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Construction of Classes of Circuit-Independent
Chaotic Osclillators Using Passive-Only
Nonlinear Devices

Ahmed S. Elwakil Member, IEEEand Michael Peter Kennedirellow, IEEE

Abstract—Two generic classes of chaotic oscillators comprising ~ Practical analog circuit designers know that for a design to
four different configurations are constructed. The proposed fylfill its specifications with zero trial-and-error effort is an im-
structures are based on the simplest possible abstract models of yosgiple mission. In particular, the available design and mod-
generic second-orderRC sinusoidal oscillators that satisfy the . . . . .
basic condition for oscillation and the frequency of oscillation eling te_Chn'queS 9ann0t take into conS|derat|or'1 every aspect of
formulas. By linking these sinusoidal oscillator engines to simple the design. For this reason, CAD tools are heavily relied upon to
passive first-order or second-order nonlinear composites, chaos minimize the essential trial and error effort. Nevertheless, most
is generated and the evolution of the two-dimensional sinusoidal design techniques are considered systematic because they offer
oscillator dynamics into a higher dimensional state space is a start-to-end design cycle with a product that requires a small

clearly recognized. We further discuss three architectures into d identified in of trial and If h
which autonomous chaotic oscillators can be decomposed. BasecNU ldeNtlied margin of tnal and error. It we can propose suc

on one of these architectures we classify a large number of the @ design cycle fOf chaotic oscillato.rs with appropriate design
available chaotic oscillators and propose a novel reconstruction rules, and identify clearly where trial and error is to be per-

of the classical Chua’s circuit. The well-known Lorenz system of formed, then we have a Systematic design process. We have pro-
equatic_)ns is also stl_Jo!ied and a _sir_nplifit_ed_ model with equivalent posed such a design cycle in [16] and [17].
dynamics, but containing no multipliers, is introduced. One of the most important design rules proposed in [17] is
Index Terms—Chaos, chaotic oscillators, Chua’s circuit, Lorenz  to employ passive-only nonlinear devices. This rule remains
system, oscillators. strongly recommended so long as there is no evidence that the
statistical properties of a chaotic signal produced by a chaotic
|. INTRODUCTION oscillator with an active nonlinearity (ex. Chua’s diode) pos-
. . . sess any additional features which are not possessed by sig-
HE DESIGN of chaotic oscillators has been a subject ?ﬁ\ls produced by chaotic oscillators with passive-only nonlinear

increasing interest during the past few years. As an aCtiyyices. Passive nonlinear devices (ex. diodes) require no de-

research topic, it has also advanced significantly due to the masr?é{n effort and impose no restriction on the performance of

contr_ibutions of different researchers [11-[12]. The main_thrugt_ chaotic oscillator in terms of power dissipation, minimum
loftthls_res_(:arch da':ei hfhs been to |tntr:)duce r;e(\j/v _cha:)r;uc OS&J[oplyvoltage, or frequency response. Therefore, a designer can
ator cireults and to turther concentrate on studying th€ NoRg,centrate on the active parts of the chaotic oscillator, which

Imgar dynamics respon_S|bIe for c_haos generation in these Yperate only in linear mode, in order to enhance its performance
cuits [13]-[15]. The achievement in most cases has been a ntroduce features of particular interest

chaotic oscillator circuit but not a design methodology by whic To this end, the design/optimization process for chaotic os-

even more circuits can be generated. The main reason for g, rojies primarily on techniques which are well-estab-

approach, in our apinion, is the lack of a set of necessary 3f¥hed in thelinear circuit theory of desigfrequiring minimum

sufficient mathematical conditions for chaos generation. SinE owledge of nonlinear dynamics. We emphasize here that the
early c?aotlctﬁscnlat\.torlsbwe{(e mtroc;jtlhced by. res_,tegrchersbwi hniques proposed for chaotic oscillator design cannot guar-
more ot a mathematical background than a CIrcUlt-design baciyeq hat 5 chaotic signal with predefined statistical proper-

ground, they might have been convinced that with the lack fies will be produced but they can be used to fulfill any circuit

tSUCh tgondltlor(ljs, it |fs m:jpo_ssmle toharr|tye at a}llc?mple:'ely SY3y nthesis/performance requirements. The mapping of statistical
emre]x Ic prﬁce ur;a gr .et5|gfn|ng t%. aotic oscilla Orf}' towev roperties into circuit-design properties can only be done when
we have chosen lo deviale from this main research stream r'lgnique set of statistical properties that can fully describe, iden-
adopt a point of view which is biased toward circuit-design. tify, and compare chaotic signals has been devised. This theo-
retical problem has not yet been solved.
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the active nonlinearity in these oscillators (systems) really ne
esiafy? A , A o , ACTIVE
0 answer these guestions, we have carried out a series
investigations on some well-known chaotic systems includin NE {va“?RK
Chua’s circuit [1], Saito’s double screw hysteresis oscillator [5
and Rossler’s system [18]. As anticipated, we have found that. Il
of these systems are built upon a core sinusoidal oscillator a
that the active-type nonlinearity is not essential for generatir _l
chaos [19]-[21]. Therefore, we have conjectured the followin R1 Ci
[19].

Conjecture 1: In any analog continuous-time chaotic oscil-
lator which is capable of exhibiting simple limit cycle behavior. | 1
there exists a core oscillator providing an unstable pair of cor Sauncdal oscltor it paralel g efwork
plex conjugate eigenvalues and a control parameter which ¢
move this pair. Accordingly, at least one chaotic oscillator ca (&)
be derived from any sinusoidal oscillator. The derivation proce:
requires a nonlinearity which is not necessarily active.

In this work, we introduce two classes of generic chaotic ot ACTIVE ACTIVE
cillators based on the simplest possible models for circuit-ind: NETWORK NETWORK
pendentRC sinusoidal oscillators. The sinusoidal oscillator is
treated as a black box with its internal structure left to be dt
cided according to a set of circuit-design specifications.

Following an interesting property of one of the propose
structures, whereby the switching of a single paramet
produces a mirror image of the attractor without changin
its dynamics, we have been able to construct a Lorenz-lil
butterfly attractor. This further motivates us to study closel
the Lorenz system of equations [22], hoping to identify &3
similar mechanism. The result is a novel simplified model ¢
the Lorenz system with no multipliers.

We also propose two extremely simple mathematical mode - (b) (©)
one of which is capable of capturing the essential dynamics
of third-order chaotic oscillators with an anti-symmetricakig. 1. Class-I generic circuit-independent oscillators: (a) sinusoidal oscillator
switching nonlinearity, while the other captures the essentfh a parallelRC network, (b) chactic oscillator using a D-L. composite, and
dynamics of third-order oscillators with an odd symmetricéf) chaotic oscillator using a FET-C composite.
nonlinearity. Both chaotic oscillator models are based on a core . . .
quadrature sinusoidal oscillator engine. A. Sinusoidal Oscillator

Finally, we discuss three general architectures for au-A general second-ordd&tC sinusoidal oscillator has the fol-
tonomous chaotic oscillators. Based on one of these architlwing state space representation:
tures, we classify a collection of known oscillators in tabular .
form. Chua’s circuit does not fit neatly into this classification. [Vm} = [all al?} [Vm} )
However, we can reconstruct the circuit to show that it is not an Ve az ax | Voo

exception to the rest of the table entries. In fact, we demonstr@iRereV,; and V¢, are the voltages across its two capacitors.

