TREES WITH EQUAL 2-DOMINATION AND 2-INDEPENDENCE NUMBERS

MUSTAPHA CHELLALI\(^1\) AND NACÉRA MEDDAH

LAMDA-RO Laboratory, Department of Mathematics
University of Blida
B.P. 270, Blida, Algeria

\textbf{e-mail:} m.chellali@yahoo.com
meddahnacera@yahoo.fr

\textbf{Abstract}

Let \(G = (V, E)\) be a graph. A subset \(S\) of \(V\) is a 2-dominating set if every vertex of \(V - S\) is dominated at least 2 times, and \(S\) is a 2-independent set of \(G\) if every vertex of \(S\) has at most one neighbor in \(S\). The minimum cardinality of a 2-dominating set \(a\) of \(G\) is the 2-domination number \(\gamma_2(G)\) and the maximum cardinality of a 2-independent set of \(G\) is the 2-independence number \(\beta_2(G)\). Fink and Jacobson proved that \(\gamma_2(G) \leq \beta_2(G)\) for every graph \(G\). In this paper we provide a constructive characterization of trees with equal 2-domination and 2-independence numbers.

\textbf{Keywords:} 2-domination number, 2-independence number, trees.

\textbf{2010 Mathematics Subject Classification:} 05C69.

1. \textbf{Introduction}

Let \(G = (V(G), E(G))\) be a simple graph with vertex set \(V(G)\) and edge set \(E(G)\). The \textit{open neighborhood} \(N(v)\) of a vertex \(v\) consists of the vertices adjacent to \(v\), the \textit{closed neighborhood} of \(v\) is defined by \(N[v] = N(v) \cup \{v\}\) and \(d_G(v) = |N(v)|\) is the \textit{degree} of \(v\). A vertex of degree one is called a \textit{leaf} and its neighbor is called a \textit{support vertex}. If \(u\) is a support vertex, then \(L_u\) will denote the set of leaves attached at \(u\). We denote by \(K_{1,t}\) a \textit{star} of order \(t + 1\). A tree \(T\) is a \textit{double star} if it contains exactly two vertices that are not leaves. A double star with, respectively \(p\) and \(q\) leaves attached at each support vertex is denoted by \(S_{p,q}\). A

\(^1\)This research was supported by "Programmes Nationaux de Recherche: Code 8/u09/510".
M. Chellali and N. Meddah

264

graph is called a corona if it is constructed from a graph of H by adding for each vertex $v \in V(H)$, a new vertex v' and a pendant edge vv'.

In [4], Fink and Jacobson generalized the concepts of independent and dominating sets. Let k be a positive integer, a subset S of $V(G)$ is k-independent if the maximum degree of the subgraph induced by the vertices of S is less or equal to $k - 1$. The subset S is k-dominating if every vertex of $V(G) - S$ has at least k neighbors in S. The k-domination number $\gamma_k(G)$ is the minimum cardinality of a k-dominating set and the k-independence number $\beta_k(G)$ is the maximum cardinality of a k-independent set. A minimum k-dominating set and a maximum k-independent set of a graph G is called a $\gamma_k(G)$-set and $\beta_k(G)$-set, respectively.

It is well known that every graph G satisfies $\gamma_1(G) \leq \beta_1(G)$. In [4], Fink and Jacobson proved that $\gamma_2(G) \leq \beta_2(G)$ and conjectured that for every graph G and positive integer k, $\gamma_k(G) \leq \beta_k(G)$. The conjecture has been proved by Favaron [3] by showing that every graph G admits a set that is both a k-independent and a k-dominating. It follows from this stronger result that if G is a graph such that $\beta_k(G) = \gamma_k(G)$, then G has a set that is both $\gamma_k(G)$-set and $\beta_k(G)$-set. This useful property will be used in the proof of the main result. Note that trees T with $\gamma_1(T) = \beta_1(T)$ have been characterized in [1] by Borowiecki who proved that such trees must be either K_1 or coronas.

