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Abstract: The fifth generation achieved tremendous success, which brings high hopes for the next
generation, as evidenced by the sixth generation (6G) key performance indicators, which include
ultra-reliable low latency communication (URLLC), extremely high data rate, high energy and
spectral efficiency, ultra-dense connectivity, integrated sensing and communication, and secure
communication. Emerging technologies such as intelligent reflecting surface (IRS), unmanned aerial
vehicles (UAVs), non-orthogonal multiple access (NOMA), and others have the ability to provide
communications for massive users, high overhead, and computational complexity. This will address
concerns over the outrageous 6G requirements. However, optimizing system functionality with
these new technologies was found to be hard for conventional mathematical solutions. Therefore,
using the ML algorithm and its derivatives could be the right solution. The present study aims to
offer a thorough and organized overview of the various machine learning (ML), deep learning (DL),
and reinforcement learning (RL) algorithms concerning the emerging 6G technologies. This study
is motivated by the fact that there is a lack of research on the significance of these algorithms in
this specific context. This study examines the potential of ML algorithms and their derivatives in
optimizing emerging technologies to align with the visions and requirements of the 6G network.
It is crucial in ushering in a new era of communication marked by substantial advancements and
requires grand improvement. This study highlights potential challenges for wireless communications
in 6G networks and suggests insights into possible ML algorithms and their derivatives as possible
solutions. Finally, the survey concludes that integrating Ml algorithms and emerging technologies
will play a vital role in developing 6G networks.

Keywords: deep learning (DL); emerging technologies; machine learning (ML); reinforcement learning
(RL); sixth generation (6G) communication; 6G visions and requirements; wireless communications

1. Introduction

Due to the success achieved by the fifth generation (5G) networks regarding fast and
good quality signal transmission compared to the previous generation, the world is cur-
rently expecting much faster and better communication in the sixth generation (6G) as the
following generation network. However, these attractive and high-demand applications
impose challenging key performance indicators (KPIs) and constraints on communica-
tion networks, which were also addressed in the International Telecommunication Union
Radiocommunication Sector (ITU-R) workshop on International Mobile Telecommuni-
cations (IMT) in terms of several usage scenarios and key capability indicators for the
2030 communication network and beyond. These indicators include ultra-reliable low
latency communication (URLLC), extremely high data rate, substantially high energy and
spectral efficiency, ultra-dense connectivity, secure communication, and massive machine-
type communication [1–5]. One of the potential solutions to meet all the requirements is
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developing emerging technology-assisted wireless communications, which researchers
have proposed for the past few years [6–8].

Emerging technologies have significantly improved the quality of wireless communi-
cations. As shown in Figure 1, emerging technologies can help wireless communication to
forward and improve the transmitted signal. Implementation of emerging technologies
can provide communication in non-line-of-sight (NLOS) areas [9], dead zone areas [10],
disaster environments [11], and even underground and underwater communications [12].
Several researchers have developed studies such as implementing emerging technology to
serve NLOS areas and increase throughput [13], unmanned vehicles for information/power
transfer [14], secure communication [15], non-orthogonal multiple access (NOMA) applica-
tions for interference cancellation [16], and other applications. However, there are some
challenges in implementing emerging technology-assisted wireless communication, such
as increasing reception of signal diversity from different hardware devices and increasing
coexistence requirements, thus giving inaccurate results for model-based approaches. In
addition, due to the implementation of massive MIMO (m-MIMO) systems, high over-
head and computational complexity becomes a drawback for mathematical models in
optimizing the functionality of the physical layer [17]. Therefore, it is likely that the perfor-
mance enhancement of future wireless networks is difficult to achieve with conventional
mathematical solutions.

Figure 1. Application of emerging technologies for wireless communication.

The application of machine learning (ML) has been gaining traction across a range of
industries, including robotics, image processing, healthcare, finance, and transportation [18–22].
In [18], a hybrid of deterministic and swarm-based algorithms was applied for multi-robot
exploration in a cluttered environment. In [19], a self-organized and self-healing peer-to-peer
information system was designed for a dynamic environment. ML can also be applied for
practical applications like finance and healthcare. The use of ML and deep learning (DL)
techniques in monitoring and making informed decisions regarding the COVID-19 pandemic
was discussed in [20]. Meanwhile, [21] conducted a thorough analysis of COVID-19-related
news to predict the stock market using ML technology. Additionally, ML has been employed
to predict traffic accident severity, aiming to reduce road accidents and make transportation
safer [22].
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Other than that, ML and DL have also shown their contribution to optimizing wireless
communication. In addition to its ability to work without human intervention, the DL
approach is capable of tackling intricate system problems through precise mathematical
models [23]. This advanced problem-solving method relies on cutting-edge algorithms
that can analyze vast amounts of data, identify patterns, and make accurate predictions.
By leveraging DL, the system can achieve more efficient and effective operations, learn-
ing to achieve better outcomes. Various ML algorithms and their derivatives have been
adapted to improve wireless communication performance [24–27]. Previous studies of ML
demonstrated significant advancements when it was implemented in several emerging
technology-aided communications, such as intelligent reflecting surfaces (IRSs), unmanned
aerial vehicles (UAVs), autonomous underwater vehicles (AUVs), NOMA, and others.