that Chua’s circuit is based on the classical negative resistamgf condition and frequency of oscillation are given respec-
sinusoidal oscillator and we introduce a reconstructed versiggely by

based on a generiRC oscillator.
a1+ a2 =0 and wo = a0 — a12a21. (2)

Now consider Fig. 1(a) where some first-order active network
(containingCs) supplies a current to the B, C; branch. This
Hrrent is in general a function of the two state variablgs; (
%brVCQ) and can be expressed as

[y -

- C3 = Ci

Il. CLASS | CHAOTIC OSCILLATORS

In this section, we present a class of chaotic oscillators whi
is based on the general second-order sinusoidal oscilla
shown in Fig. 1(a) and c_haracterized by having a separate It = +¢1VerFga Ve 3)
parallel B, C; branch supplied by a currehtfrom a first-order
active network. A large number of classical as well as newhereg; andg. are constant transconductances. Since the os-
sinusoidal oscillators with this structure can be found in thallator is active, eitheg; or go must be negative. Noting that
literature [23]-[26]. The parallelR,C; network is usually the frequency of oscillatiow, is generally equal t¢/n/ R, C1,
known as the timing network. wheren is a multiplication factor, and by applying the con-
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ditions of (2), the state equations describing Fig. 1(a) can bad

written in matrix form as I {gD(VCD -V,), Vep >V, (60)
D =
v 1 +g1—9g F92 v 0, Vep <V,
L = = | ng? + (g1 — 9)? Ll @ . . . : :
Voo C Ty 9T g1 | | Vo Ip is the nonlinear diode current, whijg, andV., are the diode
2

forward conduction transconductance and voltage drop respec-
whereg = 1/R; and we choos€; = C, = C. From (4), it tively.
can be seen that the condition for oscillation is satisfied and thatn addition to the normalization used to derive (5), and by
wo = gv/n/C. introducingZ = I1,/(92Veet), V = Ven/Veer, B = C/g5L,

By introducing the following variables: = tg./C, X = .= Cp/C, Kp = gp/g2, the state space representation of
Ve /Veer, Y = Vo /Vier, K1 = g1/g2 and K> = g/ g2, where  the chaotic oscillator structure of Fig. 1(b) can be derived as
Vier IS @n arbitrary voltage normalization constant, the dimen-

. X Kl —KQ +e -1 0 KQ
sionless form of (4) (apart from the tehbecomes Y | k4K —K)? Ka—K, 0 0
X1 +K; — Ko +e F1 X Z | 0 0 0 B
|:Y:| o |::|:[7’LK22+(:|:K1—K2)2] KQZFK1:| |:Y:| ’ EcV K2 0 -1 —KQ—CL
(5) X 0
Note that the frequency of oscillation can be varied using Y 0
without affecting the condition of oscillation. A + 0 (72)
To guarantee that oscillations start, practical oscillators need v a
to have a control parameter to compensate for any losses thad
may cause the condition for oscillation not to be satisfied. This Kp, V=>1
control parameter is represented in (5) by the small error factor = {0’ V<l (7b)

¢, which is also responsible for moving the pair of complex

conjugate eigenvalues admitted by (5) between the left and fi@"e, we have choseéi. = V. andl = I [refer to (3)].

right half-planes. For example, the classical equal-R equal-CAlthough the system described by (7) is a fourth-order
Wien-bridge oscillator requires an amplifier with gdin = 3, System, itis effectively living in a three-dimensional subspace

in order to start oscillations. By writingf = 3+ AK, one can @S the value of transit capacit6lp is much smaller compared
identify that in this case = AK. to the other two capacitors in the systém — 0). We empha-

Note that once oscillation starts, an amp”tude control mecﬁize the fact that the internal structure of the first-order active

anism is needed to stabilize the amplitude of oscillation. ThH¢twork remains irrelevant so long as it supplies the curfent
mechanism can be a nonlinear voltage or current-controliégnerally expressed by (3).

device inserted in the feedback path, or it can simply be the nonBY comparing (5) with (7), the evolution of the two-dimen-
linearity of the active device employed (ex. the saturation-tyﬁéonm sinusoidal oscillator dynamics into a higher dimensional
voltage transfer characteristic of an op amp). Consequenff{Ate-space can be clearly recognized. Stretching of the trajec-
(5) cannot alone model the behavior of a sinusoidal oscillati¥ies is dominated by the unstable second-order oscillator in
since it represents a linear system. However, it does modfé¢ X — Y plane. As oscillations grow in th& — ¥ plane,
correctly the function performed by the sinusoidal oscillat§n€rgy is continuously transferred to the nonlingar 1 sub-
engine within the chaotic oscillator structures introduced #yStem through the state variablewith a transfer coefficient
the following sections. We emphasize that the generation &¢/c.- This results in a rapid build-up of the voltage across the
chaos is a result of linking sinusoidal oscillators to simpléiode which eventually switches ¢i > 1) and dissipates the
nonlinear composite devices and is associated only with tRBergy stored in the inductor. The voltage across the diode is
nonlinear characteristics of these devices and not with afgnsed by the oscillator with a sensing coefficient equai fo
amplitude control mechanism of the sinusoidal oscillato‘?,”d the strong dissipation of the energy in the inductor causes
which is actually not needed in this case. The same nonlind@® oscillations in theX’ — Y plane to decay. However, before
characteristics responsible for chaos generation guararif@@se oscillations die completely, the diode switches off again

bounded oscillations. (V < 1). This repeated stretching and folding of the trajecto-
ries provides the necessary mechanism for chaos generation.

B. Chaotic Oscillator Structure Using a Diode-Inductor Numerical integration of (7) was performiedsing the set of

Composite parameter value&’; = 2, K» = 1, Kp = 50, e, = 0.01,

Consider the configuration shown in Fig. 1(b) which is dg? = -1, ¢ = —0.35and = 1. Fig. 2(a) and (b) show the
rived from that of Fig. 1(a) by inserting a diode-inductor (D-LJ&SUltingX —Y" and.X’' — Z projections of the chaotic attractor

composite [17] in series withR, . The switching action of the respectively. In the upper left corner of Fig. 2(a), the limit cy-

diode depends on the voltage across the parasitic transit cagaes 0Pserved when (7) is integrated after setting . = 0

itor Cp [27]. Hence, the D-L composite in Fig. 1(b) is describe@'® shown. These limit cycles correspond _to the t_hree cases
by K1, K») = (2, 1), (1, 1), and(1, 2), respectively. It is clear

that K; and K; define the phase relation in thé — Y plane.

LI, =V, 6a
. I cn ( ) 1An adaptive-step Runge—Kutta algorithm was used. Note the stiff nature of
CpVep =(Ver —Vep)/R1 — I — Ip (6b) the differential equations due to the small value of
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Fig. 2. Numerical simulation results of (7§ = 2, K = 1, Kp = 50, = —0.35,¢. = 0.01,» = 0.1, 8 = 1): () X — Y phase projection and (b)
X — Z phase trajectory.

