Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA

Xiaonan Tai1, D. Scott Mackay1, William R. L. Anderegg2,3, John S. Sperry3 and Paul D. Brooks4

1Department of Geography, University at Buffalo, 105 Wilkeson Quadrange, Buffalo, NY 14261, USA; 2Department of Ecology and Evolutionary Biology, Princeton University, Guyot Hall, Princeton, NJ 08544, USA; 3Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; 4Department of Geology & Geophysics, University of Utah, Salt Lake City, UT 84112, USA

Summary

- Elevated forest mortality has been attributed to climate change-induced droughts, but prediction of spatial mortality patterns remains challenging. We evaluated whether introducing plant hydraulics and topographic convergence-induced soil moisture variation to land surface models (LSM) can help explain spatial patterns of mortality.
- A scheme predicting plant hydraulic safety loss from soil moisture was developed using field measurements and a plant physiology–hydraulics model, TREES. The scheme was upscaled to Populus tremuloides forests across Colorado, USA, using LSM-modeled and topography-mediated soil moisture, respectively. The spatial patterns of hydraulic safety loss were compared against aerial surveyed mortality.
- Incorporating hydraulic safety loss raised the explanatory power of mortality by 40% compared to LSM-modeled soil moisture. Topographic convergence was mostly influential in suppressing mortality in low and concave areas, explaining an additional 10% of the variations in mortality for those regions.
- Plant hydraulics integrated water stress along the soil–plant continuum and was more closely tied to plant physiological response to drought. In addition to the well-recognized topo-climate influence due to elevation and aspect, we found evidence that topographic convergence mediates tree mortality in certain parts of the landscape that are low and convergent, likely through influences on plant-available water.

Introduction

Rapid forest die-off can cause large-scale shifts in forest structure and composition, and consequently these events have strong feedbacks to climate (Allen & Breshears, 1998; Anderegg et al., 2013b; Friend et al., 2014). However, it remains challenging to predict the spatial–temporal pattern of forest mortality under novel climate conditions. This limitation has been attributed to the oversimplified and poorly constrained representation of mortality mechanisms in current models (Allen et al., 2010; Fisher et al., 2010; McDowell et al., 2011; Anderegg et al., 2015). Current Dynamic Global Vegetation Models (DGVMs) rely on logical but untested rules to represent mortality (McDowell et al., 2011) and their underlying land surface models (LSMs) consider the soil–plant–atmosphere continuum as a one-dimensional column ignoring the spatial interaction (Fisher et al., 2010). In this study, we identify two processes that are currently missing in models and attempt to evaluate whether incorporating them in models could improve the prediction of plants’ response to drought.

First, there is a lack of physiological mechanisms to simulate tree mortality in regional-scale vegetation models (Allen et al., 2010; Powell et al., 2013). Most models can capture the reduced water available for plants during drought; however, large degrees of uncertainty exist among model predictions of elevated forest mortality (McDowell et al., 2011; Powell et al., 2013; Anderegg et al., 2015). Decreases in soil water do not necessarily translate into comparable stress levels inside plants, such as hydraulic cavitation, stomatal closure and reduced photosynthesis. For instance, the same species growing on different soils have been shown to experience different levels of stress (Cobb et al., 1997; Sperry & Hacke, 2002; Hogg et al., 2008), and different species at the same site might have different vulnerability to cavitation (Breshears et al., 2008; McDowell et al., 2008). Consequently, there is a need for more physiologically realistic simulation of plant stress to explain mortality.

Growing evidence suggests that hydraulic dysfunction during drought is mechanistically related to tree mortality and predisposes trees to mortality (Anderegg et al., 2012; Hartmann et al., 2015). The impairment of vascular tissue is also interrelated with carbon starvation and/or biotic agent attacks (McDowell et al., 2011, 2013; Gaylord et al., 2013). Hydraulic safety, defined as the difference between a plant’s maximum transpiration potential (Ecrit) and the actual transpiration (E), has been
Topography-driven convergence reorganizes the water balance driven by climate, creating persistently wetter valleys and drier ridges (Fig. 1). Its influence on the spatial structure of soil moisture is recognized to be prevalent from local to global scales (McDonnell et al., 2007; Brooks et al., 2011; Thompson et al., 2011; Voepel et al., 2011; Fan, 2015; Zapata-Ríos et al., 2015). Various hydroclimatic processes could be responsible for the co-evolution of soil moisture with topography. One frequently attributed process is the subsidy of groundwater (Fig. 1) (Clark et al., 2015; Fan, 2015). As groundwater moves laterally from topographic divergent (e.g. convex ridges and divides) to topographic convergent (e.g. concave valleys and topographic hollows) areas (Dingman, 1994), it raises the water table towards the surface locally and thus supplies additional water to the root zone through capillary lift or hydraulic redistribution (Dawson, 1993; Liu et al., 2006). Greater exposure to radiation and wind at ridges could also cause ridges to be drier compared to valley locations (Adams et al., 2014). In addition, snow accumulation is correlated with surface convergence with thicker snowpack in concave areas, resulting in pockets of relatively higher soil water (Winstral & Marks, 2002). But the effects of topographic convergence on the spatial variations of soil moisture are often neglected in current mainstream LSMs (Nijssen et al., 2001; Clark et al., 2015; Fan, 2015). Given the critical role of soil moisture on plant development, incorporating this variability of soil moisture may improve predictions of drought-induced mortality compared to only considering the soil–plant–atmosphere column.