1.1. Related Work

Due to the promising benefits of using ML for future communications, recently, there
have been several studies dealing with such implementations [28–32]. In [28], the authors
discussed applying different ML types at each communication layer between devices. They
highlighted that the ML algorithm used in applications and infrastructure layers is able
to meet the 6G requirements, while Tang et al., in [29], have specifically discussed one of
the 6G network requirements, URLLC. The authors presented ML abilities for optimizing
channel allocation, network routing, congestion control, and adaptive streaming control. In
addition, several studies discussed the role of ML algorithms for parameter optimization
in m-MIMO communication. In [30], the authors analyzed ML-aided m-MIMO communi-
cations for the 5G network. They carried out several issues, including channel estimation,
beamforming and precoding, signal detection, distributed and cell-free configurations,
and m-MIMO with NOMA. By raising the same communication problem for the 6G net-
work instead of the 5G network, another study focused on the impact of DL algorithm
implementation called a transformer, a sequence-to-sequence DL model consisting of
encoder–decoder modules and layers for semantic communication [31]. ML algorithms
could also be applied to optimize integrated sensing and communication. Demirhan and
Alkhateeb, in [32], described ten key roles of ML for integrated sensing and communication,
which were divided into three categories: joint sensing and communication, sensing-aided
communication, and communication-aided sensing. While the authors of [33] specifically
described the reconfigurable intelligent surface (RIS)-aided wireless communication quality
improvement due to the implementation of an ML algorithm, reinforcement learning (RL)
to be precise, to optimize its communication parameters. They highlighted that implement-
ing RIS as an emerging technology assisted by algorithms based on data statistics could
improve communication performance.

Several aforementioned studies have explained some of the ML algorithm capabili-
ties for 6G networks. Yet, there are still very limited studies that specifically discuss the
implementation of ML in various emerging technologies based on the 6G requirements ap-
proach. The summary of the existing studies for ML implementation in 6G communication
networks is shown in Table 1.

1.2. Scope and Contributions

Due to the rapid changes and developments in the current environment, ML algorithm
implementations allow systems to work adaptively and efficiently. In addition, even though
the development of 6G is still in its early stages, it has the potential to revolutionize the
way of communication. Emerging technologies such as terahertz (THz) communication,
m-MIMO, autonomous vehicles, and optical communication play a critical role in bringing
about that communications revolution.

In contrast to recent surveys of ML algorithms implementation for 6G networks,
our study delves into the role of ML algorithms in enhancing the efficiency of emerging
technologies to meet the demanding demands of the 6G network. Therefore, due to the
lack of surveys that focus on the application of ML algorithms in emerging technologies,
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this research bridges the gap in the current literature by explaining the technical intricacies
of the optimization process and highlighting the benefits that can be achieved through the
proper implementation of ML algorithms in emerging technologies to overcome various
issues in wireless communication and meet 6G network requirements. The list below
outlines the main contributions of our research:

• In the beginning, we provide comprehensive details of the visions and requirements
for 6G networks. We point out several critical requirements for 6G networks, includ-
ing zero-energy Internet of Things (IoT), high-speed connectivity and throughput,
URLLC, high reliability and availability, security, seamless integration, scalability, and
personalizing quality of experience (QoE).

• We provide an insight into the ML algorithm. It includes a brief explanation of the ML
algorithms with mathematical approaches. We categorize the different ML algorithms
as supervised and unsupervised learning, DL, and RL.

• We extensively analyze the role of ML-aided emerging technologies in empowering
this integration by optimizing several parameters in several scenarios of emerging tech-
nologies applications, such as IRS, UAV, AUV, NOMA, millimeter-wave (mmWave)
and THz communications, free space optics (FSO), visible light communication (VLC),
and mobile edge computing (MEC).

• We offer a comprehensive review of the implementation of ML-aided emerging tech-
nologies to meet the requirements of 6G communication networks. This study includes
several challenges found in 6G KPIs, such as throughput improvement, coverage ex-
tension, high reliability, low latency communication, energy efficiency, interconnection
of terrestrial and non-terrestrial technologies, sensing and communication, and se-
cure communication.