In particular, the casé&’; > K, results in a clockwise phase By introducing the dimensionless variablgs= Vi3 /Vier
rotation whileK; < K results in an anticlockwise phase rotaand K n = gn /g2, in addition to those used to derive (5), the
tion. It is also clear that the best control parameter (bifurcatiatate space representation of Fig. 1(c) is given by
parameter) for the systemdswhich is also the control param-
eter of its core sinusoidal oscillator engine. In particulareas
is increased further away from its theoretical value required to
start oscillationge = 0) in the direction which causes the pair
of complex conjugate eigenvalues to move further into the rigﬂf‘d
half-plane, a period-doubling route to chaos is excited. (a, b) = {(KN’ 0) X-7z<1 (9b)
It can be shown that the system described by (7) has a single (0, Ky) X—-Z>1.
equilibrium point at the origin. This equilibrium point is real inHere, we have chosérie = Vp, ) = Cy = Cs = C [recall
the regionV < 1 and virtual in the regio > 1 (meaning (4)] andI = I_ [recall (3)].
that it lies outside this region) [28]. The following eigenvalues ‘\jumerical integration of (9) was performed using a
were calculated at the equilibrium point using the parametefs, th-order Runge—Kutta algorithm with a 0.001 time step
corresponding to Fig. 2—1.005, —100, 0.324 £ j0.585) in taking K1 = 1, Ky = 2,n = 0.2, ande = —0.3. X — Y
the regionV” < 1 and(—-0.002, —5100, —0.165 + j0.635) in anqy _ 7 projections of the observed chaotic attractor are
the other region. Thus, the equilibrium point at the origin is ath, o in Fig. 3(a) and (b) respectively. In the upper left corner
unstable focus. of Fig. 3(a) the limit cycle obtained when= a = 0 is plotted.
Several circuit-design examples that follow the structure @f .o pe shown that this system has an equilibrium point
Fig. 1(b) can be found in [10], [12] and [29]. (20, Yo, z0) = (0, 0, b/a). Hence, the origin is a real equilib-
rium point in the regionX — Z < 1 with the set of eigenvalues
C. Chaaotic Oscillator Structure Using a FET-Capacitor (—4.546, 0.123 + 50.453). In the regionX — Z > 1, the
Composite eigenvalues arf), —0.65 & j1.174). The origin is an unstable
Consider the structure shown in Fig. 1(c) which is derivetddle focus.
from that of Fig. 1(a) by replacing?; with a FET-capacitor  Note from (9) that the conditiom = 0 (FET off) implies that
(FET-G;) composite [17]. The FET-C is a first-order passivéhe three-dimensional system collapses onto the two-dimen-

composite with a diode-connected FET. In Fig. 1(c), it is modionalX — Y plane. In this case, the oscillator remains linked
eled by to the nonlinear subsystem (the FE’E-composite) through

a constant current sourgdy = gy - Vp) which continu-
. ously chargeg”; by dischargingCs. The negative pinch-off
CsVes =1In (8a) voltage Vp guarantees this discharge process. Eventually, the
and gate-to-source voltage of the FEWA; — Vo3) exceedd’p» and
I — {QN(Vm —Ves), Ver—Ves > Vp the FET is turned on again. One can show that the characteristic
N =

X —Ki—ate 1 a]|[X —b
=|-nK%i-K! Ki O Y|+ ]| 0] (%)
a 0 -—a Z b

(8b)

Ver — Vs < Vp equation of (9) always admits a negative real eigenvalue for all

values ofa > 0. In addition, when the condition < 2K, /K x
wherely is the nonlinear FET curreng, is the FET operating is satisfied, a pair of complex conjugate eigenvalues in the right
point transconductance, ahg is a negative pinch-off voltage. half-plane is always admitted.

g]\TVPv



ELWAKIL AND KENNEDY: CONSTRUCTION OF CLASSES OF CIRCUIT-INDEPENDENT CHAOTIC OSCILLATORS 293

ACTIVE
NETWORK

.4 (first order)

- T«

] R1
Vs
Cl—[
Sinusoidal oscillator with series timing network
(a)
ACTIVE ACTIVE
NETW ORK NETWORK
+
1|l
R1
R1§
Vs Vs
In
h|¥YD L I = !
_ I Cs3 I C:

(b) (©)

Fig. 4. Class-Il generic circuit-independent oscillators: (a) sinusoidal
oscillator with a seriesRC network, (b) chaotic oscillator using a D-L
composite, and (c) chaotic oscillator using a FET-C composite.

whereC; = C> = C andg = 1/R;. It can be seen that
the condition for oscillation is satisfied and the frequency of
oscillation iswg = g+/n/C.

Adopting the same dimensionless variables used to derive (5),
(10) becomes

Fig. 3. Results of numerical integration of (( =1, Ky =2,n = 0.2,
e = —0.3): (@) X — Y projection and (b} — Z projection.

ll. CLASS Il CHAOTIC OSCILLATORS {X} B [ +K; +e ¥l } [X} (11)

The chaotic oscillators of this class are based on the general Y k3 + K7] FE LY
sinusoidal oscillator shown in Fig. 4(a) characterized by havigherec is the error control parameter used to guarantee that os-
a separate serids, C, network, which is also a common featuré;jjations start. Note thak’, appears here as a frequency multi-
in many oscillators [23]-{26]. This series network can either Bgication factor and does not affect the condition for oscillation.
driven by a currenf, generally given by (3), or by a voltadés In the case where th&, C; network is voltage-driven by’s,
generally given a¥’s = +K;Ve1 F KaVea. Thus, the func- Fig. 4(a) is described by

tion of the first-order active network (containirig,) is either

to supply! or maintainVs. In the following sections we show +K, —1+¢ FK,

how a chaotic oscillator can be derived in both cases. [Yr} = | n+4 (K, —1)? Kﬂ . (12)
ik, 1¥ K,
A. Sinusoidal Oscillator
Consider the case where theC; network is current-driven Here, the time normalization constaris taken agg/C instead
By recalling (1)—(3), Fig. 4(a) can then be described by of tg2/C.
. +g1 Fgo B. Chaotic Oscillator Using a D-L Composite
1 . . . .
“;Cl} =5 | ne? v g [“;Cl} (10)  The structure shown in Fig. 4(b) is obtained from that of
c2 - Fq c2

+go Fig. 4(a) by adding a D-L composite in parallel withy . The
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Fig. 5. X — Z trajectory resulting from numerically integrating (13{ =2, K. = 0.1, Kp =3,n=1,3 = 1,e = 0.32).

series network is current-driven and the configuration is thus degion X > 1 and the se{—1.073, 0.696 + ;51.174) in the
scribed by regionX < 1. One can show that (13) always admits a negative
real eigenvalue. In addition, a complex conjugate pair is always

‘;( B _‘[22_ a}éc; _é _01 ‘;( 8 13 admitted in the right-half plane when = 0. The condition

| T | AL i + (13a) a > 1 guarantees a complex conjugate pair in the left half-plane.
Z 15} 0 0 Z 0

and

{KD, X>1 C. Generation of Chaos Using a FET-C Composite
a =

0 X <1 (13b) A FET-C composite can be placed in parallel with capacitor
’ C1 inthe oscillator of Fig. 4(a). The resulting structure is shown
The same settings that were used to derive (7) were also useihiRig. 4(c). Since the case of a current-driven port is similar to
deriving (13) with the choice oV, = V., and = I,. Note that described in Section II-C, we consider here the case of a
that the voltage across the inductor appears adtgswhich voltage-driven port with’s = K,V — K>Veo. In this case
dominates the diode transit capacitadée. the structure of Fig. 4(c) can be described by
By comparing (11) and (13), the role of the sinusoidal oscil-

lator in the X — Y plane can be identified. Assuming that the Ki—1—a+e¢e —Ks a

diode is initially off (@ = 0), oscillations will continue to grow X n+ (Ki — 1)2 X —b
in the X — Y plane transferring energy to the nonlinear subt . | = B — 1-K; 0 Yi+1]o0
system via the state variabléwith a transfer coefficient. This 4 o 0 —a 4 b
results in a continuous increasexf However, the oscillator in (24)

