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Abstract—Two generic classes of chaotic oscillators comprising
four different configurations are constructed. The proposed
structures are based on the simplest possible abstract models of
generic second-orderRC sinusoidal oscillators that satisfy the
basic condition for oscillation and the frequency of oscillation
formulas. By linking these sinusoidal oscillator engines to simple
passive first-order or second-order nonlinear composites, chaos
is generated and the evolution of the two-dimensional sinusoidal
oscillator dynamics into a higher dimensional state space is
clearly recognized. We further discuss three architectures into
which autonomous chaotic oscillators can be decomposed. Based
on one of these architectures we classify a large number of the
available chaotic oscillators and propose a novel reconstruction
of the classical Chua’s circuit. The well-known Lorenz system of
equations is also studied and a simplified model with equivalent
dynamics, but containing no multipliers, is introduced.

Index Terms—Chaos, chaotic oscillators, Chua’s circuit, Lorenz
system, oscillators.

I. INTRODUCTION

T HE DESIGN of chaotic oscillators has been a subject of
increasing interest during the past few years. As an active

research topic, it has also advanced significantly due to the many
contributions of different researchers [1]–[12]. The main thrust
of this research area has been to introduce new chaotic oscil-
lator circuits and to further concentrate on studying the non-
linear dynamics responsible for chaos generation in these cir-
cuits [13]–[15]. The achievement in most cases has been a new
chaotic oscillator circuit but not a design methodology by which
even more circuits can be generated. The main reason for this
approach, in our opinion, is the lack of a set of necessary and
sufficient mathematical conditions for chaos generation. Since
early chaotic oscillators were introduced by researchers with
more of a mathematical background than a circuit-design back-
ground, they might have been convinced that with the lack of
such conditions, it is impossible to arrive at a completely sys-
tematic procedure for designing chaotic oscillators. However,
we have chosen to deviate from this main research stream and
adopt a point of view which is biased toward circuit-design.

Manuscript received December 15, 1999; revised July 27, 2000. This work
was supported in part by the Enterprise Ireland Basic Research Program under
Grant SC/98/740. This paper was recommended by Associate Editor C. K. Tse.

A. S. Elwakil is with the Department of Electric and Electronic Engineering,
University of Sharjah, Emirates (email:elwakil@ee.ucd.ie).

M. P. Kennedy is with the Department of Microelectronic Engineering,
Faculty of Engineering, University College Cork, Cork, Ireland (email:
peter.kennedy@ucc.e).

Publisher Item Identifier S 1057-7122(01)01395-2.

Practical analog circuit designers know that for a design to
fulfill its specifications with zero trial-and-error effort is an im-
possible mission. In particular, the available design and mod-
eling techniques cannot take into consideration every aspect of
the design. For this reason, CAD tools are heavily relied upon to
minimize the essential trial and error effort. Nevertheless, most
design techniques are considered systematic because they offer
a start-to-end design cycle with a product that requires a small
and identified margin of trial and error. If we can propose such
a design cycle for chaotic oscillators with appropriate design
rules, and identify clearly where trial and error is to be per-
formed, then we have a systematic design process. We have pro-
posed such a design cycle in [16] and [17].

One of the most important design rules proposed in [17] is
to employ passive-only nonlinear devices. This rule remains
strongly recommended so long as there is no evidence that the
statistical properties of a chaotic signal produced by a chaotic
oscillator with an active nonlinearity (ex. Chua’s diode) pos-
sess any additional features which are not possessed by sig-
nals produced by chaotic oscillators with passive-only nonlinear
devices. Passive nonlinear devices (ex. diodes) require no de-
sign effort and impose no restriction on the performance of
a chaotic oscillator in terms of power dissipation, minimum
supply voltage, or frequency response. Therefore, a designer can
concentrate on the active parts of the chaotic oscillator, which
operate only in linear mode, in order to enhance its performance
or introduce features of particular interest.

To this end, the design/optimization process for chaotic os-
cillators relies primarily on techniques which are well-estab-
lished in thelinear circuit theory of design, requiring minimum
knowledge of nonlinear dynamics. We emphasize here that the
techniques proposed for chaotic oscillator design cannot guar-
antee that a chaotic signal with predefined statistical proper-
ties will be produced but they can be used to fulfill any circuit
synthesis/performance requirements. The mapping of statistical
properties into circuit-design properties can only be done when
a unique set of statistical properties that can fully describe, iden-
tify, and compare chaotic signals has been devised. This theo-
retical problem has not yet been solved.

By observing that the design methodology proposed in [17]
is centered around the idea of a core sinusoidal oscillator that
is to be designed and later modified for chaos using a passive
nonlinear composite, two major questions have to be answered.
The first question asks: Is it possible that any of the chaotic os-
cillators (or systems) that were reported earlier is also based on
a core sinusoidal oscillator engine? The second question asks: Is
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the active nonlinearity in these oscillators (systems) really nec-
essary?

To answer these questions, we have carried out a series of
investigations on some well-known chaotic systems including,
Chua’s circuit [1], Saito’s double screw hysteresis oscillator [5],
and Rössler’s system [18]. As anticipated, we have found that all
of these systems are built upon a core sinusoidal oscillator and
that the active-type nonlinearity is not essential for generating
chaos [19]–[21]. Therefore, we have conjectured the following
[19].

Conjecture 1: In any analog continuous-time chaotic oscil-
lator which is capable of exhibiting simple limit cycle behavior,
there exists a core oscillator providing an unstable pair of com-
plex conjugate eigenvalues and a control parameter which can
move this pair. Accordingly, at least one chaotic oscillator can
be derived from any sinusoidal oscillator. The derivation process
requires a nonlinearity which is not necessarily active.

In this work, we introduce two classes of generic chaotic os-
cillators based on the simplest possible models for circuit-inde-
pendentRC sinusoidal oscillators. The sinusoidal oscillator is
treated as a black box with its internal structure left to be de-
cided according to a set of circuit-design specifications.

Following an interesting property of one of the proposed
structures, whereby the switching of a single parameter
produces a mirror image of the attractor without changing
its dynamics, we have been able to construct a Lorenz-like
butterfly attractor. This further motivates us to study closely
the Lorenz system of equations [22], hoping to identify a
similar mechanism. The result is a novel simplified model of
the Lorenz system with no multipliers.