In this paper, we give a characterization of all trees T with equal 2-domination and 2-independence numbers. We will call such trees (γ_2, β_2)-trees. Note that the difference $\beta_2(G) - \gamma_2(G)$ can be arbitrarily large even for trees. To see this consider a tree T_j obtained from a path of order $2j + 1$ where the vertices are labelled from 1 to $2j + 1$ by attaching a path P_2 to each of the odd numbered vertices. Then $\beta_2(T_j) = 3j + 2$ and $\gamma_2(T_j) = 2j + 2$.

2. (γ_2, β_2)-Trees

2.1. Observations

We give some useful observations.

Observation 1. Every 2-dominating set of a graph G contains every leaf.

Observation 2. Let T be a non-trivial tree and $w \in V(T)$. Then $\gamma_2(T) \leq \gamma_2(T - w) + 1$.
Proof. If \(D \) is a \(\gamma_2(T - w) \)-set, then \(D \cup \{w\} \) is a 2-dominating set of \(T \) and hence \(\gamma_2(T) \leq \lvert D \rvert + 1 \).

Observation 3. Let \(T \) be a non-trivial tree and \(v \) a vertex of \(T \). Then \(\beta_2(T - v) \leq \beta_2(T) \leq \beta_2(T - v) + 1 \).

Proof. \(\beta_2(T - v) \leq \beta_2(T) \) follows from the fact that any 2-independent set of \(T - v \) is also a 2-independent set of \(T \). Now if \(D \) is a \(\beta_2(T) \)-set, then \(D - \{v\} \) is a 2-independent set of \(T - v \) and hence \(\beta_2(T - v) \geq \lvert D \rvert - 1 \).

Observation 4. Let \(T \) be a tree obtained from a nontrivial tree \(T' \) and a star \(K_{1,p} \) of center vertex \(v \) by adding an edge \(vw \) at any vertex \(w \) of \(T' \). Then,

\begin{enumerate}
\item \(\gamma_2(T') \leq \gamma_2(T) - p \), with equality if either \(p \geq 2 \) or \(w \) is a leaf of \(T' \).
\item If \(p \geq 2 \), then \(\beta_2(T) = \beta_2(T') + p \).
\end{enumerate}

Proof. (1) Let \(D \) be a \(\gamma_2(T) \)-set. Then by Observation 1, \(L_v \subset D \) and, without loss of generality, \(v \notin D \) (else substitute \(v \) by \(w \) in \(D \)). Then \(D \cap V(T') \) 2-dominates \(T' \) and so \(\gamma_2(T') \leq \lvert D \cap V(T') \rvert = \gamma_2(T) - p \). Now if \(p \geq 2 \), then every \(\gamma_2(T') \)-set can be extended to a 2-dominating set of \(T \) by adding the \(p \) leaves of the added star, and hence \(\gamma_2(T) \leq \gamma_2(T') + p \). Assume now that \(p = 1 \) and let \(v' \) be the unique leaf adjacent to \(v \). If \(w \) is a leaf in \(T' \), then \(w \) belongs to every \(\gamma_2(T') \)-set \(D' \) and \(D' \cup \{v'\} \) is a 2-dominating set of \(T' \), implying that \(\gamma_2(T) \leq \gamma_2(T') + 1 \). In both cases the equality is obtained.

(2) Let \(S' \) be any \(\beta_2(T') \)-set. Then clearly \(S' \cup L_v \) is a 2-independent set of \(T \), and so \(\beta_2(T) \geq \beta_2(T') + \lvert L_v \rvert \). Now among all \(\beta_2(T) \)-sets, let \(S \) be one containing the maximum number of leaves. If there exists a leaf \(v' \in L_v \) such that \(v' \notin S \), then \(v \in S \) (else \(S \cup \{v'\} \) is a 2-independent set larger than \(S \)) but then \(\{v'\} \cup S - \{v\} \) is a 2-independent set of \(T \) containing more leaves than \(S \), a contradiction. Hence \(L_v \subset S \) and so \(S - L_v \) is a 2-independent set of \(T' \). It follows that \(\beta_2(T') \geq \beta_2(T) - \lvert L_v \rvert \) and the equality holds.

