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1.Introduction

The idea behind quasi-distribution functions (QDF)
(e.g. [1-3]) is to use a tool that resembles a classical
distribution function in phase space and can be used to
calculate expectation values of observables. In classical
mechanics in phase space, expectation values are
calculated as an integral

<A>=”dqdpA(q, p)F(a,p.t), (1.1

where <A> is the expectation value of the observable A,
A(q, p) is the observable as a function of ¢, p and
F (q, p,t) is the distribution function of the system in

phase space.
In quantum mechanics, using the standard formulation,

the expectation value of A(q, [3) is calculated as
(A(a.p))=Tr{p(a.p.t)A(.p)}. (1.2)
We would like to find A(q, p), F(q,p.t) such that

Tr{5(, p.t) A0, p)} = ] dadpA(a, p) F (q,p.t), (1.3)

where A(q, p) is a function representing the operator

A(q, f)) and F (q, p,t) is the quasi - distribution function

representing the state p . Because of the non-zero

commutation relation between  and p, the mapping of
/3(6], f),t) to F(q, p,t) and A(q, f)) to A(q, p) is not
unique. To define F (q, p,t) uniquely, we follow Cohen [2]
and Lee [1]. We use €™ as a generator for A(q, f)) ,

multiply by f (V, u) to define the ordering, and write (we

use units =M= w =1, except when writing @ explicitly
is more convenient)

Tr{p (g, p,t)e" " f (v,u)} =

. (1.9
” dadpe**F " (g, p,t)

(Lee [1] uses convention in which £ =v and 7=-uU.)

Using Fourier transform [1]

Fi(apt)=
1 RN .
4_7T2J.J. dudvTr {p(q' p,t)elvq—lupf (V,U)} g ivariup _ (15)
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Different choices of the function f (V, u) correspond to
different phase-space distribution functions.
The expression y, (u,v) =Tr {ﬁ(q, f),t)ei"q’i”bf (v,u)} is

the characteristic function corresponding to the choice of



f , so the quasi-distribution function can also be written

as
f _ 1 ~ivg+HU
F'(a, p,t)——4ﬂzﬂ'dudv;(f(u,v)e e (1e)

To calculate the average of an observable, we integrate

= [[ dadpA’ (g, p)F " (a, p.t) 1.7

where [1]

A'(a.p.t)=

%.” dudvTr {A(q, ﬁ,t) glva-ivp £ -1 (_V,—U)} o (1.8)

Sometimes it is convenient to consider the quasi
distribution function in complex & space representation
(coherent state phase space representation) rather than in
the (, p phase space representation [1]. The two

representations are related by

(a+ip), a*=%(q—ip)

(1.9

1]

a=—(a+ip), a'=—(a-i0)

Integration is now done by d (Reo:) d( Imo:) and defined

as da

d’a =d(Rea)d(Ima) = qdp. (1.10)

Distribution functions in &,  and g, pphase space

representations are related through the normalization
condition

qudpF (a,pt) jdaF a,a t) 1.11)

therefore,

F'(a.a’ t)=2F"(q,p1t). (1.12)

In order to write F' (a,a* ,t) in @, terms, we define

new integration variables (this notation is similar to the
notation of references [3-5]; Lee [1] uses z instead of )

,Bziz(uﬂv),ﬂ* =%(u—iv).

(1.13)

Hence,
F' (a,a*,t)z
ﬂ—lzﬂdz/m{,a aa'

Consequently, if we define the characteristic function in
coherent phase space as

{ (a.a" )t (5.5 )} (1.15)

. . (119
't)epé—ﬂaf(ﬂ'ﬂ*)}e—ﬂa+ﬂa

7i(B.8)=T

we get
. 1 . .
Ff (a,a ,t):;”dzﬂxf(ﬂ,ﬂ )e‘ﬂ“ e (1.16)
It is easy to see that
X = fxw 1.17)

where y,, is the characteristic function corresponding to

symmetric ordering (Wigner function).