Fig. 1 (a) Plant water stress during drought is represented by soil water content solely accounting for the vertical water flux, which assumes homogeneous soil moisture within a simulation unit irrespective of topographic variations. \( P \) is precipitation and \( E_t \) is evapotranspiration. (b) Plant water stress is represented by hydraulic safety, which considers the response of the whole soil–plant–atmospheric continuum to drought. Hydraulic safety is derived by introducing plant hydraulic conductance \( K \) as a function of xylem water potential \( \Psi \). See Sperry et al. (1998) for details. (c) Lateral groundwater moves from divergent to convergent areas and causes variations in local groundwater table depth and thus reorganization of the soil moisture following topography. Color bar, the level of soil moisture wetness; \( f(G) \), subsidy of groundwater to root zone water storage; \( f(G) = 0 \), neutral area where there is no redistribution of soil moisture following topography; \( f(G) > 0 \), convergent areas that receive above average subsidy from groundwater; and \( f(G) < 0 \), divergent areas that receive below average subsidy from groundwater.

---

(a) Vertical water flux
(b) \( P-E_t \)
(c) \( P-E_t \)

Fig. 1 (a) Plant water stress during drought is represented by soil water content solely accounting for the vertical water flux, which assumes homogeneous soil moisture within a simulation unit irrespective of topographic variations. \( P \) is precipitation and \( E_t \) is evapotranspiration. (b) Plant water stress is represented by hydraulic safety, which considers the response of the whole soil–plant–atmospheric continuum to drought. Hydraulic safety is derived by introducing plant hydraulic conductance \( K \) as a function of xylem water potential \( \Psi \). See Sperry et al. (1998) for details. (c) Lateral groundwater moves from divergent to convergent areas and causes variations in local groundwater table depth and thus reorganization of the soil moisture following topography. Color bar, the level of soil moisture wetness; \( f(G) \), subsidy of groundwater to root zone water storage; \( f(G) = 0 \), neutral area where there is no redistribution of soil moisture following topography; \( f(G) > 0 \), convergent areas that receive above average subsidy from groundwater; and \( f(G) < 0 \), divergent areas that receive below average subsidy from groundwater.
Tree mortality appears to be caused by a combination of stresses from climate, local habitat and biotic disturbances. Its incidence can lag behind the stressors by years or decades due to variations in individual genomic or phenotypic traits (Franklin et al., 1987; Waring, 1987; Frey et al., 2004; Suarez et al., 2004; Anderegg et al., 2013c). The mechanisms of mortality remain a focus of site-specific experiments and measurement campaigns (McDowell et al., 2011), but spatial patterns of mortality observed from aerial photographs or remote sensing may also be used to gain insights on underlying mechanisms that are difficult to obtain in small-scale studies (Friend et al., 2014; Anderegg et al., 2015). Relying on the spatial observation of forest mortality at a regional scale, our goal is to provide a first-order explanation of regional mortality based on species hydraulic traits, general climatic conditions and micro-site topography. Specifically, we evaluate the following two hypotheses focusing on the improved representations of plant stress in the soil–plant–atmosphere column (one dimensional, hereafter 1D) and heterogeneity of plant stress associated with topography (three dimensional, hereafter 3D):

Hypothesis 1 – hydraulic safety better explains drought-induced mortality compared to soil water content estimated by models that do not account for the whole soil–plant–atmosphere continuum (Fig. 1a,b); and
Hypothesis 2 – hydraulic safety is a better correlate of mortality when incorporating the variability of soil water content induced by topography (3D) compared to soil water content driven by vertical water fluxes only (1D) (Fig. 1b,c).

Materials and Methods

Study area and data

We focused on trembling aspen (Populus tremuloides Michx., hereafter ‘aspen’) forests across Colorado, USA (Fig. 2). Aspen is one of the most widely distributed species and has experienced widespread die-off in the past 15 yr (in events called Sudden Aspen Decline, SAD) throughout western USA and southern Canada (Bartos, 2008; Hogg et al., 2008; Rehfeldt et al., 2009; Worrall et al., 2013).

An overview of the methodology is shown in Fig. 3, including the validation dataset, input datasets and modeling steps. For validation we used a well-documented aerial survey of the SAD epidemic following the 2000–2003 severe drought across the complex terrain of the Colorado Rocky Mountains (Worrall et al., 2008). Because the accuracy of aerial surveys has been found to be a few hundred meters (Huang & Anderegg, 2012; Anderegg et al., 2015), our spatial analysis was performed using a 7.5 arc-second digital elevation model (DEM, c. 225 m on a side) (Danielson & Gesch, 2011) and STATSGO2 soil database (USDA, 2014) with comparable spatial resolution. The spatial information on soil water content was extracted from the NLDAS-2 project, which provided retrospective simulations from 1979 to present day in 1/8th degree grids (c. 13.5 km on a side) over the continental United States using four mainstream land surface models (LSMs) (Xia et al., 2012b). All four LSMs simulated soil water content products that were found to be comparable and were validated against observations (Xia et al., 2012a, b). We adopted the soil moisture product produced with the Variable Infiltration Capacity (VIC) model as it had previously been used to predict SAD (Anderegg et al., 2013a) and to study drought characteristics associated with climate change (Andreadis & Lettenmaier, 2006; Sheffield & Wood, 2008). We gathered the monthly mean soil moisture for growing season months – May, June, July, and August for 30 yr spanning from 1979 to 2008. Monthly soil moisture was used because it was found to be more reliable than short-term estimates and generally in equilibrium with meteorological forcing (Robock et al., 2003; Sheffield et al., 2004). In addition, ecophysiological measurements, including transpiration, leaf water potentials, soil moisture and
meteorological variables, were made at two aspen plots developing on loam soils, one visually healthy and one in the process of dying, during the 2012 growing season in San Juan National Forest, Colorado (Anderegg et al., 2014).

