

Free to Authors and Readers

A Platinum Open Access Journal for Organic Chemistry

Paper

Synthesis and DFT studies of novel aminoimidazodipyridines using 2-(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile as an efficient key precursor

Ahmed F. Darweesh, ${ }^{\text {a }}$ Nesma A. Abd EI-Fatah, ${ }^{\text {a }}$ Samir A. Abdel-Latif, ${ }^{\text {b }}$ Ismail A. Abdelhamid, ${ }^{a *}$ Ahmed H. M. Elwahy ${ }^{\text {a* }}$ and Mostafa E. Salem ${ }^{\text {a }}$
${ }^{a}$ Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
${ }^{b}$ Department of Chemistry, Faculty of Science, Helwan University, Cairo 11795, Egypt
Email: ismail shafy@yahoo.com, aelwahy@hotmail.com

Received 11-10-2020
Accepted 01-20-2021
Published on line 02-08-2021

Abstract

Novel 9-aminoimidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitriles were prepared via the Michael addition reaction of readily accessible 2 -(3 H -imidazo[4,5-b]pyrid-2-yl)acetonitrile with arylidenemalononitriles. The regioselectivity of the reaction was supported by theoretical calculations at the DFT level. In contrast, the reaction of the appropriate bis-arylidenemalononitrile with 2-(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile under similar reaction conditions gave the corresponding bis[2-(3H-imidazo[4,5-b]pyrid-2-yl)acrylonitriles].

Keywords: 2-(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile,

9-aminoimidazo[1,2-a:5,4-b']dipyridine-6,8dicarbonitrile, arylidenemalononitriles, bis[2-(3H-imidazo[4,5-b]pyrid-2-yl)acrylonitriles], DFT studies.

Introduction

Imidazo[4,5-b]pyridines are important classes of heterocyclic compounds that possess diverse pharmacological properties including anticancer, ${ }^{1}$ antimicrobial, ${ }^{2}$ anti-inflammatory, ${ }^{3}$ and antiviral activities. ${ }^{4,5}$ Moreover, N-fused polyheterocycles display also a wide range of biological activities. ${ }^{6}$ In particular, imidazo[1,2-a:5,4-b']dipyridines exhibit interesting anticancer ${ }^{7}$ and antiviral ${ }^{8}$ activities. Some examples of biologically active compounds containing an imidazo[1,2-a:5,4-b']dipyridine such as (CFO2334) 1, a selective inhibitor of the cytopathic effect (CPE) caused by bovine viral diarrhea ${ }^{8}$ and anti-human prostate cancer $\mathbf{2}^{7}$ are outlined in Figure 1. In addition, the development of simple and efficient synthetic routes to novel heterocyclic compounds represents a great challenge in organic synthesis. In this respect, the Michael addition reaction has attracted much attention in the last decades as an effective strategy for the synthesis of heterocycles and their fused derivatives under mild reaction conditions. ${ }^{9,10}$ Moreover, due to their promising nonlinearoptical (NLO) properties, imidazo[1,2-a]pyridine and their corresponding fused derivatives have a diverse range of applications in material chemistry. In this respect, many of these derivatives have been used as multiple fluorescent chemosensors, in an electron transport layer of an organic light emitting device, as biomarkers of hypoxic tumor cells, and as a receptor in fluorescent high-affinity ligand in dopamine D3. ${ }^{11-14}$

In connection with the increasing interest of adoption of new synthetic methods in drug discovery, and in continuation to our recent applications of carbon-Michael ${ }^{15-18}$ as well as aza-Michael ${ }^{16}$ addition reactions as powerful tools for the synthesis of nitrogen containing heterocycles and their corresponding bisheterocycles, ${ }^{15,17,19-26}$ we report herein our investigation on the reactivity of 2 -(3 H -imidazo[4,5-b]pyrid-2yl)acetonitrile towards arylidenemalononitriles and bis-arylidenemalononitriles aiming at synthesizing novel mono- and bis-imidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitriles. In addition, a theoretical density functional theory (DFT) study aims to determine the more stable regioisomer of the two possible expected isomeric products from the mentioned reactions as well as to investigate the efficacy of the target compounds as suitable candidate for NLO material.

1
2

Figure 1. Some examples of biologically active compounds containing imidazo[1,2-a:5,4-b']dipyridines.

Results and Discussion

Synthesis

Previously, various methods have been reported for the synthesis of imidazo[1,2-a:5,4-b']dipyridines. Most of these methods depend mainly on the formation of 3 -aminoimidazo[1,2-a]pyridines followed by their reaction with the appropriate reagents. In this respect, Takeda et al. ${ }^{27}$ synthesized imidazodipyridines 5 by the reaction of 3 -aminoimidazo $[1,2-a]$ pyridine $3(R=H)$ with 2-chloroacrylonitrile 4 in nitrobenzene in the presence of
AlCl_{3}. Moreover, Desbois et al. ${ }^{28}$ synthesized imidazo[1,2-a:5,4-b']dipyridines 6 via the reaction of 3-amino-2-formylimidazo[1,2-a]pyridine 3 ($\mathrm{R}=\mathrm{CHO}$) with various aldehydes or ketones by Friedländer's method (Scheme 1).

Scheme 1. Reported Methods for the synthesis of imidazodipyridines 5 and 6.

Li et al. ${ }^{7}$ and Zhang et $a l .{ }^{29}$ also reported on the utility of some imidazo[1,2-a]pyridin-3-amines as precursors for the synthesis of imidazo[1,2-a:5,4-b']dipyridines.

In searching for an expedient strategy for synthesis of imidazodipyridines, our attention focused on 2-(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile (10) as a precursor. Compound 10 was prepared via the solvent-free reaction of pyridine-2,3-diamine (7) with ethyl cyanoacetate (8) in an oil bath at $180-190{ }^{\circ} \mathrm{C}$ for 30 minutes (Scheme 2). The structure of compound 10 was supported by the presence of FTIR bands at 3410 and $2252 \mathrm{~cm}^{-}$ ${ }^{1}$ characteristic for $v(\mathrm{~N}-\mathrm{H})$ and $v(\mathrm{C} \equiv \mathrm{N})$ groups, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 0}$ reveals the methylene group and the NH protons at $\delta 4.42$ and 13.18 , respectively. The data agreed with that previously reported for compound $\mathbf{1 0} .^{\mathbf{3 0}, 31}$

Scheme 2. Synthesis of 2-(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile 10.