2. Dynamics

The equation of motion of a general quantum quasi-
distribution function for a Hermitian Hamiltonian was
first given without proof by Cohen [2]. The proof can be
found in reference [1].

oF'(a.pt)
p -
2 1[_|i,|i] 1(_ii’|ijx
2 a2 aql apl
f(_ii_i 0 'i_”iJX 2.1
0% 0% P, O

. 1[5 o 9 a]
sin|f —| ——— X
2\ oq, op, é’qzapl

17 (6, ) F (00 Poit) B b
where H' (g, p)= (% —a—j (9,p) and H(q,p) is

found by putting H q f) in symmetrical ordering and
changing ( to q and P to p.

Sometimes we are interested in adding a loss mechanism
to the equations. One of the ways to do it is by weak
coupling to a reservoir. In this case, for the density matrix,
we have the well-known master equation [6]



2
Z(N+1)(2apa" -a'ap- pa'a)+ 7Oy O gy Oy
2\ O oo (oo ole
/4 st=a  aats  ~aat
EN(Zapa—aap—paa )+ . 2.2) N ol __
y Oada
ZM(2a'pa’'-a"a'p-pa'a’)+ 2 2
2 ( ) %[M882+M*aazj+
a o \
%M (2apa—aap - paa) W(a,a*)= . (@25
Ia)[—a——a j+
oa oa
The operator master equation can be converted into a c- P 5
number equation for any quasi-distribution function. i (V — v _j +
oo oa
We assume a quadratic Hamiltonian, i.e. Hamiltonian of o . .0
the form 2i [A—a -A —aj
o oo
H=o0(a'a+y2)+(va'+Vv'a)+(Aa'a'+ A'aa). 2.3) QW (a,a*
It was shown [5,7] that the equation of motion for the In @, p representation
Wigner characteristic function is
oW(aq, p)
O (B.B*) _ —a
" o 0 w[iq—i pj+1[ip+iq]+
Z[_ﬂ__ﬁ*_*_wz)_ op 0q 2lop - oq
2 op op 5 5 5 o
2 2|R—-U—|-yL -
YN8 - ( op aqj "™ apq
4 *2 * ) 2 2
2(Mﬂ +M ) ZK(6_2_6_2)+ W(q, p)=(2.6)
5 5 Iw(B.B8%)= . @9 2 \oq° op
io ﬂ*—,—ﬂ—j-l- 2 2
[ op " op Z(N+1j 6—2+6—2 +
. - 2 2){log° op
i(VE +V B)+
2/&[qi+ pﬁ)— 2/&((13— pi)
2i Aﬂ*ﬁ—A*,ei, op o oq op
op op .
A \ Q,W(a. p)
Q. 2w (B, B*)

where M =K+iL, V=R+iU, A= A<+iﬁ\,.
And for the Wigner function [5,7]

In [4,5] Ben-Aryeh and Zoubi noticed that the equation of
motion for the Wigner function can be written in the form

%:{Zaé}ﬁ @7

where the operators S close a Lie algebra.

In @, p representation the S are



_ o - 0 =~ O 0

=p—, =y—, S=_ -
S paq S qap s aqq app
- 8 _ 0 _ a4 0 o 0

-~ qgq+—p, S=—, S=— . (29
4 aqq 8pp S oq" " op
S 0°
S =—3 Tz 9

aq op oqop

[S.S,
I:S,ég:l=—2§9, [Al'ég:lz_éw I:Az’és]z_zéza
[éz’gsJ:_éei |:§2'A7:|=_2§9! I:éz’ég]:_ég 2.9
[8.8]=-8, [8.8)-8, [8.8]- 25,
[8.8)-25. [5.8]--5. [5.8]--5.
I:A4’A :|=_2§7' |:§4'§8:|=_2§8’ |:§4’§9:|=_£c

In coherent representation, the S operators are [5]
&_.,0 0 o .
S=a 2 =6¥£, Sg—ga—ga
Aﬁ%a%if a, §5=%, éf% (2.10)
~ ? _ 02 R 52
87250!2’ 88280!2’ Sg:aoz&o/

and their non-zero commutation relations are the same as
in equation 2.9.

It is easy to see that the propagation operator U (t, 0)
defined by

F(q.p.t)=U(t,0F(q.p.,0 2.11)

obeys equation 2.7, and in addition equals unity when
t=0,ie.,

8Ut0

{Zas} (1,0), U(0,0=1 212

Since the S operators form a Lie algebra, the propagator
can be written as [4,5,8]

0 (6.0)=TT(5).