• In the end, we provide conclusions regarding the impact of ML algorithm implemen-
tation on emerging technologies in meeting 6G network requirements.

Table 1. List of works surveyed on the implementation of ML for 6G communication networks.

References Year Limitations and Contributions

[28] 2021 ML algorithm for application and infrastructure
layers in 6G network

[29] 2021 ML algorithm to meet ultra-low latency
communication requirements

[30] 2022 ML algorithm-aided m-MIMO communication for
5G network

[31] 2022 DL algorithm for semantic communication in
6G network

[32] 2023 ML algorithm for integrated sensing
and communication

[33] 2023 RL algorithm for RIS communication

Our work 2023 ML algorithms for emerging technologies to meet
the 6G network requirements

1.3. Organization of the Paper

In this paper, we cover various aspects of 6G networks, especially those related to
implementing emerging technologies. As shown in Figure 2, the rest of this paper is
structured as follows. A comprehensive discussion of the visions and requirements for 6G
networks is outlined in Section 2. Then, we provide an overview of the ML algorithms in
Section 3. Additionally, we furnish comprehensive details on the ML algorithms deployed
for emerging technologies in Section 4. Furthermore, we examine the potential challenges
that future wireless communication may encounter concerning the requirements for 6G
networks, as well as several insights for future research opportunities in Section 5. Finally,
Section 6 presents the conclusions of the paper.
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Figure 2. Organization of the paper.

2. 6G Visions and Requirements

In this section, an overview of the key elements and features expected in 6G networks
will be provided. The success of 5G in enhancing communication has raised high expecta-
tions for 6G. Additionally, the anticipated involvement of a massive number of users and
connectivity in the 6G network further contributes to these expectations. It was shown
by the KPIs of 6G networks that have already been announced, which was also discussed
at the ITU-R workshop on IMT. Several requirements for 6G networks need to be consid-
ered, including zero-energy IoT, high-speed connectivity and throughput, URLLC, high
reliability and availability, security, seamless integration, scalability, and personalizing QoE.

2.1. Zero-Energy IoT

Zero-energy IoT is a new technology that allows IoT devices to operate without batter-
ies. Instead, the energy necessary for communication is harvested from the surroundings.
This could be performed through various means, such as the energy from vibrations,
sunlight, temperature gradients, and radio waves that can be converted into electricity.
Implementing 6G networks using zero-energy IoT could give several benefits, such as
environmental impact reductions and lower costs. Zero-energy IoT devices do not require
batteries, making them significantly cheaper, and there will be no waste when they are
disposed of [34]. Furthermore, the use of zero-energy IoT will reduce the possibility of
failure due to its characteristics, which are not reliant on batteries. Other than that, 6G
networks are expected to be more energy efficient than 5G networks, making them more
suitable for zero-energy IoT devices.

Zero-energy IoT has the potential to revolutionize the IoT industry by making it
possible to deploy large numbers of low-cost, low-power devices that can be used to collect
data in a variety of environments [35,36]. This could lead to new applications in areas, such
as smart cities, Industry 4.0, and agriculture.

2.2. High-Speed Connectivity and Throughput

High-speed connectivity and throughput are two key features of 6G networks. 6G
is expected to offer peak data rates of up to 1 Tbps, 1000 times faster than 5G. There are
a number of technologies that are being considered for use in 6G networks to achieve
high-speed connectivity, including THz frequencies [37]. THz frequencies offer a much
wider bandwidth than those used by 5G networks, enabling peak data rates of up to 1 Tbps.
m-MIMO and beamforming could also be implemented to improve wireless channel
efficiency, SNR, and data rates. Other than that, a full duplex is another potential technology
that can double the data rate of the wireless channel by allowing a device to transmit and
receive data simultaneously.
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Therefore, implementing high-speed connectivity could give some benefits to the 6G
network, such as enabling a more immersive and interactive user experience [38]. High-
speed connectivity technologies could also help to improve efficiency by allowing them
to transfer data more quickly and easily [39]. Furthermore, it can help network security
improvement by making it more difficult for attackers to exploit vulnerabilities [40,41].

2.3. URLLC

URLLC is a type of communication that is characterized by its high reliability and
low latency. This means that URLLC is well-suited for applications that require real-time
communication and where even a small amount of data loss or delay can be critical. As
the development of 6G continues, more innovative technologies being used to achieve the
high reliability and low latency requirements of URLLC are expected. It is supported by
the advantages of URLLC for 6G networks. A URLLC could improve the safety of critical
infrastructure and systems by ensuring that they are able to communicate reliably and with
low latency [42]. It will also increase efficiency by enabling users to automate processes
and make better decisions in real-time.