The reactivity of compound $\mathbf{1 0}$ towards substituted cinnamonitriles was then investigated. Compound $\mathbf{1 0}$ (a Michael donor) has two nucleophilic centers (NH group and CH_{2}) at which the Michael addition to the Michael acceptor 11 can initiate. Thus, two regioisomeric products are possible by the reaction of compound 10 with the activated double bond reagents 11 via routes A and B (Schemes $3 \& 4$). Route A involves the initial nucleophilic addition of CH_{2} of compound 10 to β-carbon of the activated double bond of 11 followed by cyclization that involves the NH group to afford 9-amino-7-arylimidazo[1,2-a:5,4-b']dipyridine-6,8dicarbonitrile 12 through intermediates 14 and 15 (Scheme 4). Route B encompasses the initial addition of the NH group of the compound $\mathbf{1 0}$ to the activated double bond of $\mathbf{1 1}$ followed by cyclization involving CH_{2} of $\mathbf{1 0}$ to give 7-amino-9-arylimidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitrile 13 through intermediates 16 and 17 (Scheme 4). The structures of the expected products 12 or 13 could not be determined based on spectral analyses as both of them give similar data. For example, the IR spectrum of the compound produced from the reaction of 10 with 11a showed the presence of amino group at $v(\mathrm{~N}-\mathrm{H}) 3456$ and $3317 \mathrm{~cm}^{-1}$ as well as characteristic nitrile band at $v(\mathrm{C} \equiv \mathrm{N}) 2214 \mathrm{~cm}^{-1}$. Its ${ }^{1} \mathrm{H}$ NMR spectrum revealed the amino group at $\delta 8.89$ as a broad signal. Unfortunately, these data can agree with both structures 12 and 13.

Scheme 3. Synthesis of compounds 6a-e via reaction of 4 with cinnamonitriles.

Scheme 4. Expected routes (A and B) for the formation of regioisomeric products $\mathbf{1 2}$ and 13.

Route A that affords compounds $\mathbf{1 2}$ was approved based on literature similarities ${ }^{32,33}$ that indicated the superiority of the nucleophilicity of CH_{2} over NH group. Further support for the formation of compound 12a was provided by an alternative synthesis via a three component reaction of 2-(3H-imidazo[4,5-b]pyrid-2yl)acetonitrile 10 with both benzaldehyde (18) and malononitrile (19) in EtOH heated at reflux in the presence of catalytic piperidine (Scheme 6, Method B). Moreover, compound 12a was also obtained via the reaction of malononitrile (19) with a preheated mixture of benzaldehyde (18) and 2-(3H-imidazo[4,5-b]pyrid-2$\mathrm{yl})$ acetonitrile 10. In support of this viewpoint, we also isolated the Knoevenagel condensation product 2-(3H-imidazo[4,5-b]pyrid-2-yl)-3-phenylacrylonitrile (20) (Scheme 5, method C). The formation of 12a from the
reaction of $\mathbf{2 0}$ with 19, with identical physical and spectral data with that prepared from the reaction of $\mathbf{1 0}$ and 11 a , supports the reaction proceeded via route A and not via route B.

Scheme 5. Alternative methods for the synthesis of compound 12a.

The regioselective formation of $\mathbf{1 2}$ was also supported by theoretical calculations at DFT level (cf. Molecular orbital calculations).

In searching for the optimal reaction conditions, the reaction was carried out in different solvents as well as in the presence of a variety of bases. Firstly, we tried EtOH as a solvent and DABCO, pyridine, KOH, TEA and piperidine as bases. Among the different bases, the use of piperidine gave the cleanest products and best yields. The reaction was also examined in different solvents including dioxane, dichloromethane, acetonitrile, water and DMF heated at reflux in each case. The reaction proceeded in most solvents but with different degrees of conversion; EtOH was the best solvent in terms of reaction time and yield. The reactions were completed in $3-5 \mathrm{~h}$, while prolonged heating did not improve the reaction yield. On the other hand, no traces of products were obtained at room temperature. The reactivity of compound $\mathbf{1 0}$ towards heteromethylenemalononitriles was also investigated aiming at synthesizing novel imidazo[1,2-a:5,4$\left.b^{\prime}\right]$ dipyridines which are linked to heterocyclic moieties at position 7 . Thus reaction of 10 with each of $2-[(1,3-$ diphenylpyrazol-4-yl)methylene]malononitrile (21a) and 2-\{[1-phenyl-3-(thien-2-yl)-pyrazol-4-yl]methylene\}malononitrile (21b) afforded 9-amino-7-arylimidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitrile 22a and 22b, respectively, in good yields (Scheme 6).

Scheme 6. Synthesis of imidazo[1,2-a:5,4-b']dipyridines 22a and 22b via reaction of compound $\mathbf{1 0}$ with heteromethylenemalononitriles.

Our study was extended to investigate the reactivity of 2 -(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile (10) towards bis-arylidenemalononitrile 23 in a trial to prepare bis-9-amino-7-arylimidazo[1,2-a:5,4-b']dipyridine-6,8dicarbonitriles 24. Unfortunately, Michael addition of two equivalents of 2-(3H-imidazo[4,5-b]pyrid-2$\mathbf{y l}$)acetonitrile (10) to bis-arylidenemalononitriles did not lead to the formation of $\mathbf{2 4}$. Instead the reaction gave bis[2-(3H-imidazo[4,5-b]pyrid-2-yl)acrylonitriles] 25a-d (Scheme 7). Compounds $\mathbf{2 5}$ are assumed to form via the initial formation of the Michael adducts $\mathbf{2 6}$ which then decompose to afford $\mathbf{2 5}$ via elimination of malononitrile (Scheme 8). A similar pathway has been reported. ${ }^{34}$ The structures of compounds 25a-d were supported by comparison of their physical data with authentic samples prepared from the reaction of one equivalent of bisaldehydes $\mathbf{2 7}$ with two equivalents of 2-(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile (10) in EtOH in the presence of catalytic piperidine (Scheme 9). The constitutions of compounds 25 were established based on spectral data. Thus, the ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 5 a}$ as a representative example revealed two singlet signals at $\delta 4.63$ and 8.59 for the OCH_{2} groups and the ylidene H -atoms, respectively. Moreover, it revealed the NH group as broad singlet at 13.63 ppm .

Scheme 7. Attempted synthesis of bis-9-amino-7-arylimidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitriles $\mathbf{2 4}$ via reaction of $\mathbf{1 0}$ with bis-arylidenemalononitrile 23.

Scheme 8. Plausible mechanism for the formation of $\mathbf{2 5 a}$-d via reaction of $\mathbf{1 0}$ with bis-arylidenemalononitrile
23.