(2.13)

Of course different ordering of the g vs

different C, .

In this form the propagator is built as a product of simple
propagators, which can be easily applied, as we will see

will yield

later. To find the coefficients C, Zoubi and Ben Aryeh

used a matrix representation for the operators é . Using

this representation they found the equations for C,

él =a -2aC,-aLC’

C,=a,+2aCC,+2aC,

(53 =a,+a,C,

C.=a,

C, = (aC,+a,) e ,(2.14)

C, = (aCC,+al,+ay)e™ ™

C, = (a,C?+al,+a,)e* >
a,(C,+CC)+

) a,(1+2CC,+C/C/)+aC;

@202

Cy =[ 8, (1+2CC,) + 224(C,+C{C )+ 2a,C, | &

with the initial condition C, (0)=0 forall i .

We show that the same procedure can be applied to a wider
class of quasi-distribution functions.

We define the "general Gaussian quasi-distribution
function" as a function for which f has the form

f (IB’IB*) — eﬁ‘/"z‘fAQﬂZJrAaﬂ'z or f (V,U) _ eC1u2+C2v2+<232iuv (2.15)

It is easy to see that (e.g. [1])

1. For A=0,A,=0,A,=0 or C,=0,C,=0C,=0

X 1is the characteristic function of Wigner function.

2. For Aizé,Azzo,Agzo or C1=%,C2=%;,C3=0

X is the characteristic function of the normal ordered

function (or P function).

3. For A:—%,A2=0,A3=0 or

1 1
C=-5:C=-7,

of the anti-normal ordered function (or Q function).

C,=0 g, isacharacteristic function

4. For A&ZO’Azz_%'Aszji or C1=O,C2=O,C3=—%1

X+ 1is the characteristic function of anti-standard ordered

function (or Kirkwood Rihaczek function).



5. For A1=0,A2=%,A3=—711 or c1=o,c2=o,c3=%

X 1is the characteristic function of standard ordered

function (or anti Kirkwood Rihaczek function).

6. For A,:%,Afo,As:o or cl=£§1,c2 S

:Z'Cazo

X is the characteristic function of the s-ordered function
of Cahill and Glauber [9].

The relations between A, A,, A, and C,,C,,C; are

1
GoalATATA) a-(crc)

C2=%(A1—A2—A3) or A2=%(c1-c2+zc3). 2.16)

1 1
Co-2(A-A) A=3(C-C,-2C)

As already mentioned, Cohen presented a general equation
of motion for quasi — distribution functions under a general
Hamiltonian. Using his formula in the case of quadratic
Hamiltonian and Gaussian quasi-distribution functions.
the propagator can be decomposed into simple propagators
just like the case of the Wigner function. (In this section we
show that it is true for propagation without damping; for
propagation with damping see the appendix).

Here we do the calculation only in (, p representation.

The quadratic Hamiltonian is

H(a,p)=
P @1
K,G° + K,p +K35(qp+ pa)+ K a+Kp
We use equations 2.1, 2.15 and 2.17 and obtain
(a0 p)=KOZ KPR AP K Ar o

Kp,—2C,K,-2CK,+ XK,

and the equation of motion

f f
oF (; p,t)z_ZszaF E;q,p,t)Jr
oF "(qg,p,t
2K1q%+
F'(q,pt F'(q,pit

K3[pa (;:)p )_q@ (é’zp )]+
2 f

(2K302—4JK203)W+ (2.19)
2 f

(4i K.C;—- 2K3C1)%p?p’t)+

0*F (g, p,t
(4chl_4K1C2)#+
K oF " (a, p,t)_K oF"(a,p.t)
4 ap 5 aq

We see that the equation of motion has, again, the form

oF (q, p,t

(9. p.t) a
- = i F 1 !t b
p Z%S (a.p.t)
where the coefficients @, are
a=-2K,, a,=2K,, a,=-K;, a,=0,

a=-K,, a,=K, a,=2KL,-4KL, . (2.20)
a,=-2KLC,+4KC,, a,=-KLC+&KL.