We also propose two extremely simple mathematical models,
one of which is capable of capturing the essential dynamics
of third-order chaotic oscillators with an anti-symmetrical
switching nonlinearity, while the other captures the essential
dynamics of third-order oscillators with an odd symmetrical
nonlinearity. Both chaotic oscillator models are based on a core
quadrature sinusoidal oscillator engine.

Finally, we discuss three general architectures for au-
tonomous chaotic oscillators. Based on one of these architec-
tures, we classify a collection of known oscillators in tabular
form. Chua’s circuit does not fit neatly into this classification.
However, we can reconstruct the circuit to show that it is not an
exception to the rest of the table entries. In fact, we demonstrate
that Chua’s circuit is based on the classical negative resistance
sinusoidal oscillator and we introduce a reconstructed version
based on a genericRCoscillator.

II. CLASS I CHAOTIC OSCILLATORS

In this section, we present a class of chaotic oscillators which
is based on the general second-order sinusoidal oscillator
shown in Fig. 1(a) and characterized by having a separate
parallel branch supplied by a currentfrom a first-order
active network. A large number of classical as well as new
sinusoidal oscillators with this structure can be found in the
literature [23]–[26]. The parallel network is usually
known as the timing network.

Fig. 1. Class-I generic circuit-independent oscillators: (a) sinusoidal oscillator
with a parallelRCnetwork, (b) chaotic oscillator using a D-L composite, and
(c) chaotic oscillator using a FET-C composite.

A. Sinusoidal Oscillator

A general second-orderRCsinusoidal oscillator has the fol-
lowing state space representation:

(1)

where and are the voltages across its two capacitors.
The condition and frequency of oscillation are given respec-
tively by

and (2)

Now consider Fig. 1(a) where some first-order active network
(containing ) supplies a current to the branch. This
current is in general a function of the two state variables (
& ) and can be expressed as

(3)

where and are constant transconductances. Since the os-
cillator is active, either or must be negative. Noting that
the frequency of oscillation is generally equal to ,
where is a multiplication factor, and by applying the con-
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ditions of (2), the state equations describing Fig. 1(a) can be
written in matrix form as

(4)

where and we choose . From (4), it
can be seen that the condition for oscillation is satisfied and that

.
By introducing the following variables: ,

, , and , where
is an arbitrary voltage normalization constant, the dimen-

sionless form of (4) (apart from the term) becomes

(5)
Note that the frequency of oscillation can be varied using
without affecting the condition of oscillation.

To guarantee that oscillations start, practical oscillators need
to have a control parameter to compensate for any losses that
may cause the condition for oscillation not to be satisfied. This
control parameter is represented in (5) by the small error factor
, which is also responsible for moving the pair of complex

conjugate eigenvalues admitted by (5) between the left and the
right half-planes. For example, the classical equal-R equal-C
Wien-bridge oscillator requires an amplifier with gain ,
in order to start oscillations. By writing , one can
identify that in this case .

Note that once oscillation starts, an amplitude control mech-
anism is needed to stabilize the amplitude of oscillation. This
mechanism can be a nonlinear voltage or current-controlled
device inserted in the feedback path, or it can simply be the non-
linearity of the active device employed (ex. the saturation-type
voltage transfer characteristic of an op amp). Consequently,
(5) cannot alone model the behavior of a sinusoidal oscillator
since it represents a linear system. However, it does model
correctly the function performed by the sinusoidal oscillator
engine within the chaotic oscillator structures introduced in
the following sections. We emphasize that the generation of
chaos is a result of linking sinusoidal oscillators to simple
nonlinear composite devices and is associated only with the
nonlinear characteristics of these devices and not with any
amplitude control mechanism of the sinusoidal oscillator,
which is actually not needed in this case. The same nonlinear
characteristics responsible for chaos generation guarantee
bounded oscillations.

B. Chaotic Oscillator Structure Using a Diode-Inductor
Composite

Consider the configuration shown in Fig. 1(b) which is de-
rived from that of Fig. 1(a) by inserting a diode-inductor (D-L)
composite [17] in series with . The switching action of the
diode depends on the voltage across the parasitic transit capac-
itor [27]. Hence, the D-L composite in Fig. 1(b) is described
by

(6a)

(6b)

and

(6c)

is the nonlinear diode current, while and are the diode
forward conduction transconductance and voltage drop respec-
tively.

In addition to the normalization used to derive (5), and by
introducing , , ,

, , the state space representation of
the chaotic oscillator structure of Fig. 1(b) can be derived as

(7a)

and

(7b)

Here, we have chosen and [refer to (3)].
Although the system described by (7) is a fourth-order

system, it is effectively living in a three-dimensional subspace
as the value of transit capacitor is much smaller compared
to the other two capacitors in the system . We empha-
size the fact that the internal structure of the first-order active
network remains irrelevant so long as it supplies the current,
generally expressed by (3).

By comparing (5) with (7), the evolution of the two-dimen-
sional sinusoidal oscillator dynamics into a higher dimensional
state-space can be clearly recognized. Stretching of the trajec-
tories is dominated by the unstable second-order oscillator in
the plane. As oscillations grow in the plane,
energy is continuously transferred to the nonlinear sub-
system through the state variablewith a transfer coefficient

. This results in a rapid build-up of the voltage across the
diode which eventually switches on and dissipates the
energy stored in the inductor. The voltage across the diode is
sensed by the oscillator with a sensing coefficient equal to
and the strong dissipation of the energy in the inductor causes
the oscillations in the plane to decay. However, before
these oscillations die completely, the diode switches off again

. This repeated stretching and folding of the trajecto-
ries provides the necessary mechanism for chaos generation.

Numerical integration of (7) was performed1 using the set of
parameter values , , , ,

, and . Fig. 2(a) and (b) show the
resulting and projections of the chaotic attractor
respectively. In the upper left corner of Fig. 2(a), the limit cy-
cles observed when (7) is integrated after setting
are shown. These limit cycles correspond to the three cases

, , and , respectively. It is clear
that and define the phase relation in the plane.