27a-d

25a-d

Scheme 9. Synthesis of compounds 25a-d by the reaction of one equivalent of bis-aldehydes $\mathbf{2 7}$ with two equivalents of 10.

Theoretical calculations

Geometry of compounds 12 and 13

Geometry structures of the expected products 12 and 13 and their intermediates 14 and 16 were optimized at the B3LYP/6-311G** level and the results are given in Table 1. The reaction of $\mathbf{1 0}$ with $\mathbf{1 1}$ can lead to the formation of the regioisomer 12, via intermediate 14 through the attack of the active CH_{2} of $\mathbf{1 0}(\mathrm{C} 14)$ on CH groups of $\mathbf{1 1}$ (C12). On the other hand, the regioisomer $\mathbf{1 3}$ can arise via initial attack of NH of $\mathbf{1 0}$ on $\mathbf{C H}$ of $\mathbf{1 1}$ to give intermediate 16 as seen in Fig. 2 (cf. supporting information). The energy of regioisomer 13 was 7.15 $\mathrm{kcal} / \mathrm{mol}$ higher than that of $\mathbf{1 2}$, i.e., the structure of 12 was more stable. Also, the intermediate $\mathbf{1 6}$ has energy of $5.52 \mathrm{kcal} / \mathrm{mol}$ higher than that of $\mathbf{1 4}$. Therefore, this study supports the regioselective formation of $\mathbf{1 2}$ from the reaction of 10 with 11 . The planarity of $\mathbf{1 2}$ can be estimated from the values of the dihedral angles. Compound 12 has a non-planar structure where the phenyl ring rotates out of the plane. This is can be indicated from the dihedral angles of the phenyl ring attached to C13-C24, especially the angles (<C13-C11-C12-N17), (<C13-C14-C16-N18) and (<C11-C13-C24-C29) which are -176.879,-179.389° and 123.976° (Table 1, cf. supporting information). Where these angles are far from 0° or 180°. This also can be verified from the bond angel (<C14-C13-C24) which has the value of 119.117° (Table 1).

Ground state properties and Global reactivity descriptors

The energy difference between the HOMO and LUMO, E_{g}, of compounds $\mathbf{1 0}, \mathbf{1 1}$ and 12 occur in the range $5.28-3.32 \mathrm{eV}$. The energy gap of compound 10 is the maximum (5.28 eV) while that for compound 12 has the minimum (3.32 eV) value (Table 2). As a result, charge transfer and polarization can easily occur with more reactivity within 12 than 10 and $\mathbf{1 1}$. The electronegativity, χ, chemical hardness, η, global softness, S, chemical potential, π, were calculated using HOMO and LUMO energies and were recorded in Table 2, Fig. 3 (cf. supporting information). Compound 10 has the lowest η and maximum S value which means that the charge transfer occurs easily in this compound and it has a lower chemical hardness. Large E_{g} gaps are representative of the hardness of the molecule, while smaller E_{g} gaps are representative for soft and reactive molecules. The accumulated data in Table 2 showed that the HOMO of 12 is less stable than that of the other compounds and has lower IP value. The electron affinities values are of the order: $\mathbf{1 0}<\mathbf{1 2}<\mathbf{1 1}$. The processed reactivity parameters are shown in Table 2 which revealed that compound 10 has the lowest η and minimum S values. This indicated that it has lower chemical hardness. The 3-D distribution of frontier MOs, HOMO and LUMO of $\mathbf{1 0}, 11$ and 12 are presented in Fig. 2. The calculated values of $E_{\text {номо }}$ and $E_{\text {Luмо }}$ of 12 are -6.1690 and -2.8478 eV , respectively, thus the energy gap value E_{g} is 3.3212 eV . It can be regarded from Fig. 3 that the HOMO and LUMO of $\mathbf{1 2}$ are mainly allocated over the whole molecule. The partial frontier molecular orbital compositions and the energy levels of $\mathbf{1 2}$ in the ground state are recorded in Table 2 and Fig. 3.

Table 2. Total energy, energy of HOMO and LUMO, energy gap, of 10, 11, 12, 13, 14 and 16 usingB3LYP/6311G**

Parameter	10	11	12	13	14	16
$E_{\mathrm{T}}, \mathrm{eV}$	-14350	-13436	-27762	-27744	-27771	-27771
$E_{\text {Номо }}, \mathrm{eV}$	-6.7891	-7.3929	-6.1690	-5.9867	-6.8653	-6.9795
$E_{\text {LUмо }}, \mathrm{eV}$	-1.5150	-3.0926	-2.8478	-3.2776	-1.7789	-1.8170
$E_{\mathrm{g}}, \mathrm{eV}$	5.2741	4.3003	3.3212	2.7091	5.0864	5.1625

The frequency calculations for compound 12a (Figure 4, cf. supporting information) were performed using B3LYP/6-31G(d,p). The data obtained are comparable with that theoretically calculated (Exp. 3456, 3317, 2214; Calc. 3470, 3240, $2212 \mathrm{~cm}^{-1}$) cf. experimental section. TD-DFT calculations for compound 12a (Figure 5, cf. supporting information) were brought out at the same level of theory [B3LYP/6-31G(d,p)] to clarify the origin of the electronic spectra, using the polarizable continuum solvation method, PCM, PCM-TD-DFT. The theoretical spectrum of $\mathbf{1 2 a}$ is characterized by five bands at $361(3.4316 \mathrm{eV}), 308(4.0224 \mathrm{eV}), 286$ (4.3248 eV), $262(4.7280 \mathrm{eV}$) and $245 \mathrm{~nm}(5.0405 \mathrm{eV})$. Theoretical IR and UV spectra of 12a using B3LYP6-31G(d,p) are mentioned in supplementary material.