Other than that, because it prioritizes reliability and latency, URLLC could use less power
and bandwidth than other communication technologies [43]. This means that URLLC net-
works are optimized to deliver small amounts of data quickly and reliably, even in challenging
conditions [44]. Those benefits of URLLC make it suitable for several advanced technologies,
such as AI-driven optimization, which will optimize the URLLC networks in case of predictive
analytics, resource allocation, security, and network troubleshooting.

2.4. High Reliability and Availability

High reliability and availability are also critical requirements for 6G networks. High
availability refers to the ability of a network to remain operational even in the event of
failure. This is essential for 6G networks, as they will be used to support a wide range
of critical applications. There are several factors that can contribute to high reliability
and availability in 6G networks, including redundancy, load balancing, failover, and
monitoring. Redundancy is the use of multiple components to perform the same function,
while failover is the ability of a network to switch to a backup component automatically.
That approach guarantees that if one component malfunctions, another component can
seamlessly assume control and sustain the intended functionality [45]. Moreover, load
balancing and monitoring help prevent any component from becoming overloaded or
causing a failure by distributing traffic across multiple components and monitoring the
network health tracking process [46].

By implementing those and other measures, 6G networks can be made highly reliable
and available [47]. It will ensure that they can continue to provide critical services even
in the event of failure [48]. Therefore, it could lead to reducing the likelihood of service
outages, increasing the uptime of 6G networks, providing longer periods of time, enhancing
security, and improving user experience by ensuring that users are able to access services
even if there is a failure [49,50].

2.5. Security

Security communication in 6G networks is a critical issue, as the network will be used
to transmit sensitive data. Secure communication could help improve the 6G network’s
security, privacy, trust, and user experience by preventing users’ data from being accessed
by unauthorized parties [51,52]. It will challenge the attackers to eavesdrop on or intercept
the communication, ensuring that communications between users and service providers
are secure and confidential, and reducing the risk of security incidents.

However, there are some security challenges that need to be addressed in 6G networks.
6G networks will have a larger attack surface than the previous generation of networks
because they will use a wider range of frequencies and technologies [53,54]. However, in
contrast, it will make the 6G network more complex than previous network generations,
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which makes it more difficult to secure them, as there will be more potential vulnerabilities
to exploit [55]. As 6G networks become more sophisticated, new attack vectors will emerge.
These could include attacks on the network infrastructure, the devices that connect to the
network, or the data that is transmitted over the network.

2.6. Seamless Integration

Due to the need for 6G networks to seamlessly integrate with existing 5G networks,
as well as other networks such as Wi-Fi and Ethernet, the seamless integration of 6G
networks is an essential requirement for 6G network success. This will allow users to
seamlessly switch between networks as they move around, and will also allow for the
efficient use of spectrum. Furthermore, the interconnection of terrestrial and non-terrestrial
technologies that are expected to be implemented in 6G networks increasingly makes
seamless integration even more necessary.

Terrestrial and non-terrestrial technologies are both being considered for use in 6G
networks. Terrestrial technologies, such as mmWave, m-MIMO, and beamforming, use the
Earth’s surface to transmit and receive signals. In contrast, non-terrestrial technologies,
such as satellites, use the atmosphere or space to do so [56]. Those technologies will allow
6G networks to provide global coverage, high data rates, and low latency [57]. Terrestrial
technologies can provide coverage in urban areas, while non-terrestrial technologies can
provide in rural areas and remote locations [58–60]. Non-terrestrial technologies could also
provide high data rates and low latency, which is essential for applications such as virtual
reality (VR) and augmented reality (AR) [61]. Other than that, by interconnecting terrestrial
and non-terrestrial networks, 6G networks can be made more secure [62]. This is because
non-terrestrial networks are less susceptible to physical attacks than terrestrial networks.
However, the interconnection of terrestrial and non-terrestrial technologies in 6G networks
is a complex challenge due to issues such as heterogeneity, mobility, and security.

2.7. Scalability

6G networks are expected to have better scalability for machine-to-machine (M2M)
connections than the previous networks. Scalability is the ability of a network to handle
an increasing number of users and devices without sacrificing performance. The 6G
networks will characterized by higher data rates, lower latency, and massive connectivity.
These features will make them well-suited for M2M applications. M2M refers to the
communication between devices without human intervention. In order to support the
growing number of M2M connections in 6G networks, scalability should be one of the
things to be considered.