1An adaptive-step Runge–Kutta algorithm was used. Note the stiff nature of
the differential equations due to the small value of" .
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Fig. 2. Numerical simulation results of (7) (K = 2, K = 1, K = 50, � = �0:35, " = 0:01, n = 0:1, � = 1): (a)X � Y phase projection and (b)
X � Z phase trajectory.

In particular, the case results in a clockwise phase
rotation while results in an anticlockwise phase rota-
tion. It is also clear that the best control parameter (bifurcation
parameter) for the system is, which is also the control param-
eter of its core sinusoidal oscillator engine. In particular, as
is increased further away from its theoretical value required to
start oscillations in the direction which causes the pair
of complex conjugate eigenvalues to move further into the right
half-plane, a period-doubling route to chaos is excited.

It can be shown that the system described by (7) has a single
equilibrium point at the origin. This equilibrium point is real in
the region and virtual in the region (meaning
that it lies outside this region) [28]. The following eigenvalues
were calculated at the equilibrium point using the parameters
corresponding to Fig. 2: in
the region and in
the other region. Thus, the equilibrium point at the origin is an
unstable focus.

Several circuit-design examples that follow the structure of
Fig. 1(b) can be found in [10], [12] and [29].

C. Chaotic Oscillator Structure Using a FET-Capacitor
Composite

Consider the structure shown in Fig. 1(c) which is derived
from that of Fig. 1(a) by replacing with a FET-capacitor
(FET-C ) composite [17]. The FET-C is a first-order passive
composite with a diode-connected FET. In Fig. 1(c), it is mod-
eled by

(8a)

and

(8b)

where is the nonlinear FET current, is the FET operating
point transconductance, and is a negative pinch-off voltage.

By introducing the dimensionless variables
and , in addition to those used to derive (5), the
state space representation of Fig. 1(c) is given by

(9a)

and

(9b)

Here, we have chosen , [recall
(4)] and [recall (3)].

Numerical integration of (9) was performed using a
fourth-order Runge–Kutta algorithm with a 0.001 time step
taking , , , and .
and projections of the observed chaotic attractor are
shown in Fig. 3(a) and (b) respectively. In the upper left corner
of Fig. 3(a) the limit cycle obtained when is plotted.
It can be shown that this system has an equilibrium point

. Hence, the origin is a real equilib-
rium point in the region with the set of eigenvalues

. In the region , the
eigenvalues are . The origin is an unstable
saddle focus.

Note from (9) that the condition (FET off) implies that
the three-dimensional system collapses onto the two-dimen-
sional plane. In this case, the oscillator remains linked
to the nonlinear subsystem (the FET-composite) through
a constant current source which continu-
ously charges by discharging . The negative pinch-off
voltage guarantees this discharge process. Eventually, the
gate-to-source voltage of the FET ( ) exceeds and
the FET is turned on again. One can show that the characteristic
equation of (9) always admits a negative real eigenvalue for all
values of . In addition, when the condition
is satisfied, a pair of complex conjugate eigenvalues in the right
half-plane is always admitted.
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Fig. 3. Results of numerical integration of (9) (K = 1,K = 2, n = 0:2,
� = �0:3): (a)X � Y projection and (b)Y � Z projection.

III. CLASS II CHAOTIC OSCILLATORS

The chaotic oscillators of this class are based on the general
sinusoidal oscillator shown in Fig. 4(a) characterized by having
a separate series network, which is also a common feature
in many oscillators [23]–[26]. This series network can either be
driven by a current , generally given by (3), or by a voltage
generally given as . Thus, the func-
tion of the first-order active network (containing ) is either
to supply or maintain . In the following sections we show
how a chaotic oscillator can be derived in both cases.

A. Sinusoidal Oscillator

Consider the case where the network is current-driven.
By recalling (1)–(3), Fig. 4(a) can then be described by

(10)

Fig. 4. Class-II generic circuit-independent oscillators: (a) sinusoidal
oscillator with a seriesRC network, (b) chaotic oscillator using a D-L
composite, and (c) chaotic oscillator using a FET-C composite.

where and . It can be seen that
the condition for oscillation is satisfied and the frequency of
oscillation is .

Adopting the same dimensionless variables used to derive (5),
(10) becomes

(11)

where is the error control parameter used to guarantee that os-
cillations start. Note that appears here as a frequency multi-
plication factor and does not affect the condition for oscillation.

In the case where the network is voltage-driven by ,
Fig. 4(a) is described by

(12)

Here, the time normalization constantis taken as instead
of .

B. Chaotic Oscillator Using a D-L Composite

The structure shown in Fig. 4(b) is obtained from that of
Fig. 4(a) by adding a D-L composite in parallel with . The
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Fig. 5. X � Z trajectory resulting from numerically integrating (13) (K = 2,K = 0:1,K = 3, n = 1, � = 1, � = 0:32).

series network is current-driven and the configuration is thus de-
scribed by

(13a)

and

(13b)

The same settings that were used to derive (7) were also used in
deriving (13) with the choice of and . Note
that the voltage across the inductor appears acrosswhich
dominates the diode transit capacitance.

By comparing (11) and (13), the role of the sinusoidal oscil-
lator in the plane can be identified. Assuming that the
diode is initially off ( ), oscillations will continue to grow
in the plane transferring energy to the nonlinear sub-
system via the state variablewith a transfer coefficient . This
results in a continuous increase of. However, the oscillator in
the plane is linked to the nonlinear subsystem through
the term . Hence, the increasing tends to slow down the
growth of oscillation in the plane by reducing the amount
of current charging . Eventually, when reaches , the
diode switches on dissipating strongly the energy transferred
from the oscillator and rapidly discharging . The growth of
oscillations is then reversed into an oscillation decay until the
diode switches off again.

The projection of the chaotic attractor obtained via
numerical integration of (13) is shown in Fig. 5. The switching
plane at is marked. The parameter values in this case are

, , , , , and .
The period-doubling cascade starts at . The system
described by (13) has a single equilibrium point at the origin
with the set of eigenvalues in the

region and the set in the
region . One can show that (13) always admits a negative
real eigenvalue. In addition, a complex conjugate pair is always
admitted in the right-half plane when . The condition

guarantees a complex conjugate pair in the left half-plane.