Non-linear optical properties (NLO)

The circulation of the atomic charges in the chelates is also valuable in the determination of the magnitude and direction of the moment vector which depends on the centers of negative and positive charges. The dipole moment, the mean polarizability, the anisotropy of the polarizability and the first-order hyperpolarizability for compounds $\mathbf{1 0}, \mathbf{1 1}$ and $\mathbf{1 2}$ were calculated using the same level and the obtained values are tabulated in Table 3. The table also includes the experimental values of urea. The considered dipole moment values of $\mathbf{1 0}, \mathbf{1 1}$ and $\mathbf{1 2}$ in the gas phase are $4.4076,6.6808$ and 5.3942 D , respectively. The analyzed values of the polarizability of $\mathbf{1 0}, \mathbf{1 1}$ and $\mathbf{1 2}$ have the range $1.09-7.02 \times 10^{-24}$ (esu). Compound $\mathbf{1 1}$ has the lowest calculated value and $\mathbf{1 2}$ has 7.02×10^{-24}. Compared with urea ${ }^{35}$ as a reference substance, all the studied chelates have higher polarizability and first-order hyperpolarizability. The polarizabilities and first-order hyperpolarizabilities are reported in atomic units (a.u.), the calculated values have been changed into electrostatic units (esu) using conversion factor of 0.1482×10^{-24} esu for α and 8.6393×10^{-33} esu for β. Urea is used as standard example in non-linear optical studies. In this study, urea is chosen as a reference material as there were no experimental values of NLO properties for the new derivatives. The extent of the molecular hyperpolarizability ($\langle\beta\rangle$) is one of the key factors in non-linear optical system. The calculated ($\langle\beta\rangle$) values for compounds 10, 11 and 12 are $\sim 6, \sim 60$, and ~ 6, times greater than that of urea, respectively. Therefore, all the studied compounds reveal considerable polarizability and first-order hyperpolarizability and are projected to be successful encouraged for NLO materials.

Conclusions

We developed a simple and an efficient method for the preparation of novel 9 -aminoimidazo[1,2-a:5,4$\left.b^{\prime}\right]$ dipyridine-6,8-dicarbonitriles via the Michael addition reaction that involves 2-(3H-Imidazo[4,5-b]pyrid-2yl)acetonitrile (as Michael donor) and the appropriate arylidenemalononitriles (as Michael acceptor). Also, we managed to synthesize bis[2-(3H-imidazo[4,5-b]pyrid-2-yl)acrylonitriles] through the reaction of 2-(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile with bis-arylidenemalononitriles under similar reaction conditions. The theoretical calculations were carried out using Gaussian 09 W package with Gauss View 5. The analysis includes bond lengths, bond angles, molecular electrostatic potential maps, description of the important frontier molecular orbital surfaces of the compounds. The optimized molecular structure of the compounds was obtained at B3LYP/6-311G**. The regioisomer 13 has higher energy than that of 12. This gives further confirmation for the formation of the more stable regioisomer 12. The polarizability and hyperpolarizabilities parameters of the compounds indicated that they are suitable candidate for NLO material.

Experimental Section

General. Melting points were determined in open glass capillaries with a Gallenkamp apparatus. The infrared spectra were recorded in potassium bromide disks on a Pye Unicam SP 3-300 and Shimaduz FTIR 8101 PC infrared spectrophotometer. NMR spectra were recorded using a Varian Mercury VXR-300 NMR spectrometer or Bruker Ultrashield 400 MHz or Ascend $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}: 300\right.$ or $400 \mathrm{MHz},{ }^{13} \mathrm{C}: 75$ or 100.6 MHz$)$ instruments using DMSO- d_{6} as solvent. Mass spectra (EI) were obtained at 70 eV using a type Shimadzu GCMQP 1000 EX Spectrometer. Elemental analyses were performed on a Perkin-Elmer 240 microanalyser at the Micro analytical Center of Cairo University. Compounds $\mathbf{1 0}^{\mathbf{3 6}}, \mathbf{1 1}{ }^{\mathbf{3 7}}, \mathbf{2 3}$ a-d ${ }^{38}$ and $\mathbf{2 7 a}$-d ${ }^{38}$ were prepared according to the literature.

General procedure for the synthesis of 9-amino-7-substituted imidazo[1,2-a:5,4-b']dipyridine-6,8dicarbonitrile 12a-e and 22a,b
Method A. To a mixture of appropriate arylidene malononitrile 11a-e, 21a or 21b (1 mmol) and 2-(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile (10) ($1 \mathbf{~ m m o l}, 158 \mathrm{mg}$) in absolute EtOH (15 mL) was added piperidine (1 $\mathrm{mmol}, 110 \mu \mathrm{~L}$), and the mixture was heated at reflux for $3-5 \mathrm{~h}$. The crude solid was isolated and recrystallized from EtOH/DMF to give 12a-e and 22a,b, respectively.

For compound 12a:

Method B. To a mixture of benzaldehyde (18) ($1 \mathrm{mmol}, 106 \mathrm{mg}$), malononitrile (19) ($1 \mathrm{mmol}, 66 \mathrm{mg}$) and 2(3 H -imidazo[4,5-b]pyrid-2-yl)acetonitrile (10) ($1 \mathrm{mmol}, 158 \mathrm{mg}$) in absolute EtOH (25 mL) was added piperidine ($1 \mathrm{mmol}, 110 \mu \mathrm{~L}$), and the reaction mixture was heated at reflux for 5 h . The crude solid was isolated and recrystallized from DMF/EtOH (25:75) to give 12a.
Method C. A mixture of 2-(3H-imidazo[4,5-b]pyrid-2-yl)-3-phenylacrylonitrile (20) ($1 \mathrm{mmol}, 246 \mathrm{mg}$) and malononitrile (19) ($1 \mathrm{mmol}, 66 \mathrm{mg}$) in absolute $\mathrm{EtOH}(15 \mathrm{~mL})$ was added piperidine ($1 \mathrm{mmol}, 110 \mu \mathrm{~L}$), and the mixture was heated at reflux for 3 h . The crude solid was isolated and recrystallized from DMF/EtOH (25:75) to give 12a.
9-Amino-7-phenylimidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitrile (12a). Brown crystals, (method A (288 $\mathrm{mg}, 93 \%)$; method B ($263 \mathrm{mg}, 85 \%$); method C ($273 \mathrm{mg}, 88 \%$); mp > $300^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v(\operatorname{Exp} .3456,3317,2214$; Calc. 3470, 3240, 2212) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) δ 7.42-7.46 ($\mathrm{m}, 1 \mathrm{H}$, pyridine-H), 7.49-7.62 ($\mathrm{m}, 5 \mathrm{H}$, ArH), 8.70-8.71 ($\mathrm{m}, 1 \mathrm{H}$, pyridine-H), 8.89 (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 9.00-9.02 ($\mathrm{m}, 1 \mathrm{H}$, pyridineH); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO-d ${ }_{6}$) $\delta 78.7,115.9,116.2,117.2,121.8,123.6,129.2,130.7,135.2,137.8,142.1,148.4,149.7,152.8$, 154.6, 156.6; MS m/z (\%) 310 (M^{+}). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{6}$: C, 69.67; H, 3.25; N, 27.08. Found: C, 69.52; H, 3.07; N, 26.97\%.