the X — Y plane is linked to the nonlinear subsystem througitherea andb are as given by (9b). The same dimensionless
the term—Z. Hence, the increasing tends to slow down the variables used to derive (9) are used in (14) with the time nor-
growth of oscillation in theX — Y plane by reducing the amountmalization constant taken agg/C instead ofg./C.
of current charging”;. Eventually, wherV, reached’,, the By comparing (12) and (14), the evolution of the two-dimen-
diode switches on dissipating strongly the energy transferrsidnal oscillator dynamics into the three-dimensional space be-
from the oscillator and rapidly dischargirigy . The growth of comes clear. It can also be shown that the characteristic equation
oscillations is then reversed into an oscillation decay until tief (14) always admits a negative real eigenvalue for all values
diode switches off again. of @ > 0. In addition, when the conditiok’; < 1 is satisfied,
The X — Z projection of the chaotic attractor obtained via pair of complex conjugate eigenvalues in the right half-plane
numerical integration of (13) is shown in Fig. 5. The switchingre always admitted.
plane atX = 1is marked. The parameter values in this case areWhen numerically integrating (14) with; = 0, Ky = +1,
K =2 Ky,=01,Kp=3,n=1,8=1,ande =032. Ky = 2,n = 0.7, ande = —0.3, the observed trajectories
The period-doubling cascade startsat: 0.235. The system were similar to those shown in Fig. 3(a) and (b) respectively.
described by (13) has a single equilibrium point at the origidowever, we note that the changelf from 1 to—1 and vice
with the set of eigenvalugs-0.362, —1.159 + j2.047) in the versa produces a mirror image of the attractor without changing
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Fig. 6. Y — Z trajectory observed after modifying (14) suchthgt = 1if Y > 0andK, = —1if Y < 0 (K; =0, Ky =2,n=0.9,e = —0.2,m

5).

its dynamics. In fact, the characteristic equation of (14) is indeerm—cZ, resulting in a continuous increasefThis increase
pendent ofK». Hence, the eigenvalue pattern is not affected bgflects back to th& —Y plane via the nonlinear terfh— 2) X

its value.

in (15b). Actually,b can be thought of as a threshold level since

To demonstrate this interesting observation, we modify (1#)e term(b — Z) changes its sign at the threshatd= b. As

such thatk; continuously switches between 1 and.. K is
setto 1ifY > 0andissetto-1if Y < 0 (KyY = [Y]is
an even-symmetrical nonlinearity). In addition, a constaris
used to displace the trajectories along Yhaxis such that they

7 exceedsh, oscillation growth is stopped and reversed into

a decay. We note that the terfh — Z) alone can guarantee
this reverse process when it changes sign. We also note that the
X — Z projection of the Lorenz attractor is symmetrical with

either lie in the negative half space or the positive half-spaoespect to théX axis and thaf is always positive. This implies

when K, is switched. Accordingly,X becomesX + m. The

that for a small enough threshdigthe term(b— Z) will always

Y — Z trajectory observed in this case is shown Fig. 6. Herehange sign. Hence, the role played by the state vari&hbie

K =0,Ky=2,n=09,¢e=-02andm = 5.

the nonlinear ternfb — Z)X is similar to that played by in

The similarity between this chaotic attractor and the welthe system described by (14). We thus suggest modifying (15b)
known Lorenz butterfly attractor is apparent. In fact, we argue read

that one of the state variables of the Lorenz system perfor
a function similar to that of the switching constaki$. This is
explained in the following section.

D. Modified Lorenz System

Consider the well-known Lorenz system of differential equ
tions given by [22]

X =a(y - X) (15a)
Y=b-2Z)X-Y (15b)
Z=XY —cZ (15c)

wherea, b, andc are constants. The two multiplier-type non

linearities XY and X Z) are responsible for the generation o

ms

Y =K@b-2)

and
1 X>0

-1 X <O0.

K =sgn(X) (16)

{

?\_Iote that we have also eliminated the ter from (15b) since

it is not necessary.

By observing that theZ signal is always positive, we con-
clude that the nonlinear terd Y in (15c) is not particular. It
can be replaced by other terms which will ensure tHate-
mains positive. Such terms might B&, | X| or simply K X,
whereK is the switching constant given in (16). In conclusion,
jve propose the following system, which has similar qualitative

chaos in this system. Circuit realizations of the Lorenz systefyamics to the Lorenz system but is multiplier-free:

have always been difficult because of these multipliers [30].
From (15c), it can be seen that when the nonlinear t&irhis
sufficiently small,Z scales as—¢!, thus decaying with time and
allowing the oscillations in thé&l — Y plane to grow. Eventually,

X —a a 0 X 0
Y| =10 0 -K Y |+ |bK a7
Z K 0 -c¢ A 0

the nonlinear termX'Y" is no longer small and dominates thavhere K is as given in (16).
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Fig. 7. Projections of the butterfly attractor in the— Z plane observed from our proposed multiplier-free Lorenz system: fap = 0.6,¢ = 0.15,m = 0,
B)ya =b=0.6,c=0.15,m =1,and (C)a = b = 0.6,c = 0.45,m = 0.

The X — Z projection of the butterfly attractor observedvalue of thedampingconstantc, as demonstrated in Fig. 7(c)
when numerically integrating (17) witlhe = 6 = 0.6 and for ¢ = 0.45.
¢ = 0.15 is shown in Fig. 7(a). We can further modify (17) by The way these two attractors are merged together is dictated
adding a constant term to Y to becomel”+m. The attractor by the characteristics of the nonlinearity, which in this case is
in Fig. 7(a) corresponds to the case= 0 whereas that of even-symmetrica(f(X) = KX = |X]|). Were the nonlin-
Fig. 7(b) corresponds to the case = 1. Whenm equals earity to be odd-symmetrical, these two attractors would have
—1, the mirror image of the attractor of Fig. 7(b) is obtainecdheen merged after an additional flip operation had been per-
Thus m allows us to observe both wings of the butterfifformed to one of them [31], [32]. In general, we conjecture the
(m = 0) or simply one of the wings aloném = =£1). It following.
also clearly shows that the Lorenz attractor is constructed byConjecture 2:If a chaotic attractor is observed from a
merging together two similar chaotic attractors, one of whictystem with a symmetrical (odd or even) nonlinearity, then
is the mirror image of the other. The transition from onanother chaotic attractor can be observed from the anti-symmet-
attractor to the other can be made smoother by increasing tteal half of this nonlinearity. The attractor of the symmetrical



ELWAKIL AND KENNEDY: CONSTRUCTION OF CLASSES OF CIRCUIT-INDEPENDENT CHAOTIC OSCILLATORS 297

N

nonlinearity is related directly to two of the attractors of it
anti-symmetrical half by one merge operation, one mirrc v ; ;
operation, and an additional flip operation if the nonlinearity i 1} S e R .
odd [33]. :
The merge operation implies the continuity of the trajectorie
when the system switches from one half of the nonlinear char:
teristics to the other. Therefore, studying the nonlinear dynami
of the anti-symmetricdhalf attractor” should be sufficient to X" "
understand the dynamics of the symmetritfall attractor.”
An interesting example that has been reported recently is 1 »| = = = ]
guad-screwchaotic attractor consisting of fosgle-screwsr : 3
equivalently twodouble-screw$34], [35], implying the exis- 5
tence of both and odd and an even-symmetrical nonlinearity.