Therefore, the same technique which Zoubi and Ben Aryeh
used to decompose the propagator of the Wigner function
into simple propagators can be applied here, too. The
propagation operator may be written as

U (t, O) = I_I(ec‘(l)S ) , where the C, (t) are related to the

a (t) via equations 2.14.

3. Examples

3.1 Free particle (H (G, p) =

N |U,1,
N~

3.1.1 Wigner function (free particle)
The equation of motion for the Wigner function is

oFY (g, p.t) 0 _w
— /= _p—F . p,t). 3.1
o P (a.p.t)

In this case, the solution is immediate

FY(q,p.t)= e_ptaFW (9,p,00=F"(g-pt,p,0. (3.2



3.1.2 Standard ordered (anti — Rihaczek) function (free
particle)

In this case, the equation of motion is

oF*(q, p,t) - pl a £S5 (g pot)- i

2 S
- E G A
ot aq 2

a 2
Since the operators p— and —; commute with each
aq aq
other, the solution is again immediate

("IU2

pt—
t 2 F 0
(q P ) © (q P.0)= (3.4

_mi 77*221
e “e’" F%(q,p,0)

Since only derivatives with respect to g appear in the

propagator, the propagator has a very simple form in
Fourier space and so

k k |t+ikg—ikq'
F°(q p.t) ——fe p) o F°(q',p,0)dq 'dk .(3.5)
For example, for z//(q, O) 7Y€ T2 the above integral
yields

2
Y 1 |t) 1+|t)

e® (1-it) e (3.6)

38.1.3 Anti-normal quasi-distribution function (free particle)

In this case, the equation of motion is

FAN (q' p,t)
— s
) (3.7
~pZE™ (g, p)- 1777 py)
oq 2 Bgop

In this case the operators do not commute. We see that

1
a=-la,= 5 The differential equations are

él=-1,c'7=-%cl,c'9=-% with C (0)=0. (3.9)

Their solutions are

C,=-t, C,==¢t, cg=——;t. (3.9)

So we get

2 1

1o 1
FAN(q pt) e p?q 4‘ o g 2 2gop | AN (q,p,O). (3.10)

To apply the propagator, it is convenient to write
FAN (q, p, 0) as a Fourier transform, and then

a 1 2

1,
EAN (q D, t) e'pa v ?eibqbpx
4—7T2feiw“vq1AN (u,v,0)dvdu = (3.11)

1 —tp(—iv)+%t2(—iv)z—%l(—iv)(iu)+ipu—ivq

e Zan (U,V,0)dvdu

In order to demonstrate the use of the propagator, we
calculate the anti-normal QDF of y/(q, 0) = ﬂ_—l/Ae—qZ/Z

function of time. The anti-normal characteristic function
for this state is

as a

uv?

Im(UVv,0)=e" =g 2 (3.12)

And so the anti-normal quasi-distribution function is

E AN (q’ p,t) _
1 -tp(—iv)+1l (~iv) —}t (=iv)(iu)+ipu— |vq
Ie a 2 2 dvdu =. (313
4r°
—2p?-2q°—p*t?+ 2gpt
1 1 e 4t
T \4+1t?

N2
+

N |U,Z,
-

3.2 Simple harmonic oscillator (H (q, p)=

3.2.1 Wigner function (Harmonic oscillator)

In this case, the equation of motion is

aFW (qa pvt) a w a W
——F=-p—F ,p,t)+q—F ,p,t).(3.14)
o P (a,pit) 9% (a,p.t)

The only non-zero coefficients are a, =-1,a,=1

So the equations for the C, are

él =a,- a-2012
C,=a,+2aCC,. (3.15)
éa =a,C;



The solutions for these equations are

C,=-tan(t),
C, =sin(t) coqt) . (3.16)

=In(coy(t))

And so the Wigner function as a function of time is
W(a,p.t) =

,tan(t)p— sin(t) coét) q— In( cog(t q_i J\N .(3.17)
e e (a.p.0)

It is easy to prove that

e "F (q,p) = F (q-a.p).
efaf%F(q, p)=F(q.p-2), . (318
ea[é » j,:(q p.t)=F(e'q.e*p)