Observation 5. Let \(T \) be a tree obtained from a nontrivial tree \(T' \) and a double star \(S_{1,p} \) with support vertices \(u \) and \(v \), where \(\lvert L_v \rvert = p \) by adding an edge \(vw \) at a vertex \(w \) of \(T' \). Then,

\begin{enumerate}
\item \(\beta_2(T) = \beta_2(T') + (p + 2) \).
\item \(\gamma_2(T) \leq \gamma_2(T') + (p + 2) \), with equality if \(\beta_2(T) = \gamma_2(T) \).
\end{enumerate}

Proof. (1) Let \(u' \) be the unique leaf neighbor of \(u \) and let \(S \) be a \(\beta_2(T) \)-set containing the maximum number of leaves. Then as seen in the proof of Observation 4, \(L_v \cup \{u'\} \subset S \). Also \(S \) contains either \(u \) or \(v \) for otherwise \(S \cup \{u\} \) is a 2-independent set of \(T \) larger than \(S \). Without loss of generality, \(u \in S \) and so \(S - (L_v \cup \{u, u'\}) \) is a 2-independent set of \(T' \). Hence \(\beta_2(T') \geq \beta_2(T) - (\lvert L_v \rvert + 2) \).
The equality is obtained from the fact that every \(\beta_2(T') \)-set can be extended to a 2-independent set of \(T \) by adding \(L_u \cup \{ u, u' \} \).

(2) Clearly if \(D' \) is a \(\gamma_2(T') \)-set, then \(D' \cup L_v \cup \{ u', v \} \) is a 2-dominating set of \(T \) and so \(\gamma_2(T) \leq \gamma_2(T') + (p + 2) \). Now assume that \(\beta_2(T) = \gamma_2(T) \) and suppose that \(\gamma_2(T) < \gamma_2(T') + (p + 2) \). Then by item (1) we have

\[
\beta_2(T') + (p + 2) = \beta_2(T) = \gamma_2(T) < \gamma_2(T') + (p + 2),
\]

implying that \(\beta_2(T') < \gamma_2(T') \), a contradiction. Therefore if \(\beta_2(T) = \gamma_2(T) \), then \(\gamma_2(T) = \gamma_2(T') + (p + 2) \).

\[\blacksquare\]

Observation 6. Let \(T \) be a tree obtained from a nontrivial tree \(T' \) and a path \(P_3 = xyz \) by adding an edge \(xw \) at a vertex \(w \) of \(T' \). Then

\[
1) \beta_2(T) = \beta_2(T') + 2.
2) \gamma_2(T) \leq \gamma_2(T') + 2, \text{ with equality if } \beta_2(T) = \gamma_2(T).
\]

Proof. (1) If \(D' \) is a \(\beta_2(T') \)-set, then \(D' \cup \{ y, z \} \) is a 2-independent set of \(T \) and so \(\beta_2(T) \geq \beta_2(T') + 2 \). Now let \(D \) be a \(\beta_2(T) \)-set. Clearly \(1 \leq |D \cap \{ x, y, z \}| \leq 2 \). If \(|D \cap \{ x, y, z \}| = 1 \), then, without loss of generality, \(z \in D \) but \(D \cup \{ y \} \) is a larger 2-independent set of \(T \), a contradiction. Thus \(|D \cap \{ x, y, z \}| = 2 \). Also \(D \cap V(T') \) is a 2-independent set of \(T' \), implying that \(\beta_2(T') \geq \beta_2(T) - 2 \). Hence \(\beta_2(T) = \beta_2(T') + 2 \).