IV. ON THE SIMPLEST POSSIBLE CHAOTIC DYNAMICS

Itis well known that the simplest possible antisymmetricnor .25 2 15 4
linearity is that of the passive diode (or diode-connected tran-
sistor). On the other hand, the simplest possible systems thigt8. X — X projection of the chaotic attractor of (18){ = 5, az = 0,
can admit oscillations are the second-ordl€t — » current or 2ndf(X. X) = .X).
voltage-controlled negative resistance oscillator, its equivalent
FDN R — R oscillator, and the generRCoscillators shownin  2) The critical valueB = 1 implies that the system has a pair
Figs. 1(a) and 4(a). Hence, a third-order continuous-time chaotic  of complex conjugate eigenvalues located on the imagi-
oscillator where any of these oscillators can be identified as  nary axis. This pair moves into the right half-plane when
being responsible for stretching the trajectories and where the B < 1 and into the left-half whe® > 1. Therefore, the
switching action of a passive device is responsible for folding,  conditionsa; > 1 andas < 1 guarantee that this pair
will most likely exhibit the simplest possible chaotic dynamics. traverses from one half into the other whBnswitches

-0.5 0 05 1 1.5 2
dX/dt )

We conjecture the following. betweenx; anda,. These two conditions amecessary
Conjecture 3: The simplest possible dynamics of an au- for chaos generation.

tonomous continuous-time chaotic oscillator are most likely 3) A real eigenvalue located in the left half-plane is always

those which can be observed when: admitted.

1) the oscillator is described by a third-order system of dif- 4) From our numerical simulations we observe the fol-

ferential equations; lowing. _ _
2) theoN-oOFFswitching action of a single passive device is a) Whena; = 1, the only behavior admitted by the
the only nonlinearity; system is a simple limit cycle; this happens inde-
3) the describing equations of second-order subsystem, pendently of the value af;.

b) Whenao > 1, oscillations decay and the system
settles at the origin independently of the value of
y.

c) Whenas < 1, the system will admit chaos only
if «; > 1. This is a necessary but not sufficient
condition. In particular, unbounded oscillations (di-
verging trajectories) always result if the condition
¢ = Argp/Arrp — Prap/Prrp < 0 is satis-
fied Where,ALHp = a1 — 1, ARHP =1—- o,

X=X 1BX4X PrgpandPrgp are the a_bsolute \_/alues ofthereal

parts of the complex conjugate eigenvalues calcu-

and lated respectively aB = «; and B = as. A

which admits a pair of unstable complex conjugate
eigenvalues in at least one of the regions of operation of
the switching device, can be identified.

Examples of chaotic oscillators that satisfy these require-
ments were given in the previous sections of this article and
for example in [36]. We believe that the following third-order
canonical model is the simplest possible that captures the
essential dynamics of these examples:

p_on J(X, X)>1 (18) limit cycle is born where = 0 and chaos requires
as, f(X, X)< 1. thate > 0. The larger this quantity, the further the
system is pushed toward the chaotic zone. The pe-
The projection of the chaotic attractor observed from (18) in riod-doubling cascade starts at approximateby
the X — X plane is shown in Fig. 8 when; = 5, az = 0, 1.3.
and f(X, X) = X. The switching plane ak = 1is marked.  5) \WhenB is used to map the ON-OFF switching action of
The eigenvalues at the equilibrium point &re).207, —0.397+ practical devices, such as diodes and transistors, this will
J2.163) whenB = «; and(—1.466, 0.233 & ;j0.796) when imply thatas — 0 (very high resistance OFF region) and
B = as. aq > 1 (very low resistance ON region). This means that
We note the following about the system of (18). the behavior most likely to be observed from this system

1) The system has a single equilibrium point at the origin. when using these passive devices is chaos.
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(b)

Fig. 9. Practical realization of (18). (a) Circuit based on an integrator-summer architecture using AD844 current feedback op amps. (b) BEXgesiméita
trajectory whenS' is connected t&';, (X axis: 0.2 V/div,Y" axis: 0.2 V/div).

A straightforward circuit implementation of (18), which com- An experimental setup of the circuit was construétadth
prises three cascaded lossless noninverting integrators followed- 1 k2, C; = Cy = C35 =1 nF, Rg = 1kQ, Rc = 100 €,
by an inverting current summer with gain, is shown in Fig. 9(aand a5 k2 pot. was used to tune the gain resistofz. The
The switching action is performed by the bipolar transi§lar. Voo — Ve (X — X) phase portrait observed whgiX, X) =
By connecting together the two nodes mark&@nd S;, the X is shown in Fig. 9(b).
switching conditionf (X, X) is equal toX and by connecting
S 10 S5, it is equal toX. Note that the faithful realization of V. ON THE STRUCTURE OFCHAOTIC OSCILLATORS
(18) requires the gaiK of the inverting summer to equal unity.
In this case, the circuit can be tuned using resi&er(the col-
lector resistance of ) which should equaR/«;. However,

in practice, it is more convenient to fix the value8E and 10 2xpgas cFOA chips biased witt9 V and a Q2N2222 NPN transistor were
use the gaink as the tuning parameter. used.

In the previous sections, two classes of generic chaotic os-
cillator structures were designed. Both classes evolve from the
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Fig. 10. General structures for autonomous chaotic oscillators: (a) low-order oscillators follow the oscillator-nonlinear composite r@ictii)eztalass of
higher order oscillators can be constructed by coupling sinusoidal (relaxation) oscillators via a nonlinear composite, or by (c) insertiggtidiitbetween the
oscillator and the nonlinear composite.

simple dynamics of a sinusoidal oscillator which is coupled toaong with the nonlinear device can be considered as a sepa-
passive nonlinear composite. Although we have considered tiage first-order nonlinear composite. For example, in the Colpitts
D-L and the FET-C nonlinear composites, other composites cascillator oscillations are actually developed in the active tank
also be introduced. For example, we have used a passive hgsonator. The extra capacitor along with the rest of the bipolar
teresis nonlinear resistor from those of [37] to generate a clasmnsistor circuit forms a passive first-order nonlinear composite
of hysteresis chaotic oscillators [38]. It was shown in [38] that[89]. The Colpitts oscillator can thus be moved to row 8 of the
hysteresis chaotic oscillator is the limit case of another chaotable.

oscillator when one of its energy storage elements (inductor ofrpe chaotic behavior observed in a third-order phase-shift os-
capacitor) becomes significantly small, or even a parasitic, Sugllator with active nonlinear feedback [40] provides an example
that slow-fast dynamics arise. _ _of a system with an active zeroth-order nonlinear composite.
In this section we discuss three general architectures ifiRnce it is classified in row 2 of the table. By altering the typ-
which most autonomous chaotic oscillators can be decomposgd| saturation-type characteristic of the device which provides
Two of these architectures are particularly suitable for genfain in this oscillator such that it becomes piecewise-linear with
ating higher-order and hyperchaotic oscillators. controllable slopes, chaos can be produced with specific sets of
slope values. Analysis of [40] reveals that it is difficult to force
the phase-shift oscillator into chaos and our own experience also
The structure represented in Fig. 10(a) can be recognized iggfirms this fact. Note that a reconstruction of this chaotic os-
large number of autonomous chaotic oscillators. It is composgiflator can be carried out by splitting the capacitor which ap-
of two blocks: an oscillator and a nonlinear composite. Intepears in parallel with the active nonlinearity into the sum of
action between these two blocks is commonly supported by capacitors: one large capacitor and one small (parasitic)
zero-order link, meaning that it is either a direct link or a resigapacitor. The small capacitor and the active nonlinearity to-
tive one. In order two admit chaos, two conditions are necessajther form a first-order nonlinear composite. Thus, this chaotic