Hence, we get

W(ag,p.t)=
—tar(t)p— 0 w@)q, in(eost)
cos(t)(q— tar(t) p) .
(p+sin(t) cogt)(q- tarft) p)) ,

°q "p ]\N(q p,0)=.(3.19)

w

S(t)

In order to see the behavior at @ — 0, we write the
previous equation in standard units:

W(a,p.t)=
cos(a)t)( ta:(st) j

w (p+msin(wt)00€(wt)(q_mn(rmg))t)pj] 0
cos(at) |

. (3.20)

It is easy to see that for @ —> O,W(q, p,t) tends to

W(q—ﬂt, p,Oj as it should.
m

3.2.2 Standard quasi-distribution function (Harmonic
oscillator)

The equation of motion is

—aFS(aqt' p't)=—pa%Fs(q, p.t)+qa%Fs(q,p,t)—
i 82 - (3.21)
2" (@ pt)ﬁgF (apit)
The &, coefficients are
a,=-1 a,=1, a7=—iE, a8=i—2. (3.22)

Solving these equations we get

= S|r(t) coft) ,
=In(cos(t)) : C7=—— si( 2) ,. (3.23)

C, =-tan(t),

C, =|Zsm(2t) C, _—(cos( P)- 1

Thus, the standard quasi-distribution function as a
function of time is

tr\(t)pf S|r(t co@t)q— In(cos{t))[ q_fpj

FS(q, p,t
(a.pt)=e .(3.24)

_%sin(z)% asir( z)f’ S(cos 2)- N

e Tt e “PE2(q, p,0)

As an example we show the standard QDF as a function of
time for some states

3.2.2.1 Superposition of the ground state and the first
excited state

The standard quasi-distribution function for a
superposition of the ground state and the first excited state
at t=0 is

Foy 1, (@P.0)=
70
1 g (_171_1/4eq2/2+ ﬂ—l/4\/§qe—q2 /2]><
Jor © V2
1 P22 i 1 71/4\/_ - 2/2)
—r "% VN 2pe ™ %= (3.25)
T
Ei 1 dPgd /Ze—p 2 i_]-_]-eiqpe—qzlzpe—p2/2+
227 27
1_1qe—q2/26—p2/26iqp _i_l_lqe—qZIZpe—pleeiqp
2r V4



Propagating the function gives
Fo 1, (apt)=
f\0> f\l
1 st —? /2,
e e +
g V2" ;

1 71/4\/_ _q2 12 i
- 20e 9 “e?
N

ﬂ-1/4 iz lt_i_:|-7z_-1/4\/§pe-p2 /2e’i§t _
V2

N
- 3\

- 5

gvg gtz _j L dPe 9 2pe P2t 1 (3.26)
T Vo4

qe|qpe q /2e—p2/2e|t 1

§|—‘§||l—‘/ﬁ

L L gogeinpevin

T

111

2 \/E T

_eiqpe—q2/2 pe,pz/z gCOS([ »iq Si'n( )=
ipcost )- p sin{ )

|qpe—q /2e—p 12 _j 1 |qpqe—q IZpe—p2/2+

3.2.2.2 Cat state

A cat state is defined as

The standard ordered quasi-distribution function of the cat
state at t=0 is

P (0.P.0)= ¢ ()7 (p)-

1 eiqp 1 (<05|q>+<—a|q>)>< . (328)
Vor 7 24261 ( ((p|a)+(p|-a))
Using
(qla) = [%T e—i(q—ﬁA) /2B ABi ,
L (3.29)
[ Le _(par) sins-2ni
(pla)= ( ~ j e

where o = A+iB, we obtain

101 1,
= p.0)= = g?e
(%P0 Vor 2426

1 2
eiqpe?(q“EA) -
1 2
eiqpe?(q“@*) -
1 2
eiqpe_E(qJ'&A)

g e'%(q"‘@*)z‘%( p+/2B) +/3 (aB+AD)

%( p—\/EB)Z—x/Ei (gB+Ap)
+
2(p+28)" A (cB-Ap) (3.30)
+

_%( p_ﬁB)z—ﬁ(—qB+Ap) .