Model of plant hydraulic safety

The hydraulic limit in the soil–plant–atmosphere continuum is determined by soil water content, soil hydraulic properties, transpiration and xylem vulnerability to cavitation (Sperry et al., 1998; Bréda et al., 2006). We used the Terrestrial Regional Ecosystem Exchange Simulator (TREES) (Mackay et al., 2015) to compute hydraulic safety, as the difference between actual transpiration ($E_a$) and maximum transpiration potential ($E_{max}$), because TREES integrates plant hydraulics, vulnerability to cavitation and canopy transpiration given half-hourly micrometeorological inputs. Descriptions of major processes and parameterizations of TREES can be found in Supporting Information Notes S1. Briefly, $E_{crit}$ is derived using the steady-state hydraulic model described in Sperry et al. (1998), which explicitly solves the hydraulic gradient along the soil–plant continuum as well as the nonlinear decrease of hydraulic conductance associated with decreasing water potential (Sperry et al., 1998; Mackay et al., 2015). $E_{crit}$ is the maximum potential value of $E_a$ at which the corresponding hydraulic conductance approaches zero (Sperry et al., 1998; Manzoni et al., 2013). $E_a$ is estimated in TREES by iteratively solving a series of equations including Fick’s Law, Darcy’s Law, Penman-Monteith, the Farquhar photosynthesis model and the detailed hydraulic model of Sperry et al. (1998), until convergence is reached so that it accounts for hydraulic limitation, atmospheric demand as well as photosynthesis (Mackay et al., 2015).

Although it would be ideal to run TREES simulations across grids over the landscape, this is prohibited by limited biophysical and meteorological measurements available and the lack of a fully integrated model that accounted for both plant hydraulics and land surface processes. We therefore first assessed the ability of TREES to simulate in situ aspen stands (Anderegg et al., 2014) by quantifying its predictions of transpiration, soil water content and leaf water potential compared to observations made in the field study site (Fig. 4). Then we relied on TREES to develop a simple yet biophysically constrained function to capture the first-order response of the soil–plant–atmosphere continuum to soil water availability.

Development of safety loss function for aspen

In order to develop a simple yet biophysically constrained function that can be used to predict aspen safety loss across the landscape, we used soil water potential as the predictive environmental variable because it is the driving force of the whole soil–plant–atmosphere hydraulic continuum (Sperry et al., 1998; Manzoni et al., 2013). The influences of other potential factors, such as vapor pressure deficit (VPD), were evaluated in a sensitivity analysis. Soil water potential depends on soil water content and hydraulic properties (hence soil texture). For southwestern US mountainous environments where a general decline in soil water is often observed throughout the summer months (Fig. S1) (Oglesby, 1991; Xia et al., 2012b), early-season soil water content associated with snowmelt is critical for plant development (Fritts, 1974; Hanson & Weltzin, 2000; Bigler et al., 2007; Williams et al., 2013).

Consequently, we developed a dimensionless safety loss function for aspen, $p$, which related the average hydraulic safety,
$(E_{\text{crit}} - E_c)$, to soil texture and the initial soil water content of a general soil dry-down, as in Eqn 1.

\[
p(\theta_{\text{init}}, \text{soil texture}) = 100\% \times \left(1 - \frac{(E_{\text{crit}} - E_c)}{(E_{\text{crit}} - E_c)_{\text{max}}} \right) \quad \text{Eqn 1}
\]

We simulated a rainless period of c. 5 wk long after snowmelt and before summer monsoon, because this is often the most stressful part of the year when plant growth is most active with high and relatively constant radiation in these forests (Anderegg et al., 2013a, 2014, 2015). The average safety margin was used because it represented the level of hydraulic dysfunction over a sustained period encompassing a wide range of atmospheric conditions. The $(E_{\text{crit}} - E_c)_{\text{max}}$ term was the maximum value of $(E_{\text{crit}} - E_c)$ associated with different initial soil water content and soil texture and was used to scale the safety loss metric over the range of 0–100.

We drove TREES using the meteorological records measured during the 5-wk rainless period from Day 153 to Day 187 of 2012. For a given soil texture, nine TREES simulations
were run with initial soil water contents (in volumetric units such as m$^3$ water m$^{-3}$ soil) starting from 0.05 to 0.4 with 0.05 increments. For each initial soil water content, the average safety loss was derived from the corresponding half-hourly simulation of $E_i$ and $E_{\text{crit}}$ at midday (from 10:00 to 14:00 h) according to Eqn 1, and a sigmoid curve was fitted through the points. This was repeated for all soil texture types associated with aspen development in the region, resulting in a set of eight soil specific ‘reference curves’ that related $R$ as a function of initial soil water content and soil texture (Fig. 5, curves of the same line type).

