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Abstract: Electrolysis is a potential candidate for a quick method of wastewater cleansing. However,
it is necessary to know what compounds might be formed from bioorganic matter. We want to know
if there are toxic intermediates and if it is possible to influence the product formation by the variation
in initial conditions. In the present study, we use Car–Parrinello molecular dynamics to simulate
the fastest reaction steps under such circumstances. We investigate the behavior of amino acids and
peptides under anodic conditions. Such highly reactive situations lead to chemical reactions within
picoseconds, and we can model the reaction mechanisms in full detail. The role of the electric current
is to discharge charged species and, hence, to produce radicals from ions. This leads to ultra-fast
radical reactions in a bulk environment, which can also be seen as redox reactions as the oxidation
states change. In the case of amino acids, the educts can be zwitterionic, so we also observe complex
acid–base chemistry. Hence, we obtain the full spectrum of condensed-phase chemistry.

Keywords: Car–Parrinello molecular dynamics; electrochemistry; reaction intermediates; reaction
mechanisms; wastewater cleansing

1. Introduction

Novel methods of cleansing water are needed not only in arid regions on earth, but also in
astronautics. Under such conditions, abundant electric energy is often available from photovoltaics.
Hence, one may ask the question whether an electric current can help to decompose waste dissolved
in water to nonvirulent, nontoxic substances. Electrolysis is the method of using an electric current
to compose or - mostly - decompose chemical substances. Besides the well-known decomposition of
water to molecular oxygen and molecular hydrogen, electrolysis is used to synthesize metals from the
corresponding oxides [1]. An important example is aluminum production by the reduction of aluminum
ore (Hall–Heroult process). However, the reverse reaction, namely anodizing, is also technologically
important for obtaining extremely hard alumina surfaces. Another interesting application could be the
reduction of, for example, carbon dioxide toward valuable substances. This concept is also known as
power-to-chemicals, power-to-fuel, or power-to-gas [2].
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But what does electrolysis do to bioorganic waste? We have recently investigated the electrolysis of
urea and uric acid as the main contaminants in urine. For the anodic process, we found a reactivity that
corresponds to the chemistry of OH. radicals in aqueous solution. In the present paper, we investigate
amino acids and peptides as the main constituents of bioorganic tissue.

Our approach is ab-initio molecular dynamics simulation (AIMD) or, more precisely, Car–Parrinello
molecular dynamics simulation (CPMD) [3]. This method uses density functional theory (DFT)
approximation [4–6] for a quantum mechanical description of the electrons in arbitrary molecular
systems. The motion of the atoms that determines chemical reactions is simulated using Newton
dynamics. It turns out that a method like DFT, which is based on the Schrodinger equation, is necessary
for describing arbitrary chemical reactions. Nuclear motion, however, is very well-described using
Newton’s simple concept of linear motion as long as there is no force. Car–Parrinello molecular
dynamics is a way of moving the electrons together with the nuclei in a quasi-classical manner.
As the electron cloud and nuclei are moved using differential equations, the approach is completely
deterministic. If the same job is run two times, we obtain identical results. If, however, the initial
conditions are slightly changed, we might observe completely different reactions. Obviously, we are
dealing with classical chaos. CPMD is costly in terms of CPU time. Alternatives, however, are either even
more costly (Born–Oppenheimer molecular dynamics, BOMD) [7] or less transferable (ReaxFF) [8,9].
There are more recent developments [10], but up to now, no method has been more important than
CPMD for simulating chemical reactions [11–16]. We also cannot use cheaper methods like QM/MM,
as every part of the systems investigated is potentially reactive. As an example of the ability of CPMD
to find chemically reasonable structures, let us mention that we originally started with neutral amino
acids in water and observed in some of the simulations the reaction toward the zwitterion, which is
more stable than the neutral compound in an aqueous environment. Hence, next to radical chemistry,
we have to deal with acid–base chemistry. We focus on the anodic reaction as it is mostly more
interesting than the reaction at the cathode, where molecular hydrogen is formed quickly [17,18].

We are not the first ones to investigate electrolysis using AIMD. Within the Car–Parrinello
community, it was mainly the work of the Sprik group and coworkers who did calculations on
electrochemical problems [19,20]. Most recently, Sprik and Hutter proposed a scheme that fully
includes the electrodes [21]. We are using a simpler approach that models the reactivity without direct
contact to the electrodes. Our plan is to start from relatively simple systems and to understand their
reactivity. Later on, we want to study more complex systems.

The general idea of our approach is as follows (Figure 1): We equilibrate proteins or peptides
in an aqueous environment. A Maxwell–Boltzmann distribution of velocities must be obtained to
have a well-defined temperature. This happens within picoseconds. Then, we can make the system
reactive by taking out electrons and protons. This simulates the anodic situation. For the cathodic
situation, it would be necessary to add electrons and protons. In an electrolysis experiment, due to the
voltage applied, a mass transfer of OH− and H3O+ molecules takes place toward the anode and the
cathode, respectively, where they are discharged. OH. radicals accumulate near the anode. In silico,
in order to simulate the reaction near the anode, we replace single water molecules by OH. radicals.
This procedure was used before (see References [17] and [18]). It is suitable for investigating processes
that occur at some distance from the electrodes, that is, processes that do not need the immediate
contact to the electrodes.
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2. Results and Discussion 
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temperatures. Let us focus on the simulation with two zwitterions at an initial temperature of 400 K 

as it exhibits the most frequent reaction pathway. The result is depicted in Figure 2. We can monitor 

all single reaction steps. 