C. Generation of Chaos Using a FET-C Composite

A FET-C composite can be placed in parallel with capacitor
in the oscillator of Fig. 4(a). The resulting structure is shown

in Fig. 4(c). Since the case of a current-driven port is similar to
that described in Section II-C, we consider here the case of a
voltage-driven port with . In this case
the structure of Fig. 4(c) can be described by

(14)
where and are as given by (9b). The same dimensionless
variables used to derive (9) are used in (14) with the time nor-
malization constant taken as instead of .

By comparing (12) and (14), the evolution of the two-dimen-
sional oscillator dynamics into the three-dimensional space be-
comes clear. It can also be shown that the characteristic equation
of (14) always admits a negative real eigenvalue for all values
of . In addition, when the condition is satisfied,
a pair of complex conjugate eigenvalues in the right half-plane
are always admitted.

When numerically integrating (14) with , ,
, , and , the observed trajectories

were similar to those shown in Fig. 3(a) and (b) respectively.
However, we note that the change of from 1 to 1 and vice
versa produces a mirror image of the attractor without changing
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Fig. 6. Y �Z trajectory observed after modifying (14) such thatK = 1 if Y � 0 andK = �1 if Y < 0 (K = 0,K = 2, n = 0:9, � = �0:2,m = 5).

its dynamics. In fact, the characteristic equation of (14) is inde-
pendent of . Hence, the eigenvalue pattern is not affected by
its value.

To demonstrate this interesting observation, we modify (14)
such that continuously switches between 1 and1. is
set to 1 if and is set to if is
an even-symmetrical nonlinearity). In addition, a constantis
used to displace the trajectories along theaxis such that they
either lie in the negative half space or the positive half-space
when is switched. Accordingly, becomes . The

trajectory observed in this case is shown Fig. 6. Here,
, , , and .

The similarity between this chaotic attractor and the well-
known Lorenz butterfly attractor is apparent. In fact, we argue
that one of the state variables of the Lorenz system performs
a function similar to that of the switching constant . This is
explained in the following section.

D. Modified Lorenz System

Consider the well-known Lorenz system of differential equa-
tions given by [22]

(15a)

(15b)

(15c)

where , , and are constants. The two multiplier-type non-
linearities ( and ) are responsible for the generation of
chaos in this system. Circuit realizations of the Lorenz system
have always been difficult because of these multipliers [30].

From (15c), it can be seen that when the nonlinear termis
sufficiently small, scales as , thus decaying with time and
allowing the oscillations in the plane to grow. Eventually,
the nonlinear term is no longer small and dominates the

term , resulting in a continuous increase of. This increase
reflects back to the plane via the nonlinear term
in (15b). Actually, can be thought of as a threshold level since
the term changes its sign at the threshold . As

exceeds , oscillation growth is stopped and reversed into
a decay. We note that the term alone can guarantee
this reverse process when it changes sign. We also note that the

projection of the Lorenz attractor is symmetrical with
respect to the axis and that is always positive. This implies
that for a small enough threshold, the term will always
change sign. Hence, the role played by the state variablein
the nonlinear term is similar to that played by in
the system described by (14). We thus suggest modifying (15b)
to read

and

(16)

Note that we have also eliminated the term from (15b) since
it is not necessary.

By observing that the signal is always positive, we con-
clude that the nonlinear term in (15c) is not particular. It
can be replaced by other terms which will ensure thatre-
mains positive. Such terms might be , or simply ,
where is the switching constant given in (16). In conclusion,
we propose the following system, which has similar qualitative
dynamics to the Lorenz system but is multiplier-free:

(17)

where is as given in (16).
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Fig. 7. Projections of the butterfly attractor in theX �Z plane observed from our proposed multiplier-free Lorenz system: (a)a = b = 0:6, c = 0:15,m = 0,
(b) a = b = 0:6, c = 0:15,m = 1, and (c)a = b = 0:6, c = 0:45,m = 0.

The projection of the butterfly attractor observed
when numerically integrating (17) with and

is shown in Fig. 7(a). We can further modify (17) by
adding a constant term to to become . The attractor
in Fig. 7(a) corresponds to the case whereas that of
Fig. 7(b) corresponds to the case . When equals

1, the mirror image of the attractor of Fig. 7(b) is obtained.
Thus allows us to observe both wings of the butterfly

or simply one of the wings alone . It
also clearly shows that the Lorenz attractor is constructed by
merging together two similar chaotic attractors, one of which
is the mirror image of the other. The transition from one
attractor to the other can be made smoother by increasing the

value of thedampingconstant , as demonstrated in Fig. 7(c)
for .

The way these two attractors are merged together is dictated
by the characteristics of the nonlinearity, which in this case is
even-symmetrical . Were the nonlin-
earity to be odd-symmetrical, these two attractors would have
been merged after an additional flip operation had been per-
formed to one of them [31], [32]. In general, we conjecture the
following.

Conjecture 2: If a chaotic attractor is observed from a
system with a symmetrical (odd or even) nonlinearity, then
another chaotic attractor can be observed from the anti-symmet-
rical half of this nonlinearity. The attractor of the symmetrical
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nonlinearity is related directly to two of the attractors of its
anti-symmetrical half by one merge operation, one mirror
operation, and an additional flip operation if the nonlinearity is
odd [33].

The merge operation implies the continuity of the trajectories
when the system switches from one half of the nonlinear charac-
teristics to the other. Therefore, studying the nonlinear dynamics
of the anti-symmetrical“half attractor” should be sufficient to
understand the dynamics of the symmetrical“full attractor.”
An interesting example that has been reported recently is the
quad-screwchaotic attractor consisting of foursingle-screwsor
equivalently twodouble-screws[34], [35], implying the exis-
tence of both and odd and an even-symmetrical nonlinearity.

IV. ON THE SIMPLEST POSSIBLECHAOTIC DYNAMICS

It is well known that the simplest possible antisymmetric non-
linearity is that of the passive diode (or diode-connected tran-
sistor). On the other hand, the simplest possible systems that
can admit oscillations are the second-order current or
voltage-controlled negative resistance oscillator, its equivalent

oscillator, and the genericRCoscillators shown in
Figs. 1(a) and 4(a). Hence, a third-order continuous-time chaotic
oscillator where any of these oscillators can be identified as
being responsible for stretching the trajectories and where the
switching action of a passive device is responsible for folding,
will most likely exhibit the simplest possible chaotic dynamics.
We conjecture the following.