In order to evaluate the influence of other potential variables on these reference curves – namely, the particular time course of meteorological records used to drive TREES, the magnitude of VPD and the duration of soil dry-down – we performed a sensitivity analysis according to Table 1 in a factorial design, resulting in 27 sets of soil-type specific reference curves (Fig. S2). Meteorological forcing records were generated by randomly drawing daily samples with replacement from the measured record, and ±20% change was induced to the measured VPD magnitudes. In addition to the 5-wk soil dry down, we also tested 6-wk and 7-wk dry down periods by randomly drawing daily samples with replacement from the measured meteorological record. Among the 27 sets of reference curves, three sets with the maximum, medium and minimum safety loss at a given soil water content (Fig. 5, curves of different line types) were selected to test the impact of reference curves on the spatial estimation of safety loss.

Spatial estimation of 1D and 3D soil water content

The VIC soil moisture product served as a proxy for climatically driven water availability for plants because it only accounted for the vertical water flux. We organized the computations on the basis of catchments with an average size equivalent to the size of a VIC grid cell. Catchments were delineated from the DEM. 1D soil water content driven by vertical water fluxes only 1D soil moisture, $\theta_{1D}$, was computed as the catchment average soil water content weighted by the overlapping area between a VIC grid cell boundary and the catchment boundary.

Because the sub-grid heterogeneity of soil moisture induced by topographic convergence was missing in VIC and other NLDAS-2 products (Xia et al., 2012a), we approximated it following a topographic framework (Famiglietti & Wood, 1994) based on the topography-soil index ($\lambda_i$) (Beven & Kirkby, 1979; Sivapalan et al., 1987), defined as

$$\lambda_i = \log_e \left( \frac{aT_c}{T_i \tan \beta} \right)$$

(Eqn 2)

$i$ local grid cell index; $T_c$ and $T_i$, catchment mean and local grid cell saturated transmissivity, respectively; $\tan \beta$, local grid cell slope; $a$, upslope contributing area per unit of contour width for the local grid cell). $\lambda_i$ varies from relative high values in areas of topographic convergence, such as in hollows or along stream courses, to relatively low values where there is topographic divergence, such as at divides.

In spite of its recognized limitation, the $\lambda_i$ index can be derived easily from readily available data and has been widely applied to represent the network-like topographic convergence of surface and subsurface water flow from local studies at scales of a few meters (Beven & Kirkby, 1979; Moore et al., 1993; Adelman et al., 2008) to regional studies at the kilometer scale (Chen & Kumar, 2001; Niu et al., 2005). We calculated $\lambda_i$ from the 225 m DEM and soil transmissivity, which is defined as the integration of soil hydraulic conductivity with depth through the soil profile, associated with the respective soil texture classes. Although $\lambda_i$ cannot capture localized variations at scales of small forest stands,

---

**Table 1** Sensitivity analysis of reference curves to meteorological forcing time course, vapor pressure deficit (VPD) magnitude and rainless period duration

<table>
<thead>
<tr>
<th>Factors considered</th>
<th>Procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time course of meteorological forcing</td>
<td>Randomly distribute meteorological records used to drive the Terrestrial Regional Ecosystem Exchange Simulator (TREES) model; Repeated three times</td>
</tr>
<tr>
<td>VPD magnitude</td>
<td>Increase VPD by 20% Decrease VPD by 20% No change</td>
</tr>
<tr>
<td>Rainless period duration</td>
<td>5 wk</td>
</tr>
<tr>
<td></td>
<td>6 wk</td>
</tr>
<tr>
<td></td>
<td>7 wk</td>
</tr>
</tbody>
</table>

---

**Fig. 5** Reference curves that estimated the percentage loss of safety (y-axis) as a function of initial soil water content (x-axis) and texture. Colors represent soil textures. For a given soil texture, simulations with various initial soil water content from 0.05 to 0.4 were carried and safety loss was derived according to Eqn 1. A sigmoid curve was fitted through safety loss and corresponding initial soil water content. The same procedure was repeated for the other seven soil types, yielding one set of reference curves (eight curves in total) estimating safety loss as a function of initial soil water content and soil type. Three sets of reference curves were presented here, representing the highest (dotted line), medium (dashed line) and lowest (solid line) safety loss at a given soil water content and texture, respectively. The $R^2$ for all fitted curves were $>0.9$. These reference curves were used to relate 1D and 3D soil water content with safety loss across the landscape and to evaluate the influence of uncertainties in reference curve in the explanatory power of safety loss.
it is a suitable surrogate for gross hillslope convergence and divergence at a macroscale (Wolock & Price, 1994; Quinn et al., 1995) that is relevant for larger stands.

