard precision with flexible ligand sampling. A total of 20 initial poses were generated
for each compound. Based on the pose score, the top 4 poses were selected and subjected to
energy minimization using the OPLS3e force field. Finally, the top 2 poses per compound
were generated and ranked according to the Glide score, which is an approximation of
binding energy defined by receptor–ligand complex energies. The top pose was analyzed
and presented in the Biological Evaluation and Discussion section. Docking scores are
listed in Table S1 (Supplementary Materials).

3.3. Biological Studies
3.3.1. Effects of Compounds on Cellular Microtubules

The effects of the compounds on cellular microtubules were evaluated in A-10 cells
using indirect immunofluorescence microscopy. These cells were obtained from the Amer-
ican Type Culture Collection (ATCC) (Manassas, VA, USA). Cells were treated with the
compounds of interest for 18 h, and the cells fixed with cold MeOH and microtubule
structures were visualized using a β-tubulin antibody (Sigma-Aldrich, St. Louis, MO, USA).
The concentration that caused loss of 50% of the interphase microtubules was defined as
the EC50 and calculated as previously described [52]. These values represent an average of
at least three independent experiments.

3.3.2. Sulforhodamine B (SRB) Assay

The antiproliferative and cytotoxic effects of the compounds in cancer cells were
evaluated using the SRB assay [53] as previously described [54]. MDA-MB-435 cells were
obtained from the Lombardi Cancer Center of Georgetown University (Washington, DC,
USA). SK-OV-3 and HeLa cells were purchased from ATCC. Details about the generation
of the SK-OV-3 MDR1-M6/6 and HeLa WTβIII cells were described previously [54]. The
IC50 values represent an average of three independent experiments, each conducted using
triplicate points.

3.3.3. Quantitative Tubulin Studies

Bovine brain tubulin was purified as described previously [55]. The tubulin assem-
bly assay has been described in detail [50]. Briefly, 1.0 mg/mL of tubulin (10 µM) was
preincubated for 15 min at 30 ◦C in 0.8 M monosodium glutamate (pH of 2 M stock solu-
tion adjusted to 6.6 with HCl), varying compound concentrations and 4% (v/v) DMSO as
compound solvent. After the preincubation, the reaction mixtures were placed on ice and
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0.4 mM GTP was added. The reaction mixtures were transferred to cuvettes at 0 ◦C in a
recording spectrophotometer equipped with an electronic temperature controller. After
baselines were established, the temperature was elevated over about 30 s to 30 ◦C, and
changes in turbidity were monitored at 350 nm for 20 min. The compound concentra-
tion that caused a 50% reduction in increase in turbidity, interpolated from the values
obtained with defined compound concentrations, was defined as the IC50 value. The assay
to measure inhibition of [3H]colchicine binding was described in detail previously [56].
Briefly, 0.1 mg/mL (1.0 µM) tubulin was incubated at 37 ◦C with 5.0 µM [3H]colchicine and
potential inhibitors at 5.0 µM. Incubation was for 10 min, at which point the reaction had
reached 40–60% of the maximum colchicine that can be bound in reaction mixtures without
inhibitor. The [3H]colchicine was a product of PerkinElmer, USA. CA-4 was a generous gift
of Dr. G. R. Pettit, Arizona State University.

3.3.4. Cell Culture

HeLa, A-10, SK-OV-3, and SK-OV-3 MDR1-M6/6 cells were grown in Basal Medium
Eagle (Sigma-Aldrich, St. Louis, MO, USA) supplemented with 10% FBS (Hyclone, GE Life
Sciences, Logan, UT, USA) 1% GlutaMAX (Gibco, Life Technologies, Waltham, MA, USA)
and 50 µg/mL gentamycin (Life Technologies, USA). HeLa WTβIII cells were grown in
Dulbecco’s Modified Eagle Medium (Life Technologies) supplemented with 10% FBS and
50 µg/mL gentamycin. MDA-MB-435 cells were maintained in Improved Minimum Essen-
tial Medium (Life Technologies) supplemented with 10% FBS and 25 µg/mL gentamycin.
All cells were grown at 37 ◦C in a humidified environment with 5% CO2.

3.3.5. MDA-MB-435 Xenograft Model

MDA-MB-435 tumor fragments were implanted s.c. into the flanks of female nude
mice. Once tumors reached ~200 mm3, mice were injected i.p. with compound 4 (75 mg/kg)
or paclitaxel (15 mg/kg) 3 times a week. Compound 4 was dissolved in a 50:50 Cremophor
EL/DMSO mixture and further dissolved in PBS for a final concentration of 10:10:80
Cremophor EL:DMSO:PBS (v/v). Paclitaxel was dissolved in a 50:50 Cremophor EL/ EtOH
mixture and further dissolved in PBS for a final solvent concentration of less than 5% (v/v)
Cremophor/EtOH in PBS. Tumor volumes and mouse weights were measured 2–3 times a
week. A two-way ANOVA with Dunnett’s post-hoc tests including all treatment groups
in the trial was used to determine significant differences in tumor volumes between drug-
treated and untreated control groups on each measurement day. These animal studies were
performed at the University of Texas Health Science Center in San Antonio in compliance
with an approved Institutional Animal Care and Use protocol.

4. Conclusions

A series of 11 novel 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidines were de-
signed, synthesized and assessed as MTAs. Several of these analogues were significantly
more potent than the lead compounds and circumvented drug resistance mediated by
Pgp and βIII-tubulin. Compound 4 showed statistically significant antitumor effects in an
in vivo xenograft model (MDA-MB-435). This study corroborated our molecular modeling
predictions, which suggested structural variations to improve binding at the CS to afford
better MTAs for the potential treatment of cancer. Compound 4 is a candidate for further
evaluation in preclinical studies to evaluate its antitumor efficacy.

Supplementary Materials: Table S1: Docking scores; Figure S1: Superposition of 6BS2 pyrimidine
ligand with compound 4.
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