9-Amino-7-(4-chlorophenyl)imidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitrile (12b). Brown crystals (279 mg, 81%); $\mathrm{mp}>300{ }^{\circ} \mathrm{C}$; IR (KBr) v 3454, 3317, $2214 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.43-7.46(\mathrm{~m}, 1 \mathrm{H}$, pyridine-H), 7.64-7.72 (m, 5H, ArH), 8.69-8.71 ($\mathrm{m}, 1 \mathrm{H}$, pyridine-H), 8.93 (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 9.00-9.03 (m, 1 H , pyridine-H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) $\delta 79.0,115.9,116.1,117.3,121.8,123.6,129.3,131.1,134.1$, 135.6, 144.4, 148.5, 149.6, 152.8, 153.3, 156.6; MS m/z (\%) 344 (${ }^{+}$). Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{9} \mathrm{ClN}_{6}$: C, 62.71; H, 2.63; N, 24.38. Found: C, 62.46; H, 2.44; N, 24.28\%.

9-Amino-7-(p-tolyl)imidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitrile (12c). Pale brown crystals (282 mg, $87 \%) ; \mathrm{mp}>300^{\circ} \mathrm{C}$; IR (KBr) v 3456, 3317, $2214 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 2.44\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.41-$ $7.52\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ArH} \&\right.$ pyridine-H), 8.68-8.69 (m, 1H, pyridine-H), $8.82\left(\mathrm{br} . \mathrm{s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.99-9.02(\mathrm{~m}, 1 \mathrm{H}$, pyridineH); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 21.4,79.0,116.2,116.4,117.1,121.9,123.5,129.1,129.7,132.3,140.5$,
148.3, 149.9, 153.0, 154.6, 156.7; MS m/z (\%) 324 (M^{+}). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{6}$: C, 70.36; H, 3.73; N, 25.91.

Found: C, 70.15; H, 3.55; N, 25.79\%.
9-Amino-7-(4-methoxyphenyl)imidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitrile (12d). Pale brown crystals (309 mg, 91\%); mp > $300{ }^{\circ} \mathrm{C}$; IR (KBr) v 3456, 3294, $2214 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 3.88(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), 7.17 (d, $2 \mathrm{H}, \mathrm{ArH}, ~ J 8.8 \mathrm{~Hz}$), 7.42-7.45 ($\mathrm{m}, 1 \mathrm{H}$, pyridine-H), $7.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}, J 8.4 \mathrm{~Hz}$), 8.69-8.70 (m, 1H, pyridine-H), 8.81 (br. s, $2 \mathrm{H}, \mathrm{NH}_{2}$), 8.99-9.01 (m, 1 H, pyridine-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 55.7,79.0$, $114.5,116.2,116.4,117.1,121.8,123.6,127.1,130.9,148.0,149.9,152.9,154.3,156.7,161.2 ; \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 340$ $\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 67.05 ; \mathrm{H}, 3.55$; $\mathrm{N}, 24.69$. Found: C, 66.89; H, 3.32; $\mathrm{N}, 24.50 \%$.
9-Amino-7-(benzo[d][1,3]dioxol-5-yl)imidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitrile (12e). Brown crystals ($315 \mathrm{mg}, 89 \%$); $\mathrm{mp}>300^{\circ} \mathrm{C}$; IR (KBr) v 3457, 3284, $2214 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 6.19(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{O}$), 7.10-7.21 (m, $3 \mathrm{H}, \mathrm{ArH}$), 7.41-7.44 ($\mathrm{m}, 1 \mathrm{H}$, pyridine-H), 8.68-8.69 ($\mathrm{m}, 1 \mathrm{H}$, pyridine-H), 8.83 (br. s, 2 H , NH_{2}), 8.98-9.01 ($\mathrm{m}, 1 \mathrm{H}$, pyridine-H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 78.9,102.3,109.0,109.5,116.1,116.4$, 117.1, 121.8, 123.5, 123.7, 128.6, 147.7, 148.4, 149.3, 149.8, 152.8, 154.1, 156.7; MS m/z (\%) 354 (${ }^{+}$). Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}_{2}$: C, 64.41; H, 2.84; N, 23.72. Found: C, 64.25; H, 2.64; N, 23.58\%.
9-Amino-7-(1,3-diphenyl-1H-pyrazol-4-yl)imidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitrile (22a). Yellow crystals ($366 \mathrm{mg}, 81 \%$); mp > $300^{\circ} \mathrm{C}$; IR (KBr) v 3448, 3047, $2206 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.26-$ $8.38\left(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH}, \mathrm{NH}_{2}\right.$ \& pyridine-H), $9.27\left(\mathrm{~s}, 1 \mathrm{H}\right.$, pyrazole-5-H); MS $\mathrm{m} / \mathrm{z}(\%) 452\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{~N}_{8}$: C, 71.67 ; H, 3.56 ; N, 24.76. Found: C, 71.39 ; H, 3.45 ; N, 24.57%.
9-Amino-7-[1-phenyl-3-(thien-2-yl)-1H-pyrazol-4-yl]imidazo[1,2-a:5,4-b']dipyridine-6,8-dicarbonitrile (22b). Brown crystals ($325 \mathrm{mg}, 71 \%$); mp > $300^{\circ} \mathrm{C}$; IR (KBr) v 3535, 3332, $2214 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ 6.98-9.12 (m, 13H, ArH, NH2, thiophene-H \& pyridine-H), 9.25 ($\mathrm{s}, 1 \mathrm{H}$, pyrazole-H); MS m/z (\%) 458 (M^{+}). Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{14} \mathrm{~N}_{8} \mathrm{~S}: \mathrm{C}, 65.49 ; \mathrm{H}, 3.08 ; \mathrm{N}, 24.44 ; \mathrm{S}, 6.99$. Found: C, $65.39 ; \mathrm{H}, 2.95 ; \mathrm{N}, 24.23 ; \mathrm{S}, 6.76 \%$.
Synthesis of 2-(3H-imidazo[4,5-b]pyrid-2-yl)-3-phenylacrylonitrile (20)
To a mixture of benzaldehyde (18) (106 mg, 1 mmol) and 2-(3H-imidazo[4,5-b]pyrid-2-yl)acetonitrile (10) (1 $\mathrm{mmol}, 110 \mathrm{mg}$) in absolute EtOH (15 mL) was added piperidine ($1 \mathrm{mmol}, 110 \mu \mathrm{~L}$), and the mixture was heated at reflux for 3 h . The crude solid was isolated and recrystallized from DMF/EtOH (25:75) to give 20 as brown crystals, $234 \mathrm{mg}(95 \%)$; mp $260-262^{\circ} \mathrm{C}$; IR (KBr) v 3435, 3055, 2214, cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.30$ (dd, 1 H , pyridine-3-H, $J_{1} 8.0 \mathrm{~Hz}, J_{2} 4.8 \mathrm{~Hz}$), 7.61-8.41 (m, 7H, ArH, pyridine-2-H \& pyridine-4-H), $8.44(\mathrm{~s}, 1 \mathrm{H}$, $=C H-P h), 13.98(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; MS m/z (\%) 246 (M^{+}). Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{~N}_{4}$: C, 73.16; H, 4.09; N, 22.75. Found: C, 72.93; H, 3.97; N, 22.55\%.

