Fuzzy Description Logic Programs under the Answer Set Semantics for the Semantic Web

Thomas Lukasiewicz

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”, Italy

Institut für Informationssysteme
Technische Universität Wien, Austria
Motivation

Ingredients:

- Expressive description logics behind OWL Lite and OWL DL ($SHIF(D)$ resp. $SHOIN(D)$).
- Rule-based formalism (normal logic programs under the answer set semantics).
- Fuzzy truth functions (for conjunction and negation).

Motivation:

- Fuzzy query language for multimedia databases, containing images and videos (such as Google’s YouTube), along the lines of “R. Fagin. Fuzzy queries in multimedia database systems. In Proceedings PODS-1998”.
- Expressing vague terms in natural language interfaces to the Web / Semantic Web.
\[PC \sqcup Camera \sqsubseteq Electronics; \quad PC \sqcap Camera \sqsubseteq \bot; \]
\[Book \sqcup Electronics \sqsubseteq Product; \quad Book \sqcap Electronics \sqsubseteq \bot; \]
\[Textbook \sqsubseteq Book; \]
\[Product \sqsubseteq \geq 1 \text{ related}; \]
\[\geq 1 \text{ related} \sqcup \geq 1 \text{ related} \sqsubseteq Product; \]
\[Textbook(tb_{ai}); \quad Textbook(tb_{lp}); \]
\[PC(pc_{ibm}); \quad PC(pc_{hp}); \]
\[related(tb_{ai}, tb_{lp}); \quad related(pc_{ibm}, pc_{hp}); \]
\[provides(ibm, pc_{ibm}); \quad provides(hp, pc_{hp}). \]
Finite set of truth values $TV = \{0/n, 1/n, \ldots, n/n\}$ with $n \geq 1$.

A fuzzy atomic concept assertion has the form $C(a) \geq v$, where $C \in A$, $a \in I$, and $v \in TV$. A fuzzy abstract (resp., datatype) role assertion has the form $R(a, b) \geq v$ (resp., $U(a, s) \geq v$), where $R \in RA$ (resp., $U \in RD$), $a, b \in I$ (resp., $a \in I$, and s is a data value), $v \in TV$.

A fuzzy description logic knowledge base $KB = (L, F)$ consists of an ordinary description logic knowledge base L and a finite set of fuzzy atomic concept assertions and fuzzy role assertions F.

Example: A simple fuzzy description logic knowledge base $KB = (L, F)$ is given by L above and

$$F = \{Inexpensive(pc_ibm) \geq 0.6, Inexpensive(pc_hp) \geq 0.9\}.$$

Here, F encodes the different degrees of membership of PCs by IBM and HP to the fuzzy concept *Inexpensive*.
The **ordinary equivalent** to a set of fuzzy concept and role assertions F, denoted F^*, is obtained from F by replacing each $C(a) \geq v$ (resp., $R(a, b) \geq v$, $U(a, s) \geq v$) by $C^v(a)$ (resp., $R^v(a, b)$, $U^v(a, s)$).

The v-layer of L, denoted L^v, is obtained from L by replacing every $C \in A$ (resp., $R \in R_A$, $U \in R_D$) by C^v (resp., R^v, U^v).

The **ordinary equivalent** to a fuzzy description logic knowledge base $KB = (L, F)$, denoted KB^*, is defined as

$$
\bigcup_{v \in TV, v > 0} L^v \cup F^* \cup \{ A^v \sqsubseteq A'^v \mid A \in A, v \in TV, v \geq 2/n, v' = v - 1/n \} \cup
\{ R^v \sqsubseteq R'^v \mid R \in R_A, v \in TV, v \geq 2/n, v' = v - 1/n \} \cup
\{ U^v \sqsubseteq U'^v \mid U \in R_D, v \in TV, v \geq 2/n, v' = v - 1/n \} .
$$

KB is **satisfiable** iff KB^* is satisfiable.

F among $C(a) \geq v$, $R(a, b) \geq v$, and $U(a, s) \geq v$ is a **logical consequence** of KB, denoted $KB \models F$, iff $C^v(a)$, $R^v(a, b)$, and $U^v(a, s)$, respectively, are logical consequences of KB^*.
Finite set of truth values $\mathcal{TV} = \{0_n, \frac{1}{n}, \ldots, \frac{n}{n}\}$ with $n \geq 1$.

Negation strategies $\ominus: \mathcal{TV} \rightarrow \mathcal{TV}$ such that
\ominus is antitonic and satisfies $\ominus 0 = 1$ and $\ominus 1 = 0$.

Example: $\ominus \nu = 1 - \nu$.

Conjunction strategies $\otimes: \mathcal{TV} \times \mathcal{TV} \rightarrow \mathcal{TV}$ such that
\otimes is commutative, associative, monotonic, and satisfies $\nu \otimes 1 = \nu$ and $\nu \otimes 0 = 0$.