Figure 1. General model: We start our consideration from an aqueous solution containing a pollutant
(green). (a) The situation before applying a potential is stable. It contains a small amount of OH− and
H3O+ molecules according to the ionic product (in a much smaller concentration than shown here).
(b) If a potential is applied, there is a mass transport of the OH− ions to the anode and of the H3O+

ions to the cathode. (c) When coming close to the electrode surfaces, the ions are discharged due to
electronic tunneling. As a result, we have a pollutant in contact with radicals and with water. We take
this as the starting point of our simulations.

2. Results and Discussion

2.1. Anodic Reaction of Amino Acids

Alanine is the prototype of an amino acid. In aqueous solution, alanine exists as a zwitterion.
We performed simulations for both the neutral and the zwitterionic form at different initial temperatures.
The initial temperatures are different from the simulation temperatures, which are not constant in
a reactive simulation. According to the equipartition theorem, for an optimized system, half of the
kinetic energy is converted into potential energy, leading to lower simulation temperatures. Let us
focus on the simulation with two zwitterions at an initial temperature of 400 K as it exhibits the most
frequent reaction pathway. The result is depicted in Figure 2. We can monitor all single reaction steps.
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Figure 3. Sketch of the anodic reaction of two alanine zwitterions and behavior of the most relevant
bonding interactions, deduced from the Car–Parrinello simulations.

A sketch of the molecules involved in the reaction is given in Figure 3.
The snapshots start at a point at which an oxygen molecule was already formed from OH. radicals.

As described before [18], we observe the formation of water wires that are similar to proton wires
connected with the Grotthuss mechanism, except that our water wires involve OH. radicals instead of
protons and do not necessarily transport charges. The situation is complex for the zwitterion: Mediated
by water molecules, two OH. radicals attack at the NH3 group. Based on the Car–Parrinello MD
simulations, we can decompose the reaction in single reaction steps and can determine what happens
first. In our simulation, the first step is the formation of a hydrogen bond between a water molecule
and the amino acid. This happens for both alanine zwitterions in the unit cell within about 0.2 ps
(red curve and dark blue curve).
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A short-lived oscillation of this hydrogen bridge is observed at 1.7–1.8 A. About 0.6 ps after the
start of the reactive simulation, this distance shortens to about 1.0–1.1 A, indicating the formation of
a covalent bond. At the same time, one of the N–H bonds is broken and water is formed (lilac and
brown curves). Not much later, the carbon–carbon bond breaks in both simulations (green and yellow
curves). The result is unstable; a few tenths of a picosecond later, the attack of a second water molecule
via a water wire leads to the stable imine.

The well-known net reaction that resembles the Kolbe electrolysis [22,23] is given in Figure 4.
For neutral alanine, we observed a very similar reaction (Figure 5). The details for all simulations
performed are given in the Supplementary Material. Among the most frequent side reactions were the
formation of H2O2 and O2. In one case, the nitrene CH3-CH(N)-COOH was formed by the attack of two OH.

radicals at the amino group. In two cases, formation of the hemiaminal CH3-CH(OH)-NH2 was observed
by attack of an OH. radical at the carbon atom C after CO2 formation (see the Supplementary Material).
For the zwitterions, the cleavage of CO2 is immediate after the electron transfer. For the neutral alanine
molecules, the reaction has to be triggered by the attack of OH. radicals at one of the hydrogen atoms of
the amino groups. Note that a reaction that never occurs is the electrophilic attack of the OH. radical at the
nitrogen atom of the amino group. The attack at the hydrogen atoms in order to form water is way more
attractive. The formation of an N–O bond is possible as a radical recombination reaction only, if several
OH. radicals attack.
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Figure 4. Net reaction of two alanine zwitterions as observed in the simulations.
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Figure 5. Net reaction of two alanine molecules as observed in the simulations.

In the Supplementary Material, a movie of the zwitterion reaction is stored. In this movie,
the motion of the spin densities is shown. Red and blue are positive and negative spin densities,
respectively. In the beginning, there is spin density at the triplet oxygen and at the OH. radicals. In the
course of the reaction, the spin density vanishes, with the only remainder at the oxygen molecule,
which is now an open-shell singlet molecule, 1O2. Reaction to the more stable triplet oxygen, 3O2,
would be possible by interaction with another singlet oxygen molecule.
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2.2. Anodic Reaction of Peptides

In organic materials, peptides rather than individual amino acids are found. We simulated a short
peptide consisting of two glycine and two alanine moieties. The peptide seems to be more stable than
the single amino acids. We observed the breaking of the chain only at high concentrations of OH.

radicals. As a consequence, an isocyanate group RNCO and an imine are formed (Figures 6 and 7).
It is known from the Bhopal catastrophe that isocyanates can be highly toxic. However, they easily
hydrolyze in an aqueous environment and form relatively harmless substances like CO2 and R-NH2.
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The breaking of the peptide chain is initiated by the attack of an OH. radical at the hydrogen atom
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carbon atom.
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Figure 7. Net reaction of the peptide. The intermediary formation of OOH. radicals and of the HOOOH
molecule (Figure 6) can be seen as independent of the peptide reaction.