3D soil water content induced by topographic convergence, $\theta_{3D}$, was derived by redistributing $\theta_{1D}$ within each catchment following a topographic framework (Famiglietti & Wood, 1994) as:

$$\delta_i = \lambda_i - \bar{\lambda}$$

$$\theta_{3D,i} = \theta_{1D}(\theta_{1D}, \delta_i) = \theta_{1D,i} + m \ast \delta_i$$

($\bar{\lambda}$, catchment average $\lambda$; $\delta$, relative local topographic-soil index with respect to the catchment mean). The parameter $m$ controlled the variance of local soil moisture to catchment average soil moisture through its similarity to the variance of local $\lambda_i$ to catchment average $\lambda$. A constant value of $m$ was assumed, and a sensitivity analysis was performed using $m$ from 0.001 to 0.010 with increments of 0.001. This formulation allowed representing the variation of soil water within a watershed as induced by lateral convergence (Fig. 1c). Convergent regions with positive $\delta$ were associated with higher than catchment average soil water, whereas divergent regions with negative $\delta$ had lower soil water compared to the catchment average.

Spatial estimation of 1D and 3D safety loss metrics

We obtained values of $\rho$ for both the 30-yr average and drought years, and used the difference, $\Delta \rho$, as a safety loss metric to correlate mortality. Relative departure of water stress during drought from the stress levels experienced under the climatic normal incorporated the drought stress and potential plant adaptations to typically drier environments (Waring, 1987; Bréda et al., 2006). 30-yr average was used to represent the climate normal because plant adaptation to hydrologic and climate conditions occurs over the period of a few decades (Mencuccini, 2003; Manzoni et al., 2013). Because LSM simulated daily values were found to be less reliable (Sheffield et al., 2004), we used the average soil water content of May and June spanning 2000–2003 to represent early-season soil water content during drought and the respective monthly average for the 1979–2008 period as climatology. We further included the months of July and August to compare which period of growing season was most useful to explain mortality.

For each location we used a soil map to determine which soil type specific reference curve to use, and the values of soil water content determined the levels of safety loss for drought and climatology, respectively. We calculated the 1D safety loss, $\Delta \rho (\theta_{1D})$, as the difference of safety loss during drought relative to safety loss during the climate normal conditions. To test the importance of developing soil type-specific reference curves, we computed an alternative 1D safety loss, $\Delta \rho (\theta_{1D})^*$, by assuming that the whole study area was covered with clay-loam soil, which was the dominant soil type in the region. The 3D safety loss, $\Delta \rho (\theta_{3D})$, was derived in a similar way to 1D safety loss by applying the safety loss function to spatial map of soil texture and $\theta_{3D}$. To evaluate the first hypothesis (green boxes and arrows in Fig. 3), we compared the ability of 1D safety loss to predict aspen SAD to predictions made using soil water content only. To test the second hypothesis regarding topographic convergence (blue boxes and arrows in Fig. 3), we evaluated the ability of 3D and 1D safety loss to explain mortality.

Mortality along topographic gradients

We used Aerial Detection Surveys (ADS) obtained from the US Forest Service to quantify SAD-affected locations across gradients of elevation, aspect and topographic convergence. SAD-affected areas surveyed from 2008 to 2012 were merged regardless of the time detected, to capture the full spatial extent of SAD across Colorado. They were then converted to 30-m grid cells to correspond with a forest cover map derived from Landsat Thematic Mapper (Lowry et al., 2007). Grid cells mapped as SAD but not classified as aspen on the forest cover map were excluded. Both SAD and aspen grid cells were aggregated to the same resolution of the DEM following the maximum aggregation rule (a coarse resolution cell was labeled as aspen/SAD as long as at least one of the fine resolution cell it contained was classified as aspen/SAD). In addition to the lateral gradient, hillside aspect and elevation gradients were considered because they were found to be important topographic factors mediating plant mortality (Allen & Breshears, 1998; Worrall et al., 2008; Huang & Anderegg, 2012). Hillslope aspect was derived following (Lammers & Band, 1990) and two categories were defined: 135°–315° and −45°–135° measured clockwise from north (referred to as S–W and N–E hereafter). The landscape was further discretized into elevation zones of 200-m intervals and then into groupings of equal $\delta$ intervals within each elevation zone within each aspect category. Because of the limited accuracy and precision of the ADS data, clumps of pixels (or effectively, aspen stands) sharing similar topographic characteristics (elevation, aspect and $\delta$) were grouped together to reduce noise. This approach formed groups of stands with hydrologically similar conditions, although in some cases groups were not comprised of spatially contiguous stands. Mortality severity was calculated by dividing the count of SAD cells by the number of aspen cells falling within each group. The corresponding hydraulic safety loss metrics and soil water contents were computed from the average of all aspen pixels in each respective group. Spatial data processing was performed in GRASS (GRASS Development Team, 2014) and statistical analyses were carried out in R (R Core Team, 2015).

Results

Simulations of hydraulic safety loss using TREES

TREES simulations closely followed the observed sap flux, soil water content and leaf water potentials, for both the healthy and SAD aspen stands (Fig. 4). The predicted predawn and midday leaf water potentials were similar to measured values. In addition, it captured the differentiation of transpiration and, consequently,
hydraulic conductance between the healthy stand on relatively wet soils and the SAD stand on relatively dry soils.

The simulated reference curves demonstrated the nonlinear increase of safety loss to declining initial soil water content for all soil texture types (Fig. 5). At the same water content, plants exposed to coarse-textured soils experienced lower safety loss compared to plants growing on soils with higher clay content. The reference curves remained relatively stable with varying meteorological time course and magnitude of VPD, whereas the longer dry-down duration caused higher safety loss at the same initial soil water content (Fig. S2, different line types).