General procedure for the synthesis of bis(2-(3H-imidazo[4,5-b]pyrid-2-yl)acrylonitrile) derivatives 25a-d To a mixture of appropriate bis(arylidenemalononitrile) 23a-d (1 mmole) and 2-(3 H -imidazo[4,5-b]pyrid-2yl)acetonitrile (10) ($2 \mathrm{mmol}, 316 \mathrm{mg}$) in absolute EtOH (15 mL) was added piperidine ($2 \mathrm{mmol}, 110 \mu \mathrm{~L}$), and the mixture was heated at reflux for 2 h . The crude solid was isolated and recrystallized from DMF/EtOH (25:75) to give 25a-d, respectively.
2,2'-\{3,3'-[Ethane-1,2-diylbis(oxy)]bis(2,1-phenylene)\}bis[2-(3H-imidazo[4,5-b]pyrid-2-yl)acrylonitrile] (25a). Yellow crystals ($478 \mathrm{mg}, 87 \%$); mp $259-262^{\circ} \mathrm{C}$; IR (KBr) v 3433, 3047, 2970, 2214, $1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 4.63\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.06-8.38(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH} \&$ pyridine-H), $8.59(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{CH}), 13.63$ (br. $\mathrm{s}, 2 \mathrm{H}$, NH); ${ }^{13}$ C NMR ($100 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 68.1,103.4,104.5,113.8,114.6,116.3,119.0,121.6,122.3,125.0,128.9$, 133.9, 142.4, 145.1, 149.6, 157.8; MS m/z (\%) 550 (M^{+}). Anal. Calcd for $\mathrm{C}_{32} \mathrm{H}_{22} \mathrm{~N}_{8} \mathrm{O}_{2}$: C, 69.81; H, 4.03; $\mathrm{N}, 20.35$. Found: C, 69.55; H, 3.90; N, 20.18\%.

2,2'-\{3,3'-[Propane-1,3-diylbis(oxy)]bis(2,1-phenylene)\}bis[2-(3H-imidazo[4,5-b]pyrid-2-yl)acrylonitrile]

(25b). Pale yellow crystals ($508 \mathrm{mg}, 90 \%$); mp $268-270^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v 3417,3055,2954,2214,1249 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta 2.39$ (br. s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.38\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}, J 6.4 \mathrm{~Hz}\right.$), $7.07-8.40(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}$ \&
pyridine-H), 8.62 (s, $2 \mathrm{H}, 2 \mathrm{CH}$), 13.34 (br. s, $2 \mathrm{H}, 2 \mathrm{NH}$); $\mathrm{MS} \mathrm{m} / \mathrm{z}$ (\%) 564 (M^{+}). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{2}$: C, 70.20; H, 4.28; N, 19.85. Found: C, 69.92; H, 4.10; N, 19.64\%.

2,2'-\{3,3'-[Propane-1,3-diylbis(oxy)]bis(4,1-phenylene)\}bis[2-(3H-imidazo[4,5-b]pyrid-2-yl)acrylonitrile]

(25c). Yellow crystals ($468 \mathrm{mg}, 83 \%$); mp $272-274{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v 3464,3047,2954,2214,1257 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-d_{6}$) $\delta 2.25-2.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.30\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{OCH}_{2}, \mathrm{~J} 6.0 \mathrm{~Hz}\right), 7.21-8.38(\mathrm{~m}, 14 \mathrm{H}, \mathrm{ArH}$ \& pyridineH), 8.38 (s, $2 \mathrm{H}, 2 \mathrm{CH}$), 12.38 (br. $\mathrm{s}, 2 \mathrm{H}, 2 \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 28.8,65.1,99.3,115.5,116.0$, 116.8, 119.0, 125.6, 132.3, 132.6, 145.0, 146.8, 150.7, 162.0; MS m/z (\%) 564 (M^{+}). Anal. Calcd for $\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{2}$: C, $70.20 ; H, 4.28 ; N, 19.85$. Found: C, $70.04 ; H, 4.09 ; N, 19.74 \%$.
2,2'-\{3,3'-[Butane-1,4-diylbis(oxy)]bis(4,1-phenylene)\}bis[2-(3H-imidazo[4,5-b]pyrid-2-yl)acrylonitrile] (25d). Yellow crystals ($543 \mathrm{mg}, 94 \%$); mp 267-270 ${ }^{\circ} \mathrm{C}$; IR (KBr) v 3446, 3047, 2954, 2214, $1257 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.93$ (br. s, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), 3.4 (br. s, $2 \mathrm{H}, 2 \mathrm{NH}$); 4.18 (br. s, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $7.10-8.37$ ($\mathrm{m}, 14 \mathrm{H}, \mathrm{ArH} \&$ pyridine-H), $8.37(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{CH}), \mathrm{MS} \mathrm{m} / \mathrm{z}(\%) 578\left(\mathrm{M}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{8} \mathrm{O}_{2}$: C, 70.58; H, 4.53; $\mathrm{N}, 19.37$. Found: C, 70.44; H, 4.30; N, 19.22\%.