Conjecture 3: The simplest possible dynamics of an au-
tonomous continuous-time chaotic oscillator are most likely
those which can be observed when:

1) the oscillator is described by a third-order system of dif-
ferential equations;

2) theON–OFFswitching action of a single passive device is
the only nonlinearity;

3) the describing equations of second-order subsystem,
which admits a pair of unstable complex conjugate
eigenvalues in at least one of the regions of operation of
the switching device, can be identified.

Examples of chaotic oscillators that satisfy these require-
ments were given in the previous sections of this article and
for example in [36]. We believe that the following third-order
canonical model is the simplest possible that captures the
essential dynamics of these examples:

and

.
(18)

The projection of the chaotic attractor observed from (18) in
the plane is shown in Fig. 8 when , ,
and . The switching plane at is marked.
The eigenvalues at the equilibrium point are

when and when
.

We note the following about the system of (18).
1) The system has a single equilibrium point at the origin.

Fig. 8. _X �X projection of the chaotic attractor of (18) (� = 5, � = 0,
andf(X; _X) = _X).

2) The critical value implies that the system has a pair
of complex conjugate eigenvalues located on the imagi-
nary axis. This pair moves into the right half-plane when

and into the left-half when . Therefore, the
conditions and guarantee that this pair
traverses from one half into the other whenswitches
between and . These two conditions arenecessary
for chaos generation.

3) A real eigenvalue located in the left half-plane is always
admitted.

4) From our numerical simulations we observe the fol-
lowing.

a) When , the only behavior admitted by the
system is a simple limit cycle; this happens inde-
pendently of the value of .

b) When , oscillations decay and the system
settles at the origin independently of the value of

.
c) When , the system will admit chaos only

if . This is a necessary but not sufficient
condition. In particular, unbounded oscillations (di-
verging trajectories) always result if the condition

is satis-
fied where, , ,

and are the absolute values of the real
parts of the complex conjugate eigenvalues calcu-
lated respectively at and . A
limit cycle is born when and chaos requires
that . The larger this quantity, the further the
system is pushed toward the chaotic zone. The pe-
riod-doubling cascade starts at approximately

.

5) When is used to map the ON–OFF switching action of
practical devices, such as diodes and transistors, this will
imply that (very high resistance OFF region) and

(very low resistance ON region). This means that
the behavior most likely to be observed from this system
when using these passive devices is chaos.
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Fig. 9. Practical realization of (18). (a) Circuit based on an integrator-summer architecture using AD844 current feedback op amps. (b) Experimental V �V

trajectory whenS is connected toS (X axis: 0.2 V/div,Y axis: 0.2 V/div).

A straightforward circuit implementation of (18), which com-
prises three cascaded lossless noninverting integrators followed
by an inverting current summer with gain, is shown in Fig. 9(a).
The switching action is performed by the bipolar transistor.
By connecting together the two nodes markedand , the
switching condition is equal to and by connecting

to , it is equal to . Note that the faithful realization of
(18) requires the gain of the inverting summer to equal unity.
In this case, the circuit can be tuned using resistor(the col-
lector resistance of ) which should equal . However,
in practice, it is more convenient to fix the value of and to
use the gain as the tuning parameter.

An experimental setup of the circuit was constructed2 with
, nF, , ,

and a pot. was used to tune the gain resistor . The
phase portrait observed when

is shown in Fig. 9(b).

V. ON THE STRUCTURE OFCHAOTIC OSCILLATORS

In the previous sections, two classes of generic chaotic os-
cillator structures were designed. Both classes evolve from the

2AD844 CFOA chips biased with�9 V and a Q2N2222 NPN transistor were
used.
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Fig. 10. General structures for autonomous chaotic oscillators: (a) low-order oscillators follow the oscillator-nonlinear composite architecture, (b) a class of
higher order oscillators can be constructed by coupling sinusoidal (relaxation) oscillators via a nonlinear composite, or by (c) inserting a filtersection between the
oscillator and the nonlinear composite.

simple dynamics of a sinusoidal oscillator which is coupled to a
passive nonlinear composite. Although we have considered the
D-L and the FET-C nonlinear composites, other composites can
also be introduced. For example, we have used a passive hys-
teresis nonlinear resistor from those of [37] to generate a class
of hysteresis chaotic oscillators [38]. It was shown in [38] that a
hysteresis chaotic oscillator is the limit case of another chaotic
oscillator when one of its energy storage elements (inductor or
capacitor) becomes significantly small, or even a parasitic, such
that slow-fast dynamics arise.3

In this section we discuss three general architectures into
which most autonomous chaotic oscillators can be decomposed.
Two of these architectures are particularly suitable for gener-
ating higher-order and hyperchaotic oscillators.

A. The Oscillator-Nonlinear Composite

The structure represented in Fig. 10(a) can be recognized in a
large number of autonomous chaotic oscillators. It is composed
of two blocks: an oscillator and a nonlinear composite. Inter-
action between these two blocks is commonly supported by a
zero-order link, meaning that it is either a direct link or a resis-
tive one. In order two admit chaos, two conditions are necessary.

• At least one of the two blocks must be active.
• At least three energy storage elements (including parasitic

ones) must exist.
In all systems which we have investigated, we found that the

oscillator was sinusoidal. A summary of our investigation re-
sults is given in Table I. In particular, two examples can be given
for a system with a zeroth-order nonlinear composite. These two
examples are the chaotic Colpitts oscillator [3] and the chaotic
Twin-T oscillator [9], both of which are derived from third-order
sinusoidal oscillators. Being of zeroth-order, the nonlinear com-
posite (actually a single nonlinear device) is embedded within
the oscillator rather than being linked to it. However, one can
in general identify a particular energy-storage element which

3This is true also for relaxation oscillators which relate to sinusoidal oscilla-
tors in a similar manner.

along with the nonlinear device can be considered as a sepa-
rate first-order nonlinear composite. For example, in the Colpitts
oscillator oscillations are actually developed in the active tank
resonator. The extra capacitor along with the rest of the bipolar
transistor circuit forms a passive first-order nonlinear composite
[39]. The Colpitts oscillator can thus be moved to row 8 of the
table.