**Observed topographic variations in mortality**

The magnitude of mortality varied mainly along the elevational gradient, with high mortality in low elevations, regardless of topographic convergence/divergence and aspect category (Fig. 6). The peak of mortality severity occurred at a lower elevation than the peak of aspen abundance. In convergent ($\delta > 0$) and low-elevation regions, mortality became less severe as $\delta$ increased (Fig. 6a,c). By contrast, in divergent regions ($\delta < 0$; Fig. 6b,d), there was little response of mortality to changes in $\delta$. The only exception was c. 10% of the total aspen covered areas in the low-elevation zones on S–W aspects, where mortality unexpectedly decreased as $\delta$ became more negative (or more divergent; Fig. 6d).

**Hydraulic safety loss vs soil water content as correlates of drought-induced mortality**

Hydraulic safety loss improved the fraction of explained variance from 24% by soil water content to 62% (Table 2).

![Fig. 6](image_url) Observed mortality along topographic gradients for convergent regions (a, c) and divergent regions (b, d). (a, b) Regions with N–E hillslope aspect; (c, d) regions with S–W hillslope facing aspect. Horizontal axis represents elevation zones with 200-m intervals and different symbols represent groups with different values of $\delta$ (a more positive value represents areas that are more convergent receiving more groundwater subsidy, whereas a more negative value represents more divergent areas with less subsidy). Also shown in the bottom are the counts of aspen pixels (c. 225 m per side) within each elevation zone.
Table 2: Summary of regression statistics between mortality severity and alternative models to explain drought-induced mortality across the whole landscape based on average 2000–2003 June soil moisture using ‘medium’ reference curves

<table>
<thead>
<tr>
<th>Variable</th>
<th>Intercept</th>
<th>Slope</th>
<th>R²</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ(\theta)_{1D}</td>
<td>28.6</td>
<td>-17.69</td>
<td>0.24</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Δ(\theta)_{1D}</td>
<td>-6.6</td>
<td>2.36</td>
<td>0.62</td>
<td>&lt;0.01</td>
</tr>
<tr>
<td>Δ(\theta)_{1D}*</td>
<td>-13.8</td>
<td>1.92</td>
<td>0.37</td>
<td>&lt;0.01</td>
</tr>
</tbody>
</table>

Δ\(\theta\)_{1D}* denotes the 1D safety loss estimation assuming a single soil type of clay-loam without spatial information of soil type.

Table 3: The sample size (number of groups) and the percentage of total aspen covered areas in the study region for each topographic category

<table>
<thead>
<tr>
<th>Topographic categories</th>
<th>N–E</th>
<th>S–W</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>32</td>
<td>31</td>
</tr>
<tr>
<td>High</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Divergent</td>
<td>34</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>High</td>
<td>6%</td>
<td>10%</td>
</tr>
<tr>
<td>Divergent</td>
<td>29%</td>
<td>19%</td>
</tr>
</tbody>
</table>

Topographic categories were classified according to elevation, aspect and topographic convergence/divergence based on distinctive patterns of mortality shown in Fig. 6.

Low, elevation < 3000 m except for divergent areas on S–W aspect used < 2800 m as low; high, elevation > 3000 m except for divergent areas on S–W aspect used > 2800 as high.

Convergent, δ > 0; Divergent, δ < 0.

1D vs 3D safety loss as correlates of drought-induced mortality

The explanatory power of 3D safety loss, Δ\(\theta\)_{3D}, although improved over soil water content, was not consistently higher than that of Δ\(\theta\)_{1D} (Fig. 7), suggesting that the influence of lateral convergence was not important across all topographic positions of the landscape. Mortality also exhibited conflicting patterns in relation to putative gradients in lateral flow (Fig. 6). Therefore, we divided the landscape into different topographic categories to find where 1D vs 3D safety loss was the better explanatory factor. Seven categories of topographic positions were defined based on elevation, convergent/divergent (δ > 0 or δ < 0), and hillslope aspects (Table 3).

For convergent and low-elevation areas, 3D safety loss demonstrated clear improvement of \(R^2\) over 1D safety loss, even considering uncertainties associated with \(m\) and the reference curves used to derive the metric (Fig. 8). The value of \(m\) contributed a ± 0.05 variation in \(R^2\) (Fig. S3). By comparison, 1D safety loss achieved marginally higher explanatory power than 3D safety loss in high elevations, where the explanatory power of 3D safety loss was very sensitive to the value of \(m\) and was highest at a low \(m\) (Figs 8, S3). However, for mortality in divergent, low-elevation and S–W aspect regions, 3D safety loss had high \(R^2\) but a negative regression slope (Figs 8, S3).

Discussion

Simulations of hydraulic safety loss using TREES

Plants respond to the hydraulic status of both soil and plant xylem, which can only be derived using models that explicitly solve the water transport through the full soil–plant–atmosphere continuum (Sperry et al., 1998; Mackay et al., 2015; Sperry & Love, 2015). The Terrestrial Regional Ecosystem Exchange Simulator (TREES) reasonably captured the variations of sap flux, leaf water potential and, consequently, the whole plant hydraulic conductance over time and across stands (Fig. 4), lending support to using it as a tool to establish the hydraulic safety loss function from a small number of physiological measurements.