A. The Oscillator-Nonlinear Composite

» At least one of the two blocks must be active. phase-shift oscillator could be moved to row 4 of the table.
* Atleast three energy storage elements (including parasitici row 3 of the table, two examples are given of systems with
ones) must exist. an active third-order oscillator and a passive first-order non-

In all systems which we have investigated, we found that tigear composite. The family of chaotic Wien oscillators de-
oscillator was sinusoidal. A summary of our investigation rescrined in [8] uses a FET-C as the nonlinear composite and a
sultsis givenin Table I. In particular, two examples can be givggmily of second-order Wien-type oscillators. Without consid-
for a system with a zeroth-order nonlinear composite. These WAng the dominant pole of the operational amplifier used to syn-
examples are the chaotic Colpitts oscillator [3] and the chaofitesize the Wien oscillators, the overall order of the system re-
Twin-T oscillator [9], both of which are derived from third-ordery zins two despite the addition of the FET-C composite. Hence,
sinusoidal oscillators. Being of zeroth-order, the nonlinear cofflye active Wien oscillator must be treated as a “weak” third-
posite (actually a single nonlinear device) is embedded withiger oscillator. The second example is provided by the FDNR-
the oscillator rather than being linked to it. However, one ca§hsed chaotic oscillator described in [36]. There, the passive LC
in general identify a particular energy-storage element whighnk circuit was activated by placing an FDNR in parallel with it.

3This is true also for relaxation oscillators which relate to sinusoidal oscill4 portion of the tank’s capacitor associated with the switching
tors in a similar manner. diode forms the first-order nonlinear composite.
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TABLE |
CLASSIFICATION OF DIFFERENT AUTONOMOUS CHAOTIC OSCILLATORS ASED ON THEOSCILLATOR-NONLINEAR COMPOSITEARCHITECTRUE(A STANDS FOR
ACTIVE AND P STANDS FOR PASSIVE)

Oscillator Nonl. Comp. Examples
Order | Type || Order || Type

3 A 0 P | Chaotic Colpitts oscillator [3], Chaotic
Twin-T oscillator [9].

3 A 0 A | Chaotic phase-shift oscillator [40].

3 A 1 P Family of Wien-type oscillators [8], FDNR
chaotic oscillator [36].

3 A 1 A Twin-T-based implementation of Chua’s
circuit [19].

3 A 2 P Three-phase oscillator modified using a D-
L composite [12].

2 P 1 A | Chua’s circuit.

2 A 1 A | Rossler’s system [18], Saito’s double-screw
oscillator [5] and its various realizations
[6], [20], Chaotic oscillators of 7], [10], [43)
and [44], Wien-bridge-based implementa-
tions of Chua’s circuit [19].

2 A 1 P | Chaotic oscillator of [4], Chaotic oscilla-
tors based on the FET-C composite [17],
[32], [45], Based on the FET-L composit
(11], Multiplier-free Rossler system [21],
Class of hysteresis oscillators [38], Saito’s
circuit with a passive nonlinearity [20].

2 A 2 P Circuits based on the D-L composite [10],
[17], [29].
2 A 2 A | Quad-Screw oscillator [34], [35], 4D differ-

ential hysteresis oscillator [46].

In row 4 of the table, both the oscillator and the nonlinedR@ssler system [18], Saito’s double-screw hysteresis oscillator
composite are active and the overall order of the system is foj], [6] and its various realizations [20] (in [20], it was shown
The Twin-T based implementation of Chua’s circuit is an exhat the core of Saito’s hysteresis oscillator is a current-con-
ample of such a construction [19]. trolled LC — r negative resistance oscillator and that it can be

Row 5 is dedicated to the case where an active third-ordeplaced with otheRC oscillators), the chaotic oscillators of
oscillator and a passive second-order nonlinear composite gt [41]-[44], and the Wien-bridge-based implementations of
linked. A circuit with such an architecture is given in [12], wher€hua’s circuit [19].

a three-phase oscillator was modified for chaos using the D-LIn Row 8, examples of chaotic oscillators with a core second-
composite; the overall order of the system is five. order sinusoidal oscillator and a passive first-order nonlinear

Chua'’s circuit is placed in row 6 with a passive second-ordeomposite are given. This type includes most circuits based on
oscillator and a first-order active nonlinear composite formeatle FET-C composite [4], [17], [32], [45] (refer also to Sec-
of the voltage-controlled nonlinear resistor (Chua’s diode) anidns 1I-C and IlI-C of this article) and on the FET-L composite
the capacitor in parallel with it. By inspecting the entries of th|L1]. It also includes the modified Rdssler system which uses a
table, it can be noticed that Chua’s circuit is the only entry witbwitching transistor instead of the artificial multiplier-type non-

a passive oscillator engine. This classification results from thinearity [21], a class of hysteresis chaotic oscillators [38], and
general outlook of the circuit. A closer inspection will reveathe single-screw realization which depends on a two-transistor
that this oscillator is actually active and not passive, as demgrassive differential current-controlled resistor [20].

strated in the following section. Chaotic oscillators based on the D-L composite [10], [12],

In Row 7, a collection of chaotic oscillators that can bgL7], [29] fit in row 9 (refer also to Sections II-B and 111-B). Fi-
shown to have a core second-order sinusoidal oscillator engiradly, row 10 of the table is dedicated to 4-D oscillators which
is given. This engine is then coupled to an active first-ordéave two active hysteresis elements and a core second-order 0s-
nonlinear composite. Among this collection are the classicaillator [34], [35], [46].
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Fig. 11. (a) Restructured Chua’s circuit with a core voltage-contrallét— r sinusoidal oscillator. (b) Projection of the double-scroll in fie— Z plane
(wr =2, K =15,A =0.01,e. =1,A =4).

B. Reconstruction of Chua’s Circuit and

Since the nonlinear characteristics of Chua’s diode result (0. 4) Zs-1
from adding in parallel two negative resistors, one of which (a,0) =4 (-4,0) -1<Z<1 (21b)
is linear (—r) while the other is designed to saturate beyond (0, —A) Z>1.

a pair of breakpoints [47], if the linear negative resistor) ndeed, by numerically integrating (21), we still observe the
is detached from the nonlinear resistor and placed in paral uble-’scroll attractor. as shown in Fig’ 11(b), which repre-
with the passivd.C; tank circuit, a classic negative—resistancgents itsY — 7 project,ion forw. — 2. K : 15 A - 0.01
;lnu30|da[ osqllator results. We show that with this modlflcas— — 1, andA = 4. We note that even with very small values
tion, the circuit can preserve the double-scroll dynamics. Th e, (. = 0.01) the double-scroll attractor can still be ob-
we consu_jer the qu'f'ed Cr_\uas cireuit ShOW” n Fig. l_l( erved. This means th@tcan become a parasitic capacitor and
with the simple nonlinear resistor characteristic sketched in t At Chua’s circuit can then be treated as a slow-fast dynamical

figure. This circuit is described by system [48]. Itis clear that the mechanism by which oscillations