Computational Details

Due to the absence of single crystal X-ray structure analysis and to attain the molecular conformation of compounds 10, 11 and 12, energy minimization analyses were done by means of Gaussian-09W software package. ${ }^{39}$ The ground state geometrical structure of the three compounds were optimized using DFT method ${ }^{40}$ with the B3LYP exchange correlation functional approach. ${ }^{41}$ The basis set $6-311 G^{* *}$ was applied for C, H and N atoms. ${ }^{42}$ Without any symmetry constraints, the geometry of the investigated systems was totally optimized in gas-phase. Gauss View 5 software ${ }^{43}$ was used to create figures of molecular orbitals (MOs). The quantum chemical parameters of the studied compounds are gained from calculations as energies of the lowest unoccupied molecular orbital ($E_{\text {LUмо }}$), the highest occupied molecular orbital ($E_{\text {номо }}$), HOMO-LUMO energy gap, E_{g}, absolute electronegativities, χ, chemical potentials, π, absolute hardness, η, absolute softness, σ, global electrophilicity, ω, global softness, S , and additional electronic charge, $\Delta N_{\text {max. }}$. These parameters are calculated using the following equations; ${ }^{44} E_{\mathrm{g}}=E_{\text {LUмо }}-E_{\text {номо }}, \chi=-E_{\text {номо }}+E_{\text {LUмо }} / 2, \eta=E_{\text {LUмо }}-E_{\text {номо }} / 2, \sigma$ $=1 / \eta, \pi=-\chi, \mathrm{S}=1 / 2 \eta, \omega=\pi^{2} / 2 \eta$ and $\Delta \mathrm{N}_{\text {max. }}=-\pi / \eta$. The spin density difference map calculations were also achieved to clarify their optical properties. Natural bond orbital (NBO) calculations were done ${ }^{45}$ with the NBO code contained in Gaussian 09 to understand different second order interaction between the filled orbital of one subsystem and empty orbital of another subsystem which is the calculate of the molecular delocalization or hyperconjugation. The total static dipole moment (μ), the mean polarizability $\langle\alpha\rangle$, the anisotropy of the polarizability, $\Delta \alpha$ and the mean first-order hyperpolarizability, $\langle\beta>$ using the x, y, z components were calculated by using the following equations at B3LYP/ GENECP level of theory: ${ }^{46}$

$$
\begin{gathered}
\mu=\left(\mu^{2}{ }_{x}+\mu^{2} y+\mu_{z}^{2}\right)^{1 / 2}, \\
\langle\alpha\rangle=1 / 3\left(\alpha_{x x}+\alpha_{y y}+\alpha_{z z}\right), \\
\Delta \alpha=\left(\left(\alpha_{x x}-\alpha_{y y}\right)^{2}+\left(\alpha_{y y}-\alpha_{z z}\right)^{2}+\left(\alpha_{z z}-\alpha_{x x}\right)^{2} / 2\right)^{1 / 2}, \\
\langle\beta\rangle=\left(\beta^{2}{ }_{x}+\beta^{2} y+\beta^{2} z^{2}\right)^{1 / 2},
\end{gathered}
$$

where

$$
\begin{aligned}
& \beta_{x}=\beta_{x x x}+\beta_{x y y}+\beta_{x z z}, \\
& \beta_{y}=\beta_{y y y}+\beta_{x x y}+\beta_{y z z}, \\
& \beta_{z}=\beta_{z z z}+\beta_{x x z}+\beta_{y y z} .
\end{aligned}
$$

Supplementary Material

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{1 2 a - e} \mathbf{2 0} \mathbf{2 0} \mathbf{2 2 a} \mathbf{b}$ and $\mathbf{2 5 a}$-d and the tables and figures for the calculation section can be found via the "Supplementary Content" section of this article's webpage.

References

1. Ghanem, N. M.; Farouk, F.; George, R. F.; Abbas, S. E. S.; El-Badry, O. M. Bioorg. Chem. 2018, 80, 565. https://doi.org/10.1016/j.bioorg.2018.07.006
2. Anaflous, A.; Benchat, N.; Mimouni, M.; Abouricha, S.; Ben-Hadda, T.; El-Bali, B.; Hakkou, A.; Hacht, B. Lett. Drug Des. Discov. 2005, 1, 224.
https://doi.org/10.2174/15701800433988855
3. Marie Kirwen, E.; Batra, T.; Karthikeyan, C.; Deora, G. S.; Rathore, V.; Mulakayala, C.; Mulakayala, N.; Nusbaum, A. C.; Chen, J.; Amawi, H.; et al. Acta Pharm. Sin. B 2017, 7, 73. https://doi.org/10.1016/j.apsb.2016.05.003
4. Hartwich, A.; Zdzienicka, N.; Schols, D.; Andrei, G.; Snoeck, R.; Głowacka, I. E. Nucleosides, Nucleotides Nucleic Acids 2020, 39, 542.
https://doi.org/10.1080/15257770.2019.1669046
5. Cundy, D. J.; Holan, G.; Otaegui, M.; Simpson, G. W. Bioorg. Med. Chem. Lett. 1997, 7, 669. https://doi.org/10.1016/S0960-894X(97)00082-6
6. Katritzky, A. R.; Tymoshenko, D. O.; Monteux, D.; Vvedensky, V.; Nikonov, G.; Cooper, C. B.; Deshpande, M. J. Org. Chem. 2000, 65, 8059.
https://doi.org/10.1021/jo000946r
7. Li, Y.; Huang, J. H.; Wang, J. L.; Song, G. T.; Tang, D. Y.; Yao, F.; Lin, H. K.; Yan, W.; Li, H. Y.; Xu, Z. G.; et al. J. Org. Chem. 2019, 84, 12632.
https://doi.org/10.1021/acs.joc.9b01385
8. Musiu, S.; Leyssen, P.; Froeyen, M.; Chezal, J. M.; Neyts, J.; Paeshuyse, J. Antiviral Res. 2016, 129, 99. https://doi.org/10.1016/j.antiviral.2016.03.007
9. Tokoroyama, T. Eur. J. Org. Chem. 2010, 2010, 2009. https://doi.org/10.1002/ejoc. 200901130
10. Reyes, E.; Uria, U.; Vicario, J. L.; Carrillo, L. The Catalytic, Enantioselective Michael Reaction; John Wiley \& Sons, Inc.: Hoboken, NJ, USA, 2016.
https://doi.org/10.1002/0471264180.or090.01
11. Sapale, S. R.; Borade, N. A. Eur. J. Mol. Clin. Med. 2020, 7, 4529.
12. Jadhav, S. D.; Ramasami, P.; Sekar, N. Phys. Sci. Rev. 2019, 4, 32. doi. org/10.1515/psr . https://doi.org/10.1515/psr-2018-0032
13. Nagarajan, N.; Velmurugan, G.; Prakash, A.; Shakti, N.; Katiyar, M.; Venuvanalingam, P.; Renganathan, R. Chem. Asian J. 2014, 9, 294. https://doi.org/10.1002/asia. 201301061
14. Leopoldo, M.; Lacivita, E.; Passafiume, E.; Contino, M.; Colabufo, N. A.; Berardi, F.; Perrone, R. J. Med. Chem. 2007, 50, 5043. https://doi.org/10.1021/jm070721
15. Abdelmoniem, A. M.; Ghozlan, S. A. S.; Abdelmoniem, D. M.; Elwahy, A. H. M.; Abdelhamid, I. A. J.