(2) If \(S' \) is a \(\gamma_2(T') \)-set, then \(S' \cup \{ z, x \} \) is a 2-dominating set of \(T \), and so \(\gamma_2(T) \leq \gamma_2(T') + 2 \). Assume now that \(T \) satisfies \(\beta_2(T) = \gamma_2(T) \). If \(\gamma_2(T) < \gamma_2(T') + 2 \), then by item (1) we have

\[
\beta_2(T') + 2 = \beta_2(T) = \gamma_2(T) < \gamma_2(T') + 2,
\]

implying that \(\beta_2(T') < \gamma_2(T') \), a contradiction. Therefore if \(\beta_2(T) = \gamma_2(T) \), then \(\gamma_2(T) = \gamma_2(T') + 2 \).

\[\blacksquare\]

2.2. Main result

For the purpose of characterizing \((\gamma_2, \beta_2) \)-trees, we define the family \(\mathcal{O} \) of all trees \(T \) that can be obtained from a sequence \(T_1, T_2, \ldots, T_k \) \((k \geq 1) \) of trees, where \(T_1 \) is a star \(K_{1,p} \) \((p \geq 1) \), \(T_1 = T_k \), and, if \(k \geq 2 \), \(T_{i+1} \) is obtained recursively from \(T_i \) by one of the operations defined below.

- **Operation \(O_1 \) :** Add a star \(K_{1,p} \), \(p \geq 2 \), centered at a vertex \(u \) and join \(u \) by an edge to a vertex of \(T_i \).

- **Operation \(O_2 \) :** Add a double star \(S_{1,p} \) with support vertices \(u \) and \(v \), where \(|L_u| = p \) and join \(v \) by an edge to a vertex \(w \) of \(T_i \) with the condition that if \(\gamma_2(T_i - w) = \gamma_2(T_i) - 1 \), then no neighbor of \(w \) in \(T_i \) belongs to a \(\gamma_2(T_i - w) \)-set.
• **Operation O_3**: Add a path $P_2 = w'u$ and join u by an edge to a leaf v of T_i that belongs to every $\beta_2(T_i)$-set and satisfies in addition $\beta_2(T_i-v)+1 = \beta_2(T_i)$.

• **Operation O_4**: Add a path $P_3 = w'uv$ and join v by an edge to a vertex w that belongs to a $\gamma_2(T_i)$-set and satisfies further $\gamma_2(T_i-w) \leq \gamma_2(T_i)$, with the condition that if $\gamma_2(T_i-w) = \gamma_2(T_i)-1$, then no neighbor of w in T_i belongs to a $\gamma_2(T_i-w)$-set.

We state the following lemma.

Lemma 7. If $T \in O$ then, $\gamma_2(T) = \beta_2(T)$.

Proof. Let T be a tree of O. Then T is obtained from a sequence T_1, T_2, \ldots, T_k ($k \geq 1$) of trees, where T_1 is a star $K_{1,p}$ ($p \geq 1$), $T = T_k$, and, if $k \geq 2$, T_{k+1} is obtained recursively from T_k by one of the four operations defined above. We use an induction on the number of operations performed to construct T. Clearly the property is true if $k = 1$. This establishes the basis case.

Assume now that $k \geq 2$ and that the result holds for all trees $T \in O$ that can be constructed from a sequence of length at most $k-1$, and let $T' = T_{k-1}$. By the inductive hypothesis, T' is a (γ_2, β_2)-tree. Let T be a tree obtained from T' by using one of the operations O_1, O_2, O_3 and O_4. We examine each of the following cases. Note that we will use in the proof the same notation as used for the construction.

Case 1. T is obtained from T' by using operation O_1. By Observation 4, $\gamma_2(T) = \gamma_2(T') + p$ and $\beta_2(T) = \beta_2(T') + p$. Since T' is a (γ_2, β_2)-tree it follows that $\gamma_2(T) = \beta_2(T)$.