Performing the propagation, we get

( ) 1 2|AB(2co§t- | §
ca1 a,p, \/571' ot 2672‘54

e—E(q—x/EN) —E(p—\/EM) —J/2(qM +Np) N

1 2 1 2
o 20N P A (3.31)

ei(Bz—Az)sinZt i
1 2 1 2
efi(q+\/2N) 772( pfx/ZM) —J2(~gM +Np)

e—%(qux/EN )Z ——;( p+V2M )2+«/3 (gM +Np)

where N = Acost+B sirt and M = Bcost— A sirt.

3.2.3 Normal and anti-normal distribution function
(Harmonic oscillator)

Using equations 2.19, 2.20 we see that if K, =K, (.e. the

coefficients of P? and G are the same) we get very simple

equations with only two operators for the normal and anti
—normal distribution functions, which are the same as the
equation of the Wigner function (see equation 3.14)

O N/AN (q' p,t) _
at
aFN/AN , ,t aFN/AN , ,t :
pFT @Ry P (a,pt)
aq op

(3.32)

This can be always achieved by proper change of variables,
but just in case we have only one oscillator frequency in
the system. For others the equation will also contain the

DR N/AN (q’ p,t)
opaq

motion for the normal and anti — normal distribution

functions in this case of K; = K, will be as in equation of

3.19, which is

FN/AN (q’ p,t) —

&l . a a a
e—lar‘(l)pafqesw(t) co(;l)qa—peln(cos(t))(?’qq—afp pj F NIAN (q, 0, 0)

term . Consequently the equation of

. (3.33)



Hence, similarly to the Wigner function, we obtain

F(a.p.t)=
cos(t)(q— tar(t) p) .

———(p+sin(t) coqt)(q-

(3.34)
F

s( ) tarft) p))

3.3 The Hamiltonian H = €% + £e?'p +%(qr>+ pq)

3.3.1 Standard quasi-distribution function

In this case we look at an example of a Hamiltonian with
time dependent coefficients. The above Hamiltonian
represents a simple harmonic oscillator with a mass, which
exponentially changes in time and with a squeezing term.
We use equations 2.19, 2.20, and get the equation of
motion for the standard quasi-distribution function for the
above Hamiltonian

OF*(a.p.t) _
ot
—2s€” p—F *(a, pt)+2,se q F *(a.pt)-
2 .(3.35)
S(q p.t)+

25t

ice ; °(q,p,t)+ice®
0 0

5| p=F%(a,p,t)-q—F°(q,p.t

(pap (a,p.t) 9% (a.p )]

The non-zero coefficients @, are

—25t

a,=2e”, a,=-ige”
a,=-o.

a =-2¢6,

(3.36)
a, =ige™

The differential equations for the C, coefficients are

C,=a,-2aC,-aC?
C,=a,+2aCC,+2aL,
é3 =a,+a,C,

C, = (aC’+a,)e

Co=(as(1+20C,+C7C ) +agL f)e™™

C,=(2a,(C,+CC,)+2aC))

(3.37)

And their solutions are

C, =-tan(zt g, e sir( 2t) cob &) ,

C,=-6t+In(cos(2t ), C7=$(4€t) ’

L(cog 40)- )

.(3.38)
C, =|Zsin(4gt) , C,=

Hence the standard ordered quasi-distribution function as
a function of time is

F*(a.pt)=

—tan(2st B** p,fi 2" sir( 2t) cop 2t)q,>i (-st+In(cos(2t ) :iq—_:ip

e “e Pe ["q ® jx.(3.39)
—isin(4et) 2% i s.n(4gt)— (COS{ t)- 1)

e * “e' "‘”’F (g, p,0)

For example, if we propagate the standard QDF of a
harmonic ground state for the above Hamiltonian, we get

1 20t _ P 20t

Fs(q,p,t)=%\/— 'm_ie 25 (3.40)

4. Summary and conclusions

We have presented a Lie algebraic approach to the time
propagation of the general Gaussian quasi-distribution
function evolving under a general quadratic Hamiltonian
(and including damping). It seems that the underlying
reason for the possibility to use this approach may be
traced to

1. The fact that the operators involved in the Hamiltonian
(equation 2.19) and in the damping (equations A.8, A.11)
close the general Harmonic Oscillator Lie algebra.