Heterocycl. Chem. 2017, 54, 2844. https://doi.org/10.1002/ihet. 2890
16. Abdelhamid, I. A.; Darwish, E. S.; Nasra, M. A.; Abdel-Gallil, F. M.; Fleita, D. H. Synthesis 2010, 1107. https://doi.org/10.1055/s-0029-1219235
17. Abdella, A. M.; Mohamed, M. F.; Mohamed, A. F.; Elwahy, A. H. M.; Abdelhamid, I. A. J. Heterocycl. Chem. 2018, 55, 498.
https://doi.org/10.1002/jhet. 3072
18. Elnagdi, M. H.; Al-Awadi, N. A.; Abdelhamid, I. A. Adv. Heterocycl. Chem. 2009, 97, 1. https://doi.org/10.1016/S0065-2725(08)00201-8
19. Salem, M. E.; Darweesh, A. F.; Farag, A. M.; Elwahy, A. H. M. Tetrahedron 2016, 72, 712. https://doi.org/10.1016/j.tet.2015.12.024
20. Abd El-Fatah, N. A.; Darweesh, A. F.; Mohamed, A. A.; Abdelhamid, I. A.; Elwahy, A. H. M. Tetrahedron 2017, 73, 1436.
https://doi.org/10.1016/j.tet.2017.01.047
21. Elwahy, A. H. M.; Ahmed, M. M.; El-sadek, M. J. Chem. Res. 2001, $2001,175$.
https://doi.org/10.3184/030823401103169540
22. El-Fatah, N. A. A.; Darweesh, A. F.; Mohamed, A. A.; Abdelhamid, I. A.; Elwahy, A. H. M. Monatsh. Chem. 2017, 148, 2107.
https://doi.org/10.1007/s00706-017-2040-7
23. Sanad, S. M. H.; Kassab, R. M.; Abdelhamid, I. A.; Elwahy, A. H. M. Heterocycles 2016, 92, 910. https://doi.org/10.3987/COM-16-13441
24. Abdelmoniem, A. M.; Salaheldin, T. A.; Abdelhamid, I. A.; Elwahy, A. H. M. J. Heterocycl. Chem. 2017, 54, 2670.
https://doi.org/10.1002//het. 2867
25. Diab, H. M.; Abdelhamid, I. A.; Elwahy, A. H. M. Synlett 2018, $29,1627$. https://doi.org/10.1055/s-0037-1609967
26. Sroor, F. M.; Aboelenin, M. M.; Mahrous, K. F.; Mahmoud, K.; Elwahy, A. H. M.; Abdelhamid, I. A. Arch. Pharm. (Weinheim). 2020, 353, 2000069. https://doi.org/10.1002/ardp. 202000069
27. Takeda, K.; Shudo, K.; Okamoto, T.; Kosuge, T. Chem. Pharm. Bull. (Tokyo). 1978, 26, 2924.
https://doi.org/10.1248/cpb.26.2924
28. Desbois, N.; Chezal, J. M.; Fauvelle, F.; Debouzy, J. C.; Lartigue, C.; Gueiffier, A.; Blache, Y.; Moreau, E.; Madelmont, J. C.; Chavignon, O.; et al. Heterocycles 2005, 65, 1121.
https://doi.org/10.3987/COM-05-10354
29. Zhang, K.; El Bouakher, A.; Levaique, H.; Bignon, J.; Retailleau, P.; Alami, M.; HAMZE, A. Adv. Synth. Catal. 2020, 362, 3243.
https://doi.org/10.1002/adsc. 202000553
30. Pan, T.; He, X.; Chen, B.; Chen, H.; Geng, G.; Luo, H.; Zhang, H.; Bai, C. Eur. J. Med. Chem. 2015, 95, 500. https://doi.org/10.1016/j.ejmech.2015.03.050
31. Dekhane, D. V.; Pawar, S. S.; Gupta, S. V.; Shingare, M. S.; Thore, S. N. Chin. Chem. Lett. 2010, 21, 519. https://doi.org/10.1016/j.cclet.2009.11.034
32. Lyons, D. M.; Huttunen, K. M.; Browne, K. A.; Ciccone, A.; Trapani, J. A.; Denny, W. A.; Spicer, J. A. Bioorg. Med. Chem. 2011, 19, 4091.
https://doi.org/10.1016/j.bmc.2011.05.013
33. Darweesh, A. F.; Abd El-Fatah, N. A.; Abdelhamid, I. A.; Elwahy, A. H. M.; Salem, M. E. Synth. Commun. 2020, 50, 2531.
https://doi.org/10.1080/00397911.2020.1784436
34. Ghozlan, S. A. S.; Abdelmoniem, A. M.; Butenschön, H.; Abdelhamid, I. A. Tetrahedron 2015, 71, 1413. https://doi.org/10.1016/j.tet.2015.01.026
35. Lin, Y. Y.; Rajesh, N. P.; Santhana Raghavan, P.; Ramasamy, P.; Huang, Y. C. Mater. Lett. 2002, 56, 1074. https://doi.org/10.1016/S0167-577X(02)00680-8
36. Singh, K.; Okombo, J.; Brunschwig, C.; Ndubi, F.; Barnard, L.; Wilkinson, C.; Njogu, P. M.; Njoroge, M.; Laing, L.; Machado, M.; et al. J. Med. Chem. 2017, 60, 1432. https://doi.org/10.1021/acs.jmedchem.6b01641
37. Salem, M. E.; Hosny, M.; Darweesh, A. F.; Elwahy, A. H. M. Synth. Commun. 2019, 49, 2319. https://doi.org/10.1080/00397911.2019.1620283
38. Salama, S. K.; Darweesh, A. F.; Abdelhamid, I. A.; Elwahy, A. H. M. J. Heterocycl. Chem. 2017, 54, 305. https://doi.org/10.1002/jhet. 2584
39. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 09, Revision A.02; 2016.
40. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
41. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB. 37.785
42. Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80, 3265. https://doi.org/10.1063/1.447079
43. Dennington, R.; Keith, T.; Millam, J.; Shawnee, K. S. GaussView Millam. "version 5; Semichem Inc." Shawnee Mission. KS 2009.
44. El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Morgan, S. M. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2014, 127, 310. https://doi.org/10.1016/j. saa.2014.02.037
45. Chocholoušová, J.; Špirko, V.; Hobza, P. Phys. Chem. Chem. Phys. 2004, 6, 37. https://doi.org/10.1039/B314148A
46. Avci, D. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2011, 82, 37. https://doi.org/10.1016/j.saa.2011.06.037

This paper is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/)