Case 2. T is obtained from T' by using operation O_2. By Observation 5, $\beta_2(T) = \beta_2(T') + (p + 2)$ and $\gamma_2(T) \leq \gamma_2(T') + (p + 2)$. Now assume that $\gamma_2(T) < \gamma_2(T') + (p + 2)$ and let D be a $\gamma_2(T)$-set. Then, without loss of generality, D contains $L_u \cup \{v\}$ and the unique leaf neighbor of u. If $w \in D$, then $D \cap V(T')$ is a 2-dominating set of T' with cardinality $\gamma_2(T') - (p + 2) < \gamma_2(T')$, which is impossible. Hence $w \notin D$ and so $D' = D \cap V(T')$ is a 2-dominating set of $T' - w$. Note that since $w \notin D$ and $v \in D$, D' contains a neighbor of w in T'. Hence $\gamma_2(T' - w) \leq |D'| = \gamma_2(T) - (p + 2) < \gamma_2(T')$. It follows from Observation 2 that $\gamma_2(T' - w) = \gamma_2(T') - 1$ and D' is a $\gamma_2(T' - w)$-set containing a neighbor of w, a contradiction with the construction. Therefore $\gamma_2(T) = \gamma_2(T') + (p + 2)$. Now using the fact that $\gamma_2(T') = \beta_2(T')$ we obtain $\gamma_2(T) = \beta_2(T)$, that is T is a (γ_2, β_2)-tree.

Case 3. T is obtained from T' by using operation O_3. By Observation 4, $\gamma_2(T') = \gamma_2(T) - 1$. Also $\beta_2(T) \geq \beta_2(T') + 1$ since every $\beta_2(T')$-set can be extended to a 2-independent set of T by adding u'. Now assume that $\beta_2(T) > \beta_2(T') + 1$ and let S be a $\beta_2(T)$-set. Since $\beta_2(T') \geq |S \cap V(T')|$, it follows that
u, u' \in S. Hence v \notin S and S \cap V(T') is a 2-independent set of T' - v. Thus
\beta_2(T' - v) \geq |S \cap V(T')| = \beta_2(T) - 2. Also from the construction v satisfies
\beta_2(T' - v) + 1 = \beta_2(T'). Therefore

\[\beta_2(T') - 1 = \beta_2(T' - v) \geq \beta_2(T) - 2 > (\beta_2(T') + 1) - 2, \]

a contradiction. Consequently \(\beta_2(T) = \beta_2(T') + 1 \). Since \(\gamma_2(T') = \beta_2(T') \) we obtain \(\gamma_2(T) = \beta_2(T) \).

Case 4. T is obtained from \(T' \) by using operation \(O_4 \). By Observation 6,
\(\beta_2(T) = \beta_2(T') + 2 \) and \(\gamma_2(T) \leq \gamma_2(T') + 2 \). Assume that \(\gamma_2(T) < \gamma_2(T') + 2 \) and let \(D \) be a \(\gamma_2(T) \)-set. Clearly \(u' \in D \) and \(|D \cap \{u', v, u\}| = 2 \). If \(u \in D \), then \(v \notin D \) and so \(w \in D \). Hence \(D \cap V(T') \) is a 2-dominating set of \(T' \) having cardinality \(|D| - 2 < \gamma_2(T') \), a contradiction. Therefore \(u \notin D \) and so \(v \in D \). If \(w \in D \), then using the same argument than used above leads to a contradiction.
Thus \(u \notin D \) and hence \(D \cap V(T') \) is a 2-dominating set of \(T' - w \). It follows that
\[\gamma_2(T' - w) \leq |D| - 2 < \gamma_2(T') \] and by Observation 2 we obtain
\(\gamma_2(T' - w) = \gamma_2(T') - 1 \). Therefore \(D \cap V(T') \) is a \(\gamma_2(T' - w) \)-set. Note that \(w \) is 2-dominated in
\(T \) by \(v \) and some vertex, say \(w' \in V(T') \). But then \(w' \) belongs to a \(\gamma_2(T' - w) \)-set,
a contradiction with the construction. Consequently, \(\gamma_2(T) = \gamma_2(T') + 2 \) implying
that \(\gamma_2(T) = \beta_2(T) \), that is, \(T \) is a \((\gamma_2, \beta_2) \)-tree. \(\blacksquare \)

We now are ready to state our main result.