2. The choice of the function f (equation 2.15).

We expect that this approach may be generalized to treat
the time-development of classes of quasi-distribution
functions evolving under Hamiltonians which involve a
finite Lie algebra.

Appendix

Our purpose is to show that adding damping to a general
Gaussian quasi-distribution function, will still yield just
the same operators that appeared in the case of the Wigner
function. Since the damping is more easily written in the
coherent o representation, we will use it here. We find the
changes in equations 2.4 - 2.6 when using a general
Gaussian quasi-distribution.

In coherent space, the Wigner function is defined as

W(a,a*)=ﬂ—12J‘e“ﬂa'“'ﬁ)(W(ﬂ,,B*)d2/3. A1)

Its evolution under quadratic Hamiltonian with additional
damping is



Sufaa) Lo B0
8t T o |

Jeaﬁ I, (BB

A2

Since the definition of a general quasi-distribution function
is

F'(a.a') ﬂ—lzje“ﬂ”“'ﬂf (BB ) 1 (BB Y B.(A3)

its evolution in time under a quadratic Hamiltonian with
additional damping is

OF'(a,O/)_
——=
Ieaﬂ ot (p.5) zw(ﬂﬂ) 25

(A9
J e (BB Qlwzw(ﬂﬁ)dzﬂ—

Ie"‘”“f (B.8)0, (2 (8.5)1 (8.8 ) 5

7T2

Substituting é a Ve get

oF (ao:, ) )dﬂ+

ﬂ—lzje“ﬁ““”xf (B.5)1 (.85 (8.8 ) '

Lo it (1

where
. ol -0} 05 )
0
2'(’*5 % ﬁﬁ_ﬂ*)

It is easy to show that
ﬂ—lzfe“ﬁ*‘“'”élw (7 (8.8 ) B=0F " (. ).A.0)

We substitute the expression for a Gaussian f ( B, /5'*)
(equation 2.15) and find for the second integral in A.5
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o

f (ﬂ,ﬂ*)[—m)[ﬁ D ((8F) =
20(AS?-AS),

e
y(AlB[ + A+ AB?),

f(8.p )[a[Aﬂ ——Aﬂ—Df(ﬂ,ﬁ’ )

ﬂaﬁ

LA

(95 o " op
2(A (A8 +2A A7) - A(AB? + 24, 8))

Hence,

oFf (a,o/)
ot
o~ P

J'_
[

=ﬁwFf(a,a*)+

2 (8.8 )2do(AB? - AL ) B+

20 (BB )y (ALB] +AS +AB? & B+

o a A (AB +2A8)-
I—eﬂz " (B)2 (Mi i AMZ) ’
A(AB? +2A) B

QF (. )+

(A.8)

82

2 2
2iwpga——2iwAza—*+ KA

2
4R A— a

_2AA1 +4IAA,
52 82 0?2
At A
doder Azaaz ASaof

80:80:

J

In the last identity we used the definition

+7(—A

Ff (0:0: Ie"ﬁ Al (ﬂ,ﬂ*)dzﬂ A9

and the identities

0 0

1 orapon
oo Fled) == [ 188 1 (8.5 )
60;2 F(aa je“f’-“ﬁ,e;( (BB)B  (A10
az — ﬂ - p
~— =& (5. ) B

The same procedure can be done in position-momentum
space, too.



We get in the (, p representation

oF ' (q, A
8(’tq p) =QWFf (Qa p)+

82
2——(C,-C
apaq( 1 2)+

2 2
2C, 8_2_8_2
op” g
2 2 2
L e, et s
op aq opoq

. A1y
. F'(a,p)
—ﬁ(cl +C2)+
4A, Pg +

2 2
i 6—2+a—2 C,
oap° aq

o° 0?
4A, [_CIF +Cza_q2J

Y

We see that in both representations, the propagator of the
general Gaussian quasi-distribution function can be
written as an exponent of a sum of operators representing
the same Lie algebra we saw in the case of the Wigner
function, and so again, the same technique can be applied
in order to decompose it into simple propagators.
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