Plant hydraulic safety margin, or the difference between \(E_{\text{crit}}\) and \(E_c\), diminished monotonically with declining soil moisture...
Observed topographic variations in aspen mortality

Mortality severity varied strongly with elevation (Fig. 6), confirming that drought-induced tree mortality was nonrandom over space (Suárez et al., 2004; Gitlin et al., 2006; Kaiser et al., 2013). Changes in aspen mortality severity along elevation gradients shown here were consistent with previous studies of multiple other species in southwestern USA (Allen & Breshears, 1998; Gitlin et al., 2006; Worrall et al., 2008). Mortality severity peaked at lower elevations than the elevation zone with highest aspen abundance (Fig. 6), confirming that aspen in the xeric end of its range within the study area was more susceptible to drought (Freyll et al., 2004; Rehfeldt et al., 2009; Michaelian et al., 2011; Worrall et al., 2013).

The secondary control of topographic convergence on forest die-off is less well established in the literature (Bellingham & Tanner, 2000; Worrall et al., 2010; de Toledo et al., 2012). Our results suggested that this may be because topographic convergence affected mortality only in certain parts of the landscape (Figs 6, 8). In other words, trees in valley bottoms were more likely to be impacted by increased water supply due to topographic convergence, whereas trees on hillslope ridges were not. Moreover, unseen subsurface processes, such as interaction between plant roots and bedrock fractures, likely modulated the severity of drought mortality.

Hydraulic safety loss vs soil water content as correlates of drought-induced mortality

We found strong support for our first hypothesis that hydraulic safety loss better explains mortality than soil water content, regardless of uncertainties associated with reference curves used to estimate safety loss (Table 2; Fig. 7). Compared to soil water content, the reference curves incorporated the nonlinear response of safety loss to soil water content and soil texture (Fig. 5). Although the nonlinear response of safety loss to soil water was a better correlate of mortality than soil water content alone ($\Delta p_{1D}$ vs $\Delta S_{1D}$ in Table 2), mortality prediction was further improved when soil type was included ($\Delta p_{1D}^*$ vs $\Delta S_{1D}^*$ in Table 2). This extended previous findings that both plant xylem and soil were important in predicting plant hydraulic stress (Breda et al., 2006; Manzoni et al., 2013) to regional scale modeling where it has been largely ignored (Anderegg et al., 2013a; Worrall et al., 2013; but see Anderegg et al., 2015).

We also found improved predictions of mortality when we derived safety loss using early summer months as the initial soil moisture for computing safety loss (Fig. 7). This was likely because plant growth depends heavily on the supply of soil water early in the growing season in southwestern US mountainous environments (Hanson & Weltzin, 2000; Bigler et al., 2007; Williams et al., 2013) and soil was, in general, dry for most locations by August (Fig. S1). Indeed, water stress in May or June has catastrophic impacts on plants, because this is the most active period for plant carbon uptake when high water supply coincides with long daylight hours (Hanson & Weltzin, 2000; Bigler et al., 2007).
Moreover, early season drought in the US southwest results in a prolonged growing season water stress, which is important because tree mortality appears to be more closely related to the time spent with extensive stress rather than specific thresholds (McDowell et al., 2013).

1D vs 3D safety loss in relation to drought-induced mortality

Considering our second hypothesis that topographic convergence mediates mortality severity by creating variations of soil water content, we found mixed support. The improvement of 3D safety loss over 1D safety loss to explain mortality was not observed in all topographic situations across the landscape (Figs 7, 8). We did, however, find evidence of improved prediction in low-elevation, topographic convergent regions with relatively less severe mortality (Fig. 8), because of the higher soil water levels, as represented in the 3D model for these areas (Fig. 9b,d,h). The spatial variation of soil moisture remains a challenge to quantify accurately, even using detailed ground-based surveys (Western et al., 1999; Seneviratne et al., 2010; Crow et al., 2012). Nevertheless, given the strong feedbacks between soil moisture and vegetation (Seneviratne et al., 2010), the pattern of vegetation dynamics was indicative of the role played by topographic structure on long-term average soil water content, despite the simple approximation of our 3D model. Our results, along with previous fine-scale studies (Segura et al., 2002; Tromp-van Meerveld & McDonnell, 2006; Adelman et al., 2008; Loranty et al., 2008; Adams et al., 2014), suggest the importance of topographic convergence in mediating plant growth or dieback.

We found contradictory patterns of mortality in convex regions that were neither well captured by 1D nor 3D safety loss (Figs 6, 9a,g). Low-elevation, divergent areas on S–W

![Graphs showing mortality severity, soil water content, soil clay content, and ΔP vs δ for divergent and convergent regions.](Image)
hillslopes were expected to be the driest among all topographic positions, and yet they showed suppressed mortality with more negative δ. This could be attributed to decreased clay content (Fig. 9e), because safety loss was higher for plants in soils with higher clay content (Fig. 5). It could be also related to reduced interspecies competition (Scholes & Archer, 1997) as the more divergent regions tend to be dry and species-poor (Zinke et al., 2005). Given that these very dry locations were likely to be unfavorable for aspen, trees in these areas could have adapted to the low water availability and become more resistant to drought, through altered physiological or morphological traits (Hacke et al., 2000; Joslin et al., 2000; Bréda et al., 2006; Hales et al., 2009). In particular, aspen has been found to have lower vulnerability to cavitation on dry sites compared to wet sites (Anderegg & HilleRisLambers, 2016). Alternatively, plant roots could have obtained water stored in rock fractures (Brooks et al., 2015 and references therein). Although these areas represented 10% of total aspen coverage in this study (Fig. 6d), the survival of some aspen stands under extremely dry conditions suggests that we currently lack the data or model mechanisms required to explain mortality at these locations.

