Learning through Crowdfunding

Gilles Chemla and Katrin Tinn

2017

Conclusion

Motivation Model Crowdfunding platforms Empirical implications Conclusion

Example

PERSONAL ROBOT

Target: \$50 000

Raised \$161 537 (323%)

274 backers

Rewards:

\$4 – 52 backers, "thank you"

\$19 - 49 backers, "thank you" and T-shirt

\$995 – 86 backers (200 available), Pre-order

\$995 - 23 backers (50 available), Pre-order special version (development kit)

91-99% -

\$995 – 4 backers (10 available) Pre-order special version (research kit)

\$1195 – 26 backers (31 available), Pre-order

\$4975 – 1 (10 available), Pre-order 10 with company logo

Imperial College London

Timing of backer contributions (Personal Robot)

Questions

- What is the main source of value creation for firms and backers?
- Why restrict the pool of backers to future consumers?
- What are the characteristics of firms that benefit most?
- How can firms commit to deliver their products to future consumers?
- Why are third-party platforms needed?

Sector and projects

▶ \$5.5bn (2015) up from \$4bn (2014),\$19bn expected in 2021. (Massolution and Statista)

Crowdfunding platforms

- Innovative consumer products (Technology, Design and Gaming) raise most funds - 61% of all funds collected; \$55K-\$90K per project compared to \$21K overall average. (Kickstarter)
- Many projects raise funds comparable to VC/Angel investments around 4000 projects raised over \$100K; 240 projects raised over \$1M. Pebble Technology \$20.3M (2015), \$10.3M (2012), \$12M (2016). (Kickstarter)
- Average contribution per backer is noticeable e.g., \$200K on average of technology project. (Kickstarter)

Moral hazard

- Backers contribute during a fixed length campaign.
- Funds are passed on before the firm invests and delivers rewards.
- Nevertheless most projects deliver the rewards (Mollick 2014).

Imperial College London

Successful theatre vs. technology projects.

Overall theatre vs. technology projects.

Our paper

- Reward-based crowdfunding enables firms to credibly learn about demand.
- Real option value of learning: better investment decisions.
- We derive the optimal scheme, analyze existing schemes.
- Value of learning mitigates moral hazard.
- ▶ We derive empirical predictions.

Alternative explanations

- Belleflamme, Lambert, Schwienbacher 2012 and Varian 2013 focus on backer preferences:
 - price discrimination but products are often pre-sold at a discount.
 - backers are pivotal but systematic oversubscription.
- Strausz 2016 and Ellman and Hurkens 2017 consider pre-selling, and contribute to debate about the importance of moral hazard.
 - preselling without "consumer survey" feature of crowdfunding but innovative consumer products seem to benefit the most and credit constraints are not the main reason for participation.

Setting

Motivation

- ▶ The firm has *N* potential consumers; fraction $\theta \in [0, 1]$ has valuation 1 and $1 - \theta$ has valuation 0.
- \bullet d is unknown to the firm, prior distribution $\theta \sim Be(\alpha, \beta)$, where $\alpha = \lambda \theta_0$ and $\beta = \lambda (1 - \theta_0)$.
- \blacktriangleright Many possible prior beliefs including uniform prior (Be (1, 1))

Imperial College London

Examples of possible prior beliefs

Setting

Motivation

- ▶ All agents are rational and risk neutral, discount factor is $\delta < 1$.
- Crowdfunding at date 0.
- ► The firm decides whether to invest I at date 1.
- If the firm invests, it produces and sells at date 2.
- No credit constraints.

Benchmark

- ightharpoonup M < N consumers frictionlessly reveal their valuation at date 0.
- The firm has incentives to invest iff

$$-I + \delta m + \delta (N - M) \mathbb{E} [\theta | m] \ge 0,$$

where m is the number of consumers with valuation 1 in sample M.

▶ Threshold: the firm invests if $m > \bar{m}$

Learning example with Be(4,2): 35 out of 50 customers pre-order the product

Learning example with Be(4,2): 25 out of 50 customers pre-order the product

Insights from the benchmark model

Low investment cost *I*. No gain from pre-selling.

Wide range of intermediate investment costs. Value of learning is positive and maximized at the ex-ante breakeven point.

Higher uncertainty about demand increases the value of learning.

Example on the value of learning

Crowdfunding

- Pre-selling is an efficient way to learn about preferences.
- But firms cannot commit to money back guarantees.
- ► Further, firms cannot either commit to limited campaign length and transparency.

Crowdfunding

- Third party platform indirectly mitigate moral hazard:
 - Transparency during the campaign.
 - Limited length of campaigns.

All-or-nothing crowdfunding - setting

- Timing during date 0:
 - **Morning of date 0:** the firm decides whether to launch a campaign.
 - **Mid-day of date 0:** the firm sets a target \bar{m}' and pre-ordering price p_0 .
 - ▶ **Afternoon of date 0:** *M* potential backers observe each other's decisions and decide whether to participate.
 - **Evening of date 0**: The firm gets p_0m iff $m > \bar{m}'$.
- \blacktriangleright We allow for reputation costs χ that may depend on whether the firm meets its target.
- ▶ Platforms are competitive and the intermediation cost is Z.

Imperial College London

- ▶ The firm always extracts all the high valuation consumer surplus.
- The firm invests iff

$$\delta m + \delta (N - M) E [\theta | m] - I \ge \delta m - \chi_Y \text{ if } m \ge \bar{m}'$$

 $\delta m + \delta (N - M) E [\theta | m] - I - \chi_N \ge 0 \text{ if } m < \bar{m}'$

▶ Two thresholds: the lowest target the firm can commit to $(\bar{m}^{*\prime})$, and the investment threshold (\bar{m}^{*}) .

All-or-Nothing - results

- 1. If reputation costs are small, the firm sets a target higher than optimal, and may want to invest after failure. Crowdfunding is possible as long as *M* is low enough.
- If the reputation cost of no-delivery is intermediate and the cost of a failed campaign is high, the firm sets target higher than optimal and invests only if it meets the target.
- If the reputation cost of no-delivery is high, the all-or-nothing scheme achieves the first best
- ▶ As long as the reputation cost of failure is small, the firm's expected profit is nearly as high as the first best!

Keep-it-all - results

- Both schemes can lead to the same outcome.
- ▶ In general, the firm profit is lower under keep-it-all, and cannot achieve the first best.
- With high reputation costs there is an additional inefficiency: despite low demand, the firm may have to invest in order to avoid the reputation cost of failure.

Empirical implications

- Successful projects are oversubscribed (especially when uncertainty is high).
- If moral hazard is severe, firms must set the target "too high":
 - Some firms continue after failure.
 - High target implies that completion ratio=pledges/target should be below 1 on average. Cumming et. al. (2015) finds an average completion ratio of 0.403<1 (based on Indioegogo data).</p>

Empirical implications

- Shorter campaigns are associated with a higher success rate (see e.g., Mollick 2014).
- Platforms should (and do) take active steps to hide information about failed projects.
- Pre-orders are sold at par or at a discount.
- Complementarity with other sources of funding.
- Statistical structure to assess prior beliefs (e.g., effect of uncertainty).

Imperial College London

Conclusion

- Crowdfunding is beneficial due to learning about demand, even without credit constraints.
- The value of crowdfunding comes from the option to avoid suboptimal investments. Firms with high uncertainty and intermediate investment costs gain most.
- Moral hazard is mitigated by third party platforms which can implement transparency, short campaigns (and reputation costs).
- "All-or-nothing" schemes dominate "keep-it-all" schemes.