The chaotic behavior observed in a third-order phase-shift os-
cillator with active nonlinear feedback [40] provides an example
of a system with an active zeroth-order nonlinear composite.
Hence, it is classified in row 2 of the table. By altering the typ-
ical saturation-type characteristic of the device which provides
gain in this oscillator such that it becomes piecewise-linear with
controllable slopes, chaos can be produced with specific sets of
slope values. Analysis of [40] reveals that it is difficult to force
the phase-shift oscillator into chaos and our own experience also
confirms this fact. Note that a reconstruction of this chaotic os-
cillator can be carried out by splitting the capacitor which ap-
pears in parallel with the active nonlinearity into the sum of
two capacitors: one large capacitor and one small (parasitic)
capacitor. The small capacitor and the active nonlinearity to-
gether form a first-order nonlinear composite. Thus, this chaotic
phase-shift oscillator could be moved to row 4 of the table.

In row 3 of the table, two examples are given of systems with
an active third-order oscillator and a passive first-order non-
linear composite. The family of chaotic Wien oscillators de-
scribed in [8] uses a FET-C as the nonlinear composite and a
family of second-order Wien-type oscillators. Without consid-
ering the dominant pole of the operational amplifier used to syn-
thesize the Wien oscillators, the overall order of the system re-
mains two despite the addition of the FET-C composite. Hence,
the active Wien oscillator must be treated as a “weak” third-
order oscillator. The second example is provided by the FDNR-
based chaotic oscillator described in [36]. There, the passive LC
tank circuit was activated by placing an FDNR in parallel with it.
A portion of the tank’s capacitor associated with the switching
diode forms the first-order nonlinear composite.
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TABLE I
CLASSIFICATION OF DIFFERENTAUTONOMOUSCHAOTIC OSCILLATORS ASED ON THEOSCILLATOR-NONLINEAR COMPOSITEARCHITECTRUE(A STANDS FOR

ACTIVE AND P STANDS FORPASSIVE)

In row 4 of the table, both the oscillator and the nonlinear
composite are active and the overall order of the system is four.
The Twin-T based implementation of Chua’s circuit is an ex-
ample of such a construction [19].

Row 5 is dedicated to the case where an active third-order
oscillator and a passive second-order nonlinear composite are
linked. A circuit with such an architecture is given in [12], where
a three-phase oscillator was modified for chaos using the D-L
composite; the overall order of the system is five.

Chua’s circuit is placed in row 6 with a passive second-order
oscillator and a first-order active nonlinear composite formed
of the voltage-controlled nonlinear resistor (Chua’s diode) and
the capacitor in parallel with it. By inspecting the entries of the
table, it can be noticed that Chua’s circuit is the only entry with
a passive oscillator engine. This classification results from the
general outlook of the circuit. A closer inspection will reveal
that this oscillator is actually active and not passive, as demon-
strated in the following section.

In Row 7, a collection of chaotic oscillators that can be
shown to have a core second-order sinusoidal oscillator engine
is given. This engine is then coupled to an active first-order
nonlinear composite. Among this collection are the classical

Rössler system [18], Saito’s double-screw hysteresis oscillator
[5], [6] and its various realizations [20] (in [20], it was shown
that the core of Saito’s hysteresis oscillator is a current-con-
trolled negative resistance oscillator and that it can be
replaced with otherRC oscillators), the chaotic oscillators of
[7], [41]–[44], and the Wien-bridge-based implementations of
Chua’s circuit [19].

In Row 8, examples of chaotic oscillators with a core second-
order sinusoidal oscillator and a passive first-order nonlinear
composite are given. This type includes most circuits based on
the FET-C composite [4], [17], [32], [45] (refer also to Sec-
tions II-C and III-C of this article) and on the FET-L composite
[11]. It also includes the modified Rössler system which uses a
switching transistor instead of the artificial multiplier-type non-
linearity [21], a class of hysteresis chaotic oscillators [38], and
the single-screw realization which depends on a two-transistor
passive differential current-controlled resistor [20].

Chaotic oscillators based on the D-L composite [10], [12],
[17], [29] fit in row 9 (refer also to Sections II-B and III-B). Fi-
nally, row 10 of the table is dedicated to 4-D oscillators which
have two active hysteresis elements and a core second-order os-
cillator [34], [35], [46].
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Fig. 11. (a) Restructured Chua’s circuit with a core voltage-controlledLC � r sinusoidal oscillator. (b) Projection of the double-scroll in theX � Z plane
(! = 2, K = 1:5, � = 0:01, " = 1, A = 4).

B. Reconstruction of Chua’s Circuit

Since the nonlinear characteristics of Chua’s diode result
from adding in parallel two negative resistors, one of which
is linear while the other is designed to saturate beyond
a pair of breakpoints [47], if the linear negative resistor
is detached from the nonlinear resistor and placed in parallel
with the passive tank circuit, a classic negative-resistance
sinusoidal oscillator results. We show that with this modifica-
tion, the circuit can preserve the double-scroll dynamics. Thus,
we consider the modified Chua’s circuit shown in Fig. 11(a)
with the simple nonlinear resistor characteristic sketched in the
figure. This circuit is described by

(19a)

(19b)

(19c)

where is a parasitic resistance in series with the inductor.
is the nonlinear resistor current modeled by

(20)

where is a saturation current and are the voltages at
the breakpoints.

By setting , , ,
, , , ,

, and , the dimensionless form of the
above equations becomes

(21a)

and

(21b)

Indeed, by numerically integrating (21), we still observe the
double-scroll attractor, as shown in Fig. 11(b), which repre-
sents its projection for , , ,

, and . We note that even with very small values
of the double-scroll attractor can still be ob-
served. This means thatcan become a parasitic capacitor and
that Chua’s circuit can then be treated as a slow-fast dynamical
system [48]. It is clear that the mechanism by which oscillations
are produced in Chua’s circuit is via the classical negative-resis-
tance sinusoidal oscillator. The characteristic of the nonlinear
resistor sketched in Fig. 11(a) is responsible for switching these
oscillations between two parallel planes in the 3-D state-space
to form the two scroll surfaces. Smaller values of the switching
capacitor result in faster transition between the scrolls.