Theorem 8. Let \(T \) be a tree of order \(n \). Then \(\gamma_2(T) = \beta_2(T) \) if and only if
\(T = K_1 \) or \(T \in \mathcal{O} \).

Proof. If \(T = K_1 \), then \(\gamma_2(T) = \beta_2(T) \). If \(T \in \mathcal{O} \), then by Lemma 7, \(\gamma_2(T) = \beta_2(T) \). Let us prove the necessity. Obviously, \(\gamma_2(K_1) = \beta_2(K_1) \), so assume \(n \geq 2 \). We use an induction on the order \(n \) of \(T \). If \(n = 2 \), then \(T = K_{1,1} \) that belongs to \(\mathcal{O} \). Assume that every \((\gamma_2, \beta_2) \)-tree \(T' \) of order \(2 \leq n' < n \) is in \(\mathcal{O} \). Let \(T \) be
\((\gamma_2, \beta_2) \)-tree of order \(n \). If \(T \) is a star, then \(T \in \mathcal{O} \). If \(T \) is a double star, then
\(T \) is obtained from \(T_1 \) by using Operation \(O_1 \) if \(n \geq 5 \), and \(T \) is obtained from
\(T_3 = K_{1,1} \) by using Operation \(O_3 \) if \(n = 4 \). Therefore both stars and double stars
are in \(\mathcal{O} \). Thus we may assume that \(T \) has diameter at least four.

We now root \(T \) at a leaf \(r \) of a longest path. Among all vertices at distance
\(\text{diam}(T) - 1 \) from \(r \) on a longest path starting at \(r \), let \(u \) be one of maximum
degree. Since \(\text{diam}(T) \geq 4 \), let \(v, w \) be the parents of \(u \) and \(v \), respectively. Also
let \(D \) be a set that is both \(\beta_2(T) \)-set and \(\gamma_2(T) \)-set. Recall that such a set exists
as mentioned in the introduction (see [3]). Denote by \(T_x \) the subtree induced by
a vertex \(x \) and its descendants in the rooted tree \(T \). We examine the following cases.

Case 1. \(\deg_T(u) \geq 3 \), that is \(u \) is adjacent to at least two leaves. Let
\(T' = T - T_u \). By Observation 4, \(\gamma_2(T) = \gamma_2(T') + |L_u| \) and \(\beta_2(T) = \beta_2(T') + |L_u| \).
Hence $\gamma_2(T') = \beta_2(T')$. By induction on T', $T' \in \mathcal{O}$ and so $T \in \mathcal{O}$ because it is obtained from T' by using operation \mathcal{O}_1.

Case 2. $\deg_T(u) = 2$. Let u' be the unique leaf neighbor of u. By our choice of u, every child of v has degree at most two. First we claim that every child of v besides u (if any) is a leaf. Suppose to the contrary that a child b of v is a support vertex with $L_b = \{b'\}$. Then $u', b' \in D$. If $v \in D$, then $u, b \notin D$ (since D is a $\beta_2(T)$-set) but $\{u, b\} \cup D - \{v\}$ would be a 2-independent set of T larger than D, a contradiction. Hence $v \notin D$ and so $u, b \in D$ but $\{v\} \cup D - \{u, b\}$ would be a 2-dominating set of T smaller than D, a contradiction too. Thus every child of v besides u is a leaf. We consider two subcases.

Subcase 2.1. $\deg_T(v) \geq 3$. Hence v is a support vertex and T_v is a double star $S_{1,|L_v|}$. Let $T' = T - T_v$. Clearly T' is nontrivial. By Observation 5, $\gamma_2(T) = \gamma_2(T') + |L_v| + 2$ and $\beta_2(T) = \beta_2(T') + |L_v| + 2$. It follows that $\gamma_2(T') = \beta_2(T')$ and by induction on T', $T' \in \mathcal{O}$. Assume now that $T' - w$ admits a $\gamma_2(T' - w)$-set D'' such that $|D''| = \gamma_2(T' - 1)$ and D'' contains at least one vertex adjacent to w in T'. Then $D'' \cup L_v \cup \{u', v\}$ is a 2-dominating set of T', and so

$$
\gamma_2(T) \leq |D'' \cup L_v \cup \{u', v\}| = \gamma_2(T' - w) + |L_v| + 2 = \gamma_2(T') - 1 + |L_v| + 2 < \gamma_2(T') + |L_v| + 2,
$$

a contradiction. Hence such a case cannot occur and so T can be obtained from T' by using operation \mathcal{O}_2. Therefore $T \in \mathcal{O}$.