Example: $\nu_1 \otimes \nu_2 = \min(\nu_1, \nu_2)$ and $\nu_1 \otimes \nu_2 = \nu_1 \cdot \nu_2$.
A normal fuzzy rule r is of form (with atoms a, b_1, \ldots, b_m):

$$a \leftarrow \otimes_0 b_1 \land \otimes_1 b_2 \land \otimes_2 \cdots \land \otimes_{k-1} b_k \land \not \otimes_k \not b_{k+1} \land \otimes_{k+1} \cdots \land \otimes_{m-1} \not \otimes_m b_m \geq v,$$

(1)

A normal fuzzy program P is a finite set of normal fuzzy rules.

A dl-query $Q(t)$ is of one of the following forms:

- a concept inclusion axiom F or its negation $\neg F$;
- $C(t)$ or $\neg C(t)$, with a concept C and a term t;
- $R(t_1, t_2)$ or $\neg R(t_1, t_2)$, with a role R and terms t_1, t_2.

A fuzzy dl-rule r is of form (1), where any $b \in B(r)$ may be a dl-atom, which is of form $DL[S_1 op_1 p_1, \ldots, S_m op_m p_m; Q](t)$.

A fuzzy dl-program $KB = (L, P)$ consists of a description logic knowledge base L and a finite set of fuzzy dl-rules P.
(1) \(pc(pc_1) \geq 1; \) \(pc(pc_2) \geq 1; \) \(pc(pc_3) \geq 1; \)

(2) \(brand_new(pc_1) \geq 1; \) \(brand_new(pc_2) \geq 1; \)

(3) \(offer(X) \leftarrow \otimes DL[PC \cup pc; Electronics](X) \land \otimes \neg \oplus brand_new(X) \geq 1; \)

(4) \(buy(C, X) \leftarrow \otimes needs(C, X) \land \otimes offer(X) \geq 0.7; \)

(5) \(buy(C, X) \leftarrow \otimes needs(C, X) \land \otimes DL[Inexpensive](X) \geq 0.3. \)

(4) A customer who needs a product on offer buys this product with degree of truth of at least 0.7.

(5) A customer who needs an inexpensive product buys this product with degree of truth of at least 0.3.

\(\oplus \) and \(\otimes \) are given by \(\oplus v = 1 - v \) and \(v_1 \otimes v_2 = \min(v_1, v_2). \)
An interpretation \(I \) (relative to \(P \)) is a mapping \(I: HB_P \rightarrow TV \).

The truth value of \(a = DL[S_1 \cup p_1, \ldots, S_m \cup p_m; Q](c) \) under \(L \), denoted \(I_L(a) \), is defined as the maximal truth value \(v \in TV \) such that \(L \cup \bigcup_{i=1}^{m} A_i(I) \models Q(c) \geq v \), where

\[
A_i(I) = \{ S_i(e) \geq I(p_i(e)) \mid I(p_i(e)) > 0, p_i(e) \in HB_P \}.
\]

\(I \) is a model of a ground fuzzy dl-rule \(r \) of the form (1) under \(L \), denoted \(I \models_L r \), iff

\[
I_L(a) \geq v \otimes_0 I_L(b_1) \otimes_1 I_L(b_2) \otimes_2 \cdots \otimes_{k-1} I_L(b_k) \otimes_k \otimes_{k+1} I_L(b_{k+1}) \otimes_{k+1} \cdots \otimes_{m-1} \ominus_m I_L(b_m),
\]

\(I \) is a model of a fuzzy dl-program \(KB = (L, P) \), denoted \(I \models KB \), iff \(I \models_L r \) for all \(r \in \text{ground}(P) \).
A fuzzy dl-program $KB = (L, P)$ is positive iff P is “not”-free.

Theorem: Positive fuzzy dl-programs KB are satisfiable and have a unique least model, denoted M_{KB}, as a natural semantics.

Example: Consider the fuzzy dl-program KB consisting of the above fuzzy description logic knowledge base and the fuzzy dl-rules

1. $needs(john, pc_{ibm}) \geq 1$;
2. $pc(pc_{1}) \geq 1$; $pc(pc_{2}) \geq 1$; $pc(pc_{3}) \geq 1$;
3. $brand_new(pc_{1}) \geq 1$; $brand_new(pc_{2}) \geq 1$;
4. $buy(C, X) \leftarrow \otimes needs(C, X) \land \otimes offer(X) \geq 0.7$;
5. $buy(C, X) \leftarrow \otimes needs(C, X) \land \otimes DL[Inexpensive](X) \geq 0.3$.