Oy = <1 _ l) Ve + Ve I (19a) are produced in Chua'’s circuit is via the classical negative-resis-
R R tance sinusoidal oscillator. The characteristic of the nonlinear
LI, =Ve, —rp L (19b) resistor sketched in Fig. 11(a) is responsible for switching these
. 1 oscillations between two parallel planes in the 3-D state-space
CVe = E(Vm = Vo)~ In (199) {5 form the two scroll surfaces. Smaller values of the switching
wherer;, is a parasitic resistance in series with the indudtgr. capacitor result in faster transition between the scrolls.
is the nonlinear resistor current modeled by In the region—1 < Z < 1, the system has its equilibrium
Is Vo < —Vgp point at the origin. It can be shown that fof = 1 and for
Is A — 0, the characteristic equation in this region always ad-
In= “Vor Ve =Vep<Voc<Vpp (20)  mits a positive real eigenvalue when the conditibn> K is
7 Ve sV satisfied plus a pair of complex conjugate eigenvalues in the
. > ¢ = Br left half-plane whenv? > (1 + A)K — A. Using the values
wherels is a saturation current antVsp are the voltages at corresponding to Fig. 11(b), the eigenvalues at the origin are
the breakpoints. (1.485, —0.252 + 5j0.89). On the scroll surfaces, whetie= 0,

By settingt = 7//LCy, X = Veu/Vpp, Y = 71L/VBr:  he equilibrium points ar¢0, —b/K, —b) and the calculated
% = Ve/Vep, wp = rCL/VLC1, K = 1/R, ec = C/C, eigenvalues at these points &rel.067, 0.024 & j0.834). Note
A=rr/r, a_ndA = r1s/Vap, the dimensionless form of thethat as oscillations build up on the scroll surfaces, the switching
above equations becomes capacitor is being discharged. This discharge process is essen-

wrX I1-K -1 K X tial to guarantee that the breakpoint voltages are reached and
Y =] o -Aw 0 Y that switching occurs. During the switching phase, the energy
EcwrZ K 0 —(K+a) Z on the oscillator side drops significantly. This manifests itself
0 via the complex eigenvalues with negative real part which ap-
+ 0 (21a) pear in this phase. In particular, during the switching phase,

—b the tank circuit is effectively loaded by the equivalent resistor
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ACTIVE
NETWORK

Fig. 12. (a) GeneriRCimplementation of Chua’s circuit based on the sinusoidal oscillator of Fig. 4(a) when itsREest is voltage-driven and (b) skewed
double-scroll 'y =n =¢, = . =1,e =055, A =4, K, =1if Z>0andK, = —1if Z <0).

R., = —rR/(R — r) which is positive only if|r| > R, i.e., We have integrated (22) numerically wilth, = K, = n =
K > 1. This condition coincides with the condition of oscilla€, = ¢. = 1,¢ = 04, andA = 4. The X — Z projec-
tion of the core sinusoidal oscillator engine in tie- Y plane tion of the observed double-scroll is similar to that shown in
(Z = 0) of the system described by (21). Fig. 11(b). Note that the set of parametéls , K, n, €) rep-

It is worth noting that when the linear negative resigter) resents only the sinusoidal oscillator engine, whileepresents
is detached from the Chua’s diode realization of [47], the renly the nonlinearitys,. ande. represent the link between the
maining part will have a nonlinear characteristic slightly diftwo blocks. In particular, (12) is the limit case of (22) when
ferent from the simple characteristic modeled by (20). In pas; — 0 ands. — 0. We restress that the particular design of the
ticular, the outer segments of the characteristic have a positfirst-order active network [see Fig. 12(a)] is irrelevant so long as
rather than a zero slope. However, we have chosen to demibrives the series port withs. Circuit examples of this struc-
strate that this simple model is sufficient to preserve the doubtere can be found in [19]. Two more geneR€ realizations of
scroll dynamics. Chua’s circuit are given in [49].

A Generic RC Realization Of Chua’s CircuiiVe now Since changing the sign df, in (12) changes the direction
consider the configuration shown in Fig. 12(a) where we haweé rotation in theX — Y plane, we expect to see the same ef-
replaced the voltage-controlled negative-resistance sinusoifiadt in (22). This is a direct result of our ability to isolate the
oscillators in Chua’s circuit with the generRC oscillator of mechanism by which oscillations are produced in the chaotic
Fig. 4(a). Recall that the sinusoidal oscillator alone is describedcillator. In general, any particular feature which we introduce
by (12) when a voltage-driven port is considered. into the core sinusoidal oscillator engine will automatically be

In addition to the settings used to derive (12), we define inherited by the chaotic oscillator. Therefore, if an appropriate
Ve /Viet, € = R1 /R, ande. = C/C;. Hence for the choice of switching mechanism fok; is used, we expect to obtain a
Vs = K1Ve1 — Ko Ve andVe = Vpp, Fig. 12(a) is described skewed double-scrolBuch a case is demonstrated in Fig. 12(b),
by [recall that (12) also implies the choice 6§ = C;; the whereK> is switchedto 1ifZ > 0andto—-1if Z < 0.

active network contain€’] We conclude our discussion with the following remarks:
¥ Ki—-1-eg+c -K> &p 1) Our ability to identify the differential equations which
- n+ (K; —1)? represent the sinusoidal oscillator within the derived
Y= ——= 1-K 0 models of the circuit can be considered as a proof of the
ISV K, - . - ) .
¢ e 0 —&.—a validity of Conjecture lin this particular case.
X 0 2) Chua’s circuit now belongs in row 7 of Table I. There, we
Y | + 0 (22) also find Saito’s double-screw oscillator with an identical
7 _b mechanism for generating oscillations, i.e., via a nega-

tive-resistancd.C — r oscillator [20]. In fact, Saito’s cir-
cuit is the dual of Chua’s circuit with the negative-re-
4By applying the conditions of (2) to (21a) whéh= 0, it can be shown that sistance oscillator and the nonlinear resistor both cur-

the condition for oscillation of the core enginefis= 1 + Aw? and the center rent-controlled instead of voltage-controlled. The orig-

frequency of oscillation is’g = /1 + A(K —1). One canwritd{ = 1+¢, - L L . .
wheree is the effective control parameter similar to the systems of (7), (9), (13),  inal circuit proposed by Saito in [5] is of hysteresis na-

and (14). For an ideal inductofy — 0. ture. However, if the parasitic inductor in series with the

wherea andb are as given by (21b).
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current-controlled nonlinear resistor (which is essential to An experimental setup of this circuit was construétedth
correctly model the hysteresis nature of the circuit [5S0R = 1 k2, C = 1 nF, K = 9, anda = 0.8. All devices were

is replaced with a physical inductor of value comparablgiased with+-9-V suppliesX — Y and X — Z projections of

to that of the other inductor (in theC — » oscillator), the the chaotic attractor are shown in Fig. 13(c) and (d) respectively.
double-screw evolves into a double-scroll. In general, if

the parasitic inductor (capacitor) in series (parallel) witlt. Block Diagram Representation

the nonmonotone current (voltage)-controlled nonlinear

. . . _ / . ' Based on our conjectures, we can now draw a block dia-
resistor in a hysteresis chaotic oscillator is replaced W’I’g

am representation of low-order autonomous chaotic oscilla-
rs. Fig. 14 shows the block diagram which is composed of
ﬁ oscillator which has state variable$Xo1 — Xo»,) and
a nonlinear subsystem which has state variable§Xs; —
A Simple Model with Double-Scroll-Like Dynamicgve pro- - x'. ) One of the state variables might be common between

pose a simple model which can capture the essential dynamigsh blocks. In order for this structure to admit chaos, two con-
of double-scroll-like chaotic attractors. The model is given bygitions are necessary.

a physical inductor (capacitor), the chaotic nature of t
circuit can be preserved but the characteristic slow—fag
dynamics disappear [38].

1) The relationn + m > 3 must hold. This means that at

X=—a[X + X+ X — f(X)] (23a) least three energy storage elements (including parasitic
ones) must exist.
and 1. X>0 2) At least one energy source must exist. This implies that
F(X) =sgn(X) = { ’ - (23b) since the oscillator is active, the nonlinear subsystead
-1, X <0 not be active as well.