In the region , the system has its equilibrium
point at the origin. It can be shown that for and for

, the characteristic equation in this region always ad-
mits a positive real eigenvalue when the condition is
satisfied plus a pair of complex conjugate eigenvalues in the
left half-plane when . Using the values
corresponding to Fig. 11(b), the eigenvalues at the origin are

. On the scroll surfaces, where ,
the equilibrium points are and the calculated
eigenvalues at these points are . Note
that as oscillations build up on the scroll surfaces, the switching
capacitor is being discharged. This discharge process is essen-
tial to guarantee that the breakpoint voltages are reached and
that switching occurs. During the switching phase, the energy
on the oscillator side drops significantly. This manifests itself
via the complex eigenvalues with negative real part which ap-
pear in this phase. In particular, during the switching phase,
the tank circuit is effectively loaded by the equivalent resistor
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Fig. 12. (a) GenericRC implementation of Chua’s circuit based on the sinusoidal oscillator of Fig. 4(a) when its seriesRCport is voltage-driven and (b) skewed
double-scroll (K = n = " = " = 1, � = 0:55,A = 4,K = 1 if Z � 0 andK = �1 if Z < 0).

which is positive only if , i.e.,
. This condition coincides with the condition of oscilla-

tion of the core sinusoidal oscillator engine in the plane
of the system described by (21).4

It is worth noting that when the linear negative resistor
is detached from the Chua’s diode realization of [47], the re-
maining part will have a nonlinear characteristic slightly dif-
ferent from the simple characteristic modeled by (20). In par-
ticular, the outer segments of the characteristic have a positive
rather than a zero slope. However, we have chosen to demon-
strate that this simple model is sufficient to preserve the double-
scroll dynamics.

A Generic RC Realization Of Chua’s Circuit:We now
consider the configuration shown in Fig. 12(a) where we have
replaced the voltage-controlled negative-resistance sinusoidal
oscillators in Chua’s circuit with the genericRC oscillator of
Fig. 4(a). Recall that the sinusoidal oscillator alone is described
by (12) when a voltage-driven port is considered.

In addition to the settings used to derive (12), we define
, , and . Hence for the choice of

and , Fig. 12(a) is described
by [recall that (12) also implies the choice of ; the
active network contains ]

(22)

where and are as given by (21b).

4By applying the conditions of (2) to (21a) whenZ = 0, it can be shown that
the condition for oscillation of the core engine isK = 1+�! and the center
frequency of oscillation is! = 1+�(K � 1). One can writeK = 1+ �,
where� is the effective control parameter similar to the systems of (7), (9), (13),
and (14). For an ideal inductor,� ! 0.

We have integrated (22) numerically with
, , and . The projec-

tion of the observed double-scroll is similar to that shown in
Fig. 11(b). Note that the set of parameters rep-
resents only the sinusoidal oscillator engine, whilerepresents
only the nonlinearity. and represent the link between the
two blocks. In particular, (12) is the limit case of (22) when

and . We restress that the particular design of the
first-order active network [see Fig. 12(a)] is irrelevant so long as
it drives the series port with . Circuit examples of this struc-
ture can be found in [19]. Two more genericRCrealizations of
Chua’s circuit are given in [49].

Since changing the sign of in (12) changes the direction
of rotation in the plane, we expect to see the same ef-
fect in (22). This is a direct result of our ability to isolate the
mechanism by which oscillations are produced in the chaotic
oscillator. In general, any particular feature which we introduce
into the core sinusoidal oscillator engine will automatically be
inherited by the chaotic oscillator. Therefore, if an appropriate
switching mechanism for is used, we expect to obtain a
skewed double-scroll. Such a case is demonstrated in Fig. 12(b),
where is switched to 1 if and to 1 if .

We conclude our discussion with the following remarks:

1) Our ability to identify the differential equations which
represent the sinusoidal oscillator within the derived
models of the circuit can be considered as a proof of the
validity of Conjecture 1in this particular case.

2) Chua’s circuit now belongs in row 7 of Table I. There, we
also find Saito’s double-screw oscillator with an identical
mechanism for generating oscillations, i.e., via a nega-
tive-resistance oscillator [20]. In fact, Saito’s cir-
cuit is the dual of Chua’s circuit with the negative-re-
sistance oscillator and the nonlinear resistor both cur-
rent-controlled instead of voltage-controlled. The orig-
inal circuit proposed by Saito in [5] is of hysteresis na-
ture. However, if the parasitic inductor in series with the
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current-controlled nonlinear resistor (which is essential to
correctly model the hysteresis nature of the circuit [50])
is replaced with a physical inductor of value comparable
to that of the other inductor (in the oscillator), the
double-screw evolves into a double-scroll. In general, if
the parasitic inductor (capacitor) in series (parallel) with
the nonmonotone current (voltage)-controlled nonlinear
resistor in a hysteresis chaotic oscillator is replaced with
a physical inductor (capacitor), the chaotic nature of the
circuit can be preserved but the characteristic slow-fast
dynamics disappear [38].

A Simple Model with Double-Scroll-Like Dynamics:We pro-
pose a simple model which can capture the essential dynamics
of double-scroll-like chaotic attractors. The model is given by

(23a)

and

(23b)

The nonlinearity is odd-symmetrical and the system has
a single parameter () via which its dynamical behavior can be
changed. The chaotic attractor observed from (23) is shown in
Fig. 13(a) for .

By introducing two new variables, and , it can
be shown that the dynamics of (23) in the plane
are given by

(24)

Thus, the core engine of (23) is a quadrature oscillator in the
plane with a condition for oscillation given by . We

can prove the validity ofConjecture 2in this particular case by
considering the two anti-symmetrical halves of the nonlinearity

and

The chaotic attractor of [see Fig. 13(a)] is a result of
merging together the attractors of and .

Equation (23) can be synthesized using a integrator-summer
architecture, as shown in Fig. 13(b). Here, three lossless
noninverting integrators are cascaded, followed
by an inverting summer stage . The gain of the inverting
summer is equal to the system constant. Thus, by tuning the
grounded resistor [see Fig. 13(b)], the value of can be
directly changed. The sgn nonlinearity is realized by an
op amp operating as a comparator. The switching output
voltage of the comparator is routed to the summer after being
scaled by , where the value of is equal to the value of
the bias supply of the comparator and is adjusted via resistor

[see Fig. 13(b)].