Subcase 2.2. $\deg_T(v) = 2$. Clearly $u' \in D$. Three possibilities can occur $(u \notin D$ and $v, w \in D), (u, w \notin D$ and $v \in D)$ and $(u, w \in D$ and $v \notin D)$. Observe that if the first situation occurs, then $\{u\} \cup D - \{v\}$ is both $\beta_2(T)$-set and $\gamma_2(T)$-set too. Hence we have to consider only the last two situations.

Assume that $u, w \notin D$ and $v \in D$ and let $T' = T - \{u, u'\}$. By Observation 4, $\gamma_2(T') = \gamma_2(T) - 1$. Also it is clear that $\beta_2(T) \geq \beta_2(T') + 1$. If $\beta_2(T') > \beta_2(T') + 1$, then $\gamma_2(T') + 1 = \gamma_2(T) = \beta_2(T) > \beta_2(T') + 1$, implying that $\gamma_2(T') > \beta_2(T')$, a contradiction. Hence $\beta_2(T) = \beta_2(T') + 1$ and so $\gamma_2(T') = \beta_2(T')$. By induction on T', $T' \in \mathcal{O}$. Note that v belongs to every $\beta_2(T')$-set, for otherwise if S' is a $\beta_2(T')$-set such that $v \notin S'$, then $S' \cup \{u, u'\}$ would be a 2-independent set of T larger than D, a contradiction. On the other hand, by Observation 3, $\beta_2(T' - v) \leq \beta_2(T' - v) + 1$. Clearly if $\beta_2(T' - v) = \beta_2(T')$, then every $\beta_2(T' - v)$-set is also $\beta_2(T')$-set but does not contain v, a contradiction with the fact that v belongs to every $\beta_2(T')$-set. Therefore v satisfies $\beta_2(T') = \beta_2(T' - v) + 1$. It follows that $T \in \mathcal{O}$ because it is obtained from T' by using Operation \mathcal{O}_3.

Finally assume that $u, w \in D$ and $v \notin D$. Let $T' = T - \{v, u, u'\}$. Then by Observation 6, $\beta_2(T) = \beta_2(T') + 2$ and $\gamma_2(T) = \gamma_2(T') + 2$. Note that $D \cap V(T')$ is a $\gamma_2(T')$-set that contains w. Also by Observation 2, $\gamma_2(T' - w) \geq \gamma_2(T') - 1$. Therefore...
Assume that $\gamma_2(T'-w) > \gamma_2(T')$. Then using the fact that $\beta_2(T) \geq \beta_2(T'-w)+2$, it follows that

$$\beta_2(T) \geq \beta_2(T'-w) + 2 \geq \gamma_2(T'-w) + 2 > \gamma_2(T') + 2 = \gamma_2(T),$$

and so $\beta_2(T) > \gamma_2(T)$, a contradiction. Therefore $\gamma_2(T') \geq \gamma_2(T'-w) \geq \gamma_2(T') - 1$. Now we note that if $\gamma_2(T'-w) = \gamma_2(T') - 1$, then no neighbor of w in T' belongs to a $\gamma_2(T'-w)$-set, for otherwise such a set can be extended to 2-dominating set of T by adding u', v which leads to $\beta_2(T) > \gamma_2(T)$. Under these conditions it is clear that T is obtained from T' by using Operation O_4 and since $T' \in \mathcal{O}$ it follows immediately that $T \in \mathcal{O}$.

References

Received 14 September 2010
Revised 10 May 2011
Accepted 11 May 2011