In general, the energy generated in the oscillator is transferred
Thesgn(X) nonlinearity is odd-symmetrical and the system hd8 the nonlinear subsystem. This transfer is controlled by the
a single parameten via which its dynamical behavior can betransfer coefficient§Zco — 1c») which can be constant co-
changed. The chaotic attractor observed from (23) is shown@fiicients or switching ones that are controlled by the nonlinear
Fig. 13(a) fora = 0.8. subsystem itself. The energy accumulation on the nonlinear sub-
By introducing two new variabled, = X andZ = X, itcan System side is sensed by the oscillator via the sensing coeffi-

be shown that the dynamics of (23) in thie- Z plane(X = 0) cients(Sco — Scim ) Which can also be either constants or con-
are given by trolled by the nonlinear subsystem. The feedback around each

of the two blocks usually involves one state variable. If the char-
. acteristics of the nonlinear subsystem are such that when the ac-
<Y> — < 0 1) <Y> ) (24) cumulated energy reaches a limit value, it is dissipated, and if
Z —a —a Z there exists a set of sensing coefficients to guarantee that the en-
ergy on the oscillator side will drop, but not below a minimum

Thus, the core engine of (23) is a quadrature oscillator in tfignit, as a result of this dissipation, and in addition there exists
Y — Z plane with a condition for oscillation given lay= 0. We a set of transfer coefficients to guarantee that energy will reac-
can prove the validity o€onjecture 2n this particular case by cumulate in the nonlinear subsystem and reach its limit value,

considering the two anti-symmetrical halves of the nonlinearif§}€n & mechanism for continuous stretching and folding of the
F(X) trajectories exists.

Note that if the oscillator is separated from the nonlinear sub-
system, it might reach a steady state condition whereby a non-
FOXOF = { 1 X>0 and f(X)~ = { 0, X>0 linear amplitude control mechanism is activated. Therefore, in
0 X<0 -1, X<0. the chaotic oscillator structure, the transfer and sense coeffi-
cients must guarantee that the nonlinear subsystem is activated
before the oscillator ever reaches its steady state. In this way, the
nonlinear characteristic of the amplitude control mechanism (if
it exists) does not contribute to the dynamics of the generated

The chaotic attractor of (X) [see Fig. 13(a)] is a result of
merging together the attractors pfX)* and f(X)~.

Equation (23) can be synthesized using a integrator-sum
architecture, as shown in Fig. 13(b). Here, three lossles
noninverting integrator$l;, Us, Us) are cascaded, followed
by an inverting summer stagé/,). The gain of the inverting
summer is equal to the system constanthus, by tuning the
grounded resistor R [see Fig. 13(b)], the value af can be
directly changed. The sgi') nonlinearity is realized by an
op amp(Uc¢) operating as a comparator. The switching output
voltage of the comparator is routed to the summer after being
scaled byl /K, where the value of( is equal to the value of
the bias supply of the comparator and is adjusted via resisto§apgas croas were used fobr,, Us, Us andl;. An AD712 VOA was
KR [see Fig. 13(b)]. used forU.

SFrom Fig. 14, two important characteristics of this class of
chaotic oscillators are apparent.

1) The chaotic signal can be treated as an amplitude modu-
lated signal.

2) The peak power in the frequency spectrum of the gen-
erated chaotic signal remains near the oscillator’s domi-
nant center frequency. As long as it is possible to extract
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X2dot

Xdot

(b)

Fig. 13. (a) The double-scroll-like chaotic attractor observed from (23)avith0.8. (b) A circuit realization based on an integrator-summer architecture. (¢)—(d)
Experimental observations in tié — Y andX — Z planes X axis: 0.5 V/div,Y" axis: 0.5 V/div).

the core oscillator engine explicitly form the chaotic osples of this architecture include the first proposed hyperchaotic
cillator and so long as this engine has a single dominamgcillator [51], where two tank resonators, one of which is
center frequency, it will be difficult not to recognize thisactive, were coupled via an active nonlinear resistor. Other
frequency in the chaotic spectrum [19]. examples can be found in [52] (two phase-shift oscillators
coupled with diodes) as well as some of the circuits of [53].
Recent examples of inductorless hyperchaotic oscillators were
proposed in [54] and [55]. Both examples are based on coupling
Two architectures for higher order chaotic oscillators atevo sinusoidal oscillators via passive diodes.
shown in Fig. 10(b) and (c). In Fig. 10(b), two linear oscillators Other higher order chaotic oscillators follow the structure of
interact with each other through a nonlinear composite. Exaiffig. 10(c). In particular, an intermediate filter stage is inserted

D. Architectures Suitable For Higher Order Chaotic
Oscillators
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(d)

Fig. 13. (Continued.Xc)—(d) Experimental observations in the— Y andX — Z planes { axis: 0.5 V/div,Y" axis: 0.5 V/div).

SC""[ adding extra sections does not imply that the generated chaos
@ expands in a higher dimension [58].
VI. CONCLUSION
In this work we have described two classes of circuit-inde-
®4— pendent chaotic oscillators derived from the simplest possible
Y soe i K31 ....... A5 models of two generic second-ordecC oscillators. We have
e shown that the differential equations describing th il-
- i q _ . g the core osci
[ 5C1 lator engines can be clearly recognized in the describing equa-

tions of the chaotic oscillators. For one of the structures of class
Nonlinear I, we haye realized that a single paramete_r of the core oscil-
Oscillator lator engine can change the phase relation inXhe Y plane
without affecting the chaotic dynamics. This observation moti-
vated us to study the well-known Lorenz system and to propose
a modified system which is multiplier-free.
We have also restructured Chua’s circuit to show that the
KON | s o1 TCL mechanism by which oscillations are produced in this circuit
4 is via a generic second-order sinusoidal oscillator engine. The
—>® :\/= coupling of this engine to a first-order active nonlinear com-
TCo posite results in the well-known double-scroll attractor.
A large collection of chaotic oscillators has been classified
._® based on the oscillator-nonlinear composite architecture. We be-
lieve that the usual trend of studying the nonlinear dynamics of
TCa T each chaotic oscillator on individual basis should be replaced by
a study of the functional behavior of this architecture. We have
Fig. 14. Block diagram representation of low-dimensional chaotic oscillatogtated a conjecture concerning the simplest possible chaotic dy-
based on the oscillator-nonlinear composite structure. namics that can be observed from this architecture and have pro-
posed a simple equation capturing these dynamics. Chaotic at-
between the oscillator and the nonlinear composite. Examptgactors observed in systems with active or hysteresis nonlin-
of such oscillators can be found in [56], where a realization @grities can be related to thisasic attractor” by considering
the Mackey—Glass system was described, and in [57] wheréaltiples of it connected together in a manner dictated by the
hyperchaotic oscillator was described. Other examples incluefearacteristics of the nonlinearity (odd or even-symmetrical),
the circuits of [58] and [59] and the rest of the circuits of [53]Jand/or by considering a limit case condition for one or more of
Actually the circuit of [59] is the same as that previously reits parameters.
ported by Saito in [57]. In all these examples, the filter (usually
am C-L-C section) is purely passive. It was shown in [60] that a REFERENCES
single active element is sufficient to generate hyperchaos. Howyy 1. matsumoto, “A chaotic attractor form Chua's circutEEE Trans.
ever, it is worth noting that increasing the order of the filter by Circuits Syst. | vol. 31, pp. 1055-1058, 1984.
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