Then, KB is positive, and $M_{KB}(buy(john, pc_{ibm})) = 0.3$.
Stratified fuzzy dl-programs are composed of hierarchic layers of positive fuzzy dl-programs linked via default negation:

A stratification of $KB = (L, P)$ with respect to DL_P is a mapping $\lambda: HB_P \cup DL_P \rightarrow \{0, 1, \ldots, k\}$ such that

- $\lambda(H(r)) \geq \lambda(a)$ (resp., $\lambda(H(r)) > \lambda(a)$) for each $r \in ground(P)$ and $a \in B^+(r)$ (resp., $a \in B^-(r)$), and
- $\lambda(a) \geq \lambda(a')$ for each input atom a' of each $a \in DL_P$, where $k \geq 0$ is the length of λ. A fuzzy dl-program $KB = (L, P)$ is stratified iff it has a stratification λ of some length $k \geq 0$.

Theorem: Every stratified fuzzy dl-program KB is satisfiable and has a canonical minimal model via a finite number of iterative least models (which does not depend on the stratification of KB).
Example: Consider the fuzzy dl-program KB consisting of the above fuzzy description logic knowledge base and the fuzzy dl-rules

(0) $needs(john, pc_{ibm}) \geq 1$;
(1) $pc(pc_{1}) \geq 1; \ pc(pc_{2}) \geq 1; \ pc(pc_{3}) \geq 1$;
(2) $brand_new(pc_{1}) \geq 1; \ brand_new(pc_{2}) \geq 1$;
(3) $offer(X) \leftarrow_D \ DL[PC \cup pc; Electronics](X) \wedge \not\otimes brand_new(X) \geq 1$;
(4) $buy(C, X) \leftarrow_D needs(C, X) \wedge_D offer(X) \geq 0.7$;
(5) $buy(C, X) \leftarrow_D needs(C, X) \wedge_D DL[Inexpensive](X) \geq 0.3$.

Then, KB is stratified, and it holds in particular $M_{KB}(offer(pc_{ibm})) = 1$ and $M_{KB}(buy(john, pc_{ibm})) = 0.7$.
Let $KB = (L, P)$ be a fuzzy dl-program. The fuzzy dl-transform of P relative to L and an interpretation $I \subseteq HB_P$, denoted P^I_L, is the set of all fuzzy dl-rules obtained from $ground(P)$ by replacing all default-negated atoms $not \ominus_j a$ by the truth value $\ominus_j I_L(a)$.

An answer set of KB is an interpretation $I \subseteq HB_P$ such that I is the least model of (L, P^I_L).

Theorem: Let KB be a fuzzy dl-program, and let M be an answer set of KB. Then, M is a minimal model of KB.

Theorem: Let KB be a positive (resp., stratified) fuzzy dl-program. Then, M_{KB} is its only answer set.
For a fuzzy dl-program $KB = (L, P)$, define the operator T_{KB} as follows. For every $I \subseteq HB_P$ and $a \in HB_P$, let $T_{KB}(I)(a)$ be defined as the maximum of v subject to $r \in \text{ground}(P)$, $H(r) = a$, and v being the truth value of r’s body under I and L. Note that if there is no such rule r, then $T_{KB}(I)(a) = 0$.

Lemma: Let $KB = (L, P)$ be a positive fuzzy dl-program. Then, the operator T_{KB} is monotonic.

Theorem: Let $KB = (L, P)$ be a positive fuzzy dl-program. Then, $lfp(T_{KB}) = M_{KB}$. Furthermore,

$$lfp(T_{KB}) = \bigcup_{i=0}^{n} T_{KB}^i(\emptyset) = T_{KB}^n(\emptyset), \text{ for some } n \geq 0.$$
M_{KB} of a stratified fuzzy dl-program KB can be characterized by a sequence of fixpoint iterations along a stratification:

Let $\hat{T}^i_{KB}(I) = T^i_{KB}(I) \cup I$, for all $i \geq 0$.

Theorem: Let $KB = (L, P)$ be a fuzzy dl-program with stratification λ of length $k \geq 0$. Let $M_i \subseteq HB_P$, $i \in \{-1, 0, \ldots, k\}$, be defined by $M_{-1} = \emptyset$, and $M_i = \hat{T}^{n_i}_{KB_i}(M_{i-1})$ for every $i \geq 0$, where n_i such that $\hat{T}^{n_i}_{KB_i}(M_{i-1}) = \hat{T}^{n_i+1}_{KB_i}(M_{i-1})$. Then, $M_k = M_{KB}$.
Summary:

- Simple fuzzy extensions of $\text{SHIF}(\mathcal{D})$ and $\text{SHOIN}(\mathcal{D})$.
- Unique least model and iterative least model semantics of positive resp. stratified fuzzy dl-programs.
- Answer set semantics of general fuzzy dl-programs. Coincides with the canonical semantics in the positive and stratified case.
- Fixpoint and iterative fixpoint characterization of the canonical semantics of positive resp. stratified fuzzy dl-programs.

Outlook:

- Computational complexity, efficient algorithms (especially for general fuzzy dl-programs), and implementation.
- Integration of more expressive fuzzy description logics.