An experimental setup of this circuit was constructed5 with
, nF, , and . All devices were

biased with –V supplies. and projections of
the chaotic attractor are shown in Fig. 13(c) and (d) respectively.

C. Block Diagram Representation

Based on our conjectures, we can now draw a block dia-
gram representation of low-order autonomous chaotic oscilla-
tors. Fig. 14 shows the block diagram which is composed of
an oscillator which has state variables and
a nonlinear subsystem which has state variables

. One of the state variables might be common between
both blocks. In order for this structure to admit chaos, two con-
ditions are necessary.

1) The relation must hold. This means that at
least three energy storage elements (including parasitic
ones) must exist.

2) At least one energy source must exist. This implies that
since the oscillator is active, the nonlinear subsystemneed
not be active as well.

In general, the energy generated in the oscillator is transferred
to the nonlinear subsystem. This transfer is controlled by the
transfer coefficients which can be constant co-
efficients or switching ones that are controlled by the nonlinear
subsystem itself. The energy accumulation on the nonlinear sub-
system side is sensed by the oscillator via the sensing coeffi-
cients which can also be either constants or con-
trolled by the nonlinear subsystem. The feedback around each
of the two blocks usually involves one state variable. If the char-
acteristics of the nonlinear subsystem are such that when the ac-
cumulated energy reaches a limit value, it is dissipated, and if
there exists a set of sensing coefficients to guarantee that the en-
ergy on the oscillator side will drop, but not below a minimum
limit, as a result of this dissipation, and in addition there exists
a set of transfer coefficients to guarantee that energy will reac-
cumulate in the nonlinear subsystem and reach its limit value,
then a mechanism for continuous stretching and folding of the
trajectories exists.

Note that if the oscillator is separated from the nonlinear sub-
system, it might reach a steady state condition whereby a non-
linear amplitude control mechanism is activated. Therefore, in
the chaotic oscillator structure, the transfer and sense coeffi-
cients must guarantee that the nonlinear subsystem is activated
before the oscillator ever reaches its steady state. In this way, the
nonlinear characteristic of the amplitude control mechanism (if
it exists) does not contribute to the dynamics of the generated
chaos.

From Fig. 14, two important characteristics of this class of
chaotic oscillators are apparent.

1) The chaotic signal can be treated as an amplitude modu-
lated signal.

2) The peak power in the frequency spectrum of the gen-
erated chaotic signal remains near the oscillator’s domi-
nant center frequency. As long as it is possible to extract

5AD844 CFOA’s were used forU ; U ; U andU . An AD712 VOA was
used forU .
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Fig. 13. (a) The double-scroll-like chaotic attractor observed from (23) witha = 0:8. (b) A circuit realization based on an integrator-summer architecture. (c)–(d)
Experimental observations in theX � Y andX � Z planes (X axis: 0.5 V/div,Y axis: 0.5 V/div).

the core oscillator engine explicitly form the chaotic os-
cillator and so long as this engine has a single dominant
center frequency, it will be difficult not to recognize this
frequency in the chaotic spectrum [19].

D. Architectures Suitable For Higher Order Chaotic
Oscillators

Two architectures for higher order chaotic oscillators are
shown in Fig. 10(b) and (c). In Fig. 10(b), two linear oscillators
interact with each other through a nonlinear composite. Exam-

ples of this architecture include the first proposed hyperchaotic
oscillator [51], where two tank resonators, one of which is
active, were coupled via an active nonlinear resistor. Other
examples can be found in [52] (two phase-shift oscillators
coupled with diodes) as well as some of the circuits of [53].
Recent examples of inductorless hyperchaotic oscillators were
proposed in [54] and [55]. Both examples are based on coupling
two sinusoidal oscillators via passive diodes.

Other higher order chaotic oscillators follow the structure of
Fig. 10(c). In particular, an intermediate filter stage is inserted
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Fig. 13. (Continued.)(c)–(d) Experimental observations in theX � Y andX � Z planes (X axis: 0.5 V/div,Y axis: 0.5 V/div).

Fig. 14. Block diagram representation of low-dimensional chaotic oscillators
based on the oscillator-nonlinear composite structure.

between the oscillator and the nonlinear composite. Examples
of such oscillators can be found in [56], where a realization of
the Mackey–Glass system was described, and in [57] where a
hyperchaotic oscillator was described. Other examples include
the circuits of [58] and [59] and the rest of the circuits of [53].
Actually the circuit of [59] is the same as that previously re-
ported by Saito in [57]. In all these examples, the filter (usually
a C-L-C section) is purely passive. It was shown in [60] that a
single active element is sufficient to generate hyperchaos. How-
ever, it is worth noting that increasing the order of the filter by

adding extra sections does not imply that the generated chaos
expands in a higher dimension [58].

VI. CONCLUSION

In this work we have described two classes of circuit-inde-
pendent chaotic oscillators derived from the simplest possible
models of two generic second-orderRC oscillators. We have
shown that the differential equations describing the core oscil-
lator engines can be clearly recognized in the describing equa-
tions of the chaotic oscillators. For one of the structures of class
II, we have realized that a single parameter of the core oscil-
lator engine can change the phase relation in the plane
without affecting the chaotic dynamics. This observation moti-
vated us to study the well-known Lorenz system and to propose
a modified system which is multiplier-free.

We have also restructured Chua’s circuit to show that the
mechanism by which oscillations are produced in this circuit
is via a generic second-order sinusoidal oscillator engine. The
coupling of this engine to a first-order active nonlinear com-
posite results in the well-known double-scroll attractor.

A large collection of chaotic oscillators has been classified
based on the oscillator-nonlinear composite architecture. We be-
lieve that the usual trend of studying the nonlinear dynamics of
each chaotic oscillator on individual basis should be replaced by
a study of the functional behavior of this architecture. We have
stated a conjecture concerning the simplest possible chaotic dy-
namics that can be observed from this architecture and have pro-
posed a simple equation capturing these dynamics. Chaotic at-
tractors observed in systems with active or hysteresis nonlin-
earities can be related to this“basic attractor” by considering
multiples of it connected together in a manner dictated by the
characteristics of the nonlinearity (odd or even-symmetrical),
and/or by considering a limit case condition for one or more of
its parameters.
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