Much like the isolated amino acid, the zwitterion immediately releases a CO2 molecule
(see the Supplementary Material).

3. Methods

Car–Parrinello molecular dynamics simulations using the CPMD code [3,24] have been performed
using the Becke–Lee–Yang–Parr (BLYP) functional in connection with the Grimme dispersion
correction [25]. The time step was chosen as 5 a.u. (0.12 fs) and the fictitious electron mass as
400 a.u. Troullier–Martins pseudopotentials as optimized for the BLYP functional were employed for
describing the core electrons [26,27]. The plane-wave cutoff, which determines the size of the basis set,
was set to 70.0 Rydberg. The simulation cell was 20 × 20 × 20 a.u.3 (10.6 ×10.6 ×10.6Å) for alanine and
25 × 25 × 25 a.u.3 (13.2 ×13.2 ×13.2Å3) for the peptide. Solutions with a density of roughly 1 g/cm3 were
generated (2 alanine and 40 water molecules or one alanine-glycine-alanine-glycine system plus 62 water
molecules). After equilibration of stable, neutral, closed-shell systems, reactive species were generated
by removing four protons and four electrons, leading to OH. radicals. For the reactive simulations,
the spin-unrestricted version of Kohn–Sham theory was employed [28]. Typically, data were accumulated
for 3 ps, before more reactive species were added in order to continue the reaction. Total simulation
times were on the order of 10 ps. We also performed calculations using Nose thermostats and with
Born–Oppenheimer molecular dynamics. While the conservation of classical energy looks better than
that with CPMD, this did not result in a different reactivity. CPMD simulations with a smaller time step
(2 a.u.) and a smaller fictitious electron mass (200 a.u.) showed a slightly better behavior concerning the
energies, while the overall reactivity stayed the same (see the Supplementary Material). This observation
is attributed to the use of the spin-unrestricted version of Kohn–Sham theory, which tends to be less
stable than the closed-shell version, but is needed when describing radicals.
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4. Conclusions

To conclude, in our simulations of alanine under anodic conditions, we observe mainly the
decomposition to carbon dioxide, ethanimine, and water. This is clearly the predominant reaction and
may be observed also for other amino acids. Ethanimine is a reactive intermediate which, in higher
concentrations, easily polymerizes. It is stable on the time scale of our simulations. The reactions
are mediated by water chains. This reactivity is characteristic of the bulk environment and can be
observed only if the whole electronic system is treated at a quantum mechanical level.

As side reactions, we were able to observe the reaction to a nitrene and to a hemiaminal as unstable
intermediates occurring at high OH. concentrations. Molecular oxygen was also formed, as well as
all the intermediates leading to molecular oxygen, that is, the OOH. radical and the H2O2 molecule.
Peptides show a similar but lower reactivity, except that we observe breaking of the chain at high OH
concentrations. Under these conditions, HOOOH, known as trioxidane, was also observed, which in
the experiment, easily decomposes in an aqueous environment, but is stable on the time scale of
our simulation.

As the reactions are spontaneous after electron transfer, we can simply observe the full
reaction. Our movies show the continuous change in the electronic structure during the reaction,
which emphasizes the rigor of our approach. We can show not only how the nuclei moves from the
educt to the product state, but also that the electronic cloud moves smoothly from one state to the other.

The disadvantages and limitations of our approach should also be mentioned: We observe
reactions that are only completed within a few picoseconds. We can trigger reactions by changing the
charge status of a system; however, we fail to observe reactions that need a certain arrangement of the
reaction partners, that is, reactions for which entropy matters. On the other hand, our concentration of
OH. radicals is too high compared to the experiment; hence, we overestimate reactions that need the
simultaneous approach of two radicals. However, such reactions become more important on longer
timescales, as water wires can be formed. This compensates to some degree the effect of too high a
concentration of radicals.

There are many more reaction setups that could be interesting in the context of ultrafast processes
under electrolytic conditions. Let us just mention the formation of amino acids from simpler substances,
which was reported earlier using contact glow discharge electrolysis (CGDE) [29,30]; for a review,
see Reference [31]. Molecular dynamics simulations can add a microscopic explanation of complex
reaction schemes by showing every single reaction step. An understanding of the full reaction
mechanism may help to obtain the desired products in higher yields.

Supplementary Materials: The following are available online, frank.suppl.pdf: main supplementary file,
alanine.mpg: movie of one of the simulation runs, in1: sample input file.
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