Methodology limitations

We stress that our approach served mainly as a first-order approximation with which to explore the importance of plant hydraulics and lateral groundwater flow for explaining regional-scale mortality. Several caveats can be identified. First, the complex response of plant hydraulics to drought was encapsulated in a single rhizosphere–plant hydraulic continuum exposed to different initial soil water contents and soil textures, and this scheme was upscaled using modeled monthly average soil moisture. Although it was sufficient to demonstrate the utility of plant hydraulics to explain spatial patterns of mortality at the regional extent and monthly time scale, the amplifying effects of rising temperature and repeated drought with sporadic rainfall events were ignored, which could be critical in predicting the timing of a ‘mortality crash’ for individual trees (Adams et al., 2009; Anderegg et al., 2015). Second, the spatial estimation of safety loss assumed the measured healthy aspen stand to be representative of aspen across the study extent, yet potential variations of physiological traits by genotypic and phenotypic plasticity (e.g. rooting profile and hydraulic vulnerability) could be an important local driver of dieback (Frey et al., 2004; Suarez et al., 2004). Third, we relied on an LSM simulated product to account for the spatial variations of energy and water supply due to elevation and aspect, and used a topography–soil index as a proxy of topographic convergence effects on soil moisture organization. But the complex energy, water and subsurface/soil interactions as well as plant feedbacks were not resolved within an LSM simulated cell, which might be responsible for the limited improvement of our 3D model. Further improvements could be made by incorporating the transient responses of soil moisture to snow distribution and snowmelt, groundwater flow and feedback from plant transpiration (Brooks et al., 2015; Clark et al., 2015).

Implications

This study provided a substantial step beyond previous work by developing a simple, yet realistic hydraulic safety loss function that captured the first-order response of plant hydraulics to climatic water stress and soil water status. Although our model was quite simple, it represented our state-of-knowledge of plant mortality mechanisms. Employing plant hydraulic safety loss greatly improved the ability to explain mortality patterns over soil water content alone, providing support for incorporating physiological mechanisms of tree mortality into Dynamic Global Vegetation Models (DGVMs). Furthermore, our approach can be generalized for multiple species and shows promising scalability from the stand to regional scale.

The physiologically based metric of safety loss served as a useful tool to test hypotheses regarding the spatial controls of drought-induced mortality, which was essential to making predictions over larger areas with limited data (Brooks et al., 2011; Voepel et al., 2011; Adam et al., 2014). Our results provided evidence of topography in mediating tree mortality during drought, especially for convergent topographic areas at low elevation where there was high transpiration demand. These microsite conditions can be critical to understanding species survival/extinction from extended drought under future climate scenarios (Brooks et al., 2015; Clark et al., 2015). Our first-order approximation underscored the relevance of plant hydraulics and topographic processes in understanding forest mortality pattern. Therefore, there is a need for improved models and observations that allow coupling plant hydraulics with spatially distributed microsite conditions to fully understand forest ecosystem response across landscapes of complex topography and its feedbacks to climate change droughts.

Acknowledgements

The data used in this study were acquired as part of the mission of NASA’s Earth Science Division, and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). Funding for this study was from the National Science Foundation (NSF) through grants IOS 1450679 and IOS 1450650. The views expressed in this manuscript reflect those of the authors and do not necessarily reflect those of the NSF. The authors would like to thank the insightful comments from the Editor and three anonymous reviewers that greatly helped to improve the manuscript.

Author contributions

X.T. and D.S.M. planned and designed the research; X.T. performed research; W.R.L.A. conducted fieldwork; X.T. analysed data; X.T., D.S.M., W.R.L.A., J.S.S. and P.D.B. wrote the manuscript.
References


Dale VH, Joyce LA, McNulty S, Neilson RP, Ayres MP, Flannigan MD, Hanson PJ, Irlan LC, Lugo AE, Peterson CJ. 2001. Climate change and forest disturbances climate change can affect forests by altering the frequency, intensity, duration, and timing of fire, drought, introduced species, insect and pathogen outbreaks, hurricanes, windstorms, ice storms, or landslides. BioScience 51: 723–734.


**Supporting Information**

Additional Supporting Information may be found online in the Supporting Information tab for this article:

**Fig. S1** Monotonic decline of soil moisture during the growing season from May to August for the 2000–2003 drought and for the 1979–2009 period across Colorado’s aspen forest based on variable infiltration capacity (VIC) simulated soil water content.

**Fig. S2** Simulations used to generate the ensemble of reference curves in the sensitivity analysis.

**Fig. S3** Sensitivity analysis with respect to values of *m* and the corresponding explanatory power and regression slope of $\Delta p(\theta_{3D})$ in different topographic areas.

**Notes S1** Key processes and parameterizations of TREES.

Please note: Wiley Blackwell are not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the *New Phytologist* Central Office.