As the number of M2M connections increases, the need for scalable networks will also
increase. Thus, 6G networks are well-positioned to meet this need due to massive devices
and connectivity adoption that will allow for a much larger number of M2M devices to be
connected to the network, which will be essential for applications such as IoT. Scalability will
also help to improve the user experience by ensuring that users have a reliable and consistent
connection to the network. This could enable new and innovative M2M applications in
wireless networks, such as smart cities, industrial automation, and transportation.

There are a number of factors that contribute to scalability in 6G networks, including
heterogeneous networks, network slicing, software-defined networking (SDN), hybrid
cloud, and AI [63–65]. Heterogeneous networks and network slicing could help to scale
the network as needed to support massive applications and services [66]. SDN will allow
for the network to be controlled and managed by the software, which makes the network
easier to adapt to changes in traffic demand [67,68]. A hybrid cloud is a deployment model
that combines the benefits of the public cloud and private cloud. The public cloud can
scale the network horizontally by adding more resources, while the private cloud can scale
the network vertically by adding more powerful resources [69,70]. Thus, combining them
could be useful for applications that experience sudden spikes in traffic and require a lot of
processing power [71]. A hybrid cloud allows organizations to have the flexibility to choose
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the right cloud environment and scale the network as needed, in order to provide high
performance for demanding applications [72]. Additionally, AI can be used to optimize the
performance of the network and to identify and mitigate potential problems. Therefore,
scalability is essential to support the growing demand for connectivity and the increasing
number of devices that will be connected to the 6G networks.

2.8. Personalizing QoE

The QoE in 6G wireless networks is expected to be significantly improved over previ-
ous generations. This is due to a number of factors mentioned in the subsection above, such
as higher data rates, lower latency, wider coverage, more reliability, and better security [73].
However, in order to enhance the overall efficiency of the network towards a specific
objective, it is imperative that QoE be personalized for each user or application on the net-
work, so that the network operators can ensure that resources are used efficiently. Besides
that, 6G networks are expected to support a wide range of users and applications with
different requirements for QoE. Thus, personalizing QoE can ensure that users are able to
optimize their experience and achieve the best possible experience in a timely and effective
manner [74]. Therefore, prioritizing the personalization of QoE is a critical component of
achieving success in the upcoming 6G network.

There are several promising technologies that can be implemented in order to improve
QoE, including network slicing, edge computing, ML, and AI technologies. AI and ML
can personalize network experiences by providing and analyzing specific data for user
behaviors and preferences [75,76]. Network slicing could help to personalize QoE by
dividing the network into multiple virtual networks, where each virtual network can be
customized to meet the specific needs of the users or applications [77]. In addition, edge
computing can be used to bring computing resources closer to the end users, which leads to
a better QoE [78,79]. Implementing radio access technologies, such as THz communication,
could also support more demanding applications and provide a better QoE for users, such
as higher data rates or lower latency [80,81]. Personalizing QoE would be very useful to
be implemented in specific cases, such as VR, AR, self-driving cars, Industrial IoT, and
smart cities.

Figure 3 shows 6G visions and requirements, including its potential technologies as
discussed in this subsection.

Figure 3. 6G visions and requirements.
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3. ML Algorithms

ML is a branch of artificial intelligence that uses mathematical algorithms to discern
trends and patterns within complex, multi-dimensional datasets. A key component of ML’s
effectiveness is its ability to learn from the data itself, which allows it to automatically adapt
over time and improve its performance. Due to its versatility, effectiveness, and ability
to address complex problems without requiring explicit programming instructions, ML
has been incorporated into a variety of applications, including image and speech recogni-
tion, medical diagnosis, recommendation systems, financial forecasting, and many others.
Therefore, ML has emerged as a transformative technology, revolutionizing industries and
paving the way for numerous advancements and innovations in modern society.

There are several techniques within the ML domain, including supervised learning,
unsupervised learning, DL, and RL. A supervised learning approach employs labeled
data to make accurate predictions. Conversely, unsupervised learning algorithms can
uncover patterns in unlabeled data. By utilizing neural networks (NN), DL methods extract
hierarchical representations from the data. In contrast, RL trains models to make sequential
decisions through interactions with the environment. These diverse approaches collectively
provide a comprehensive toolkit for addressing a wide range of challenges in both the
research and practical applications of ML.

3.1. Supervised Learning

In ML, supervised learning involves mapping input data to output data with high
accuracy. This approach requires labeled datasets to train the model, and is commonly
used for classification and regression problems. Some of the techniques used in supervised
learning include linear and logistic regressions, decision trees, random forests, gradient
boosting, and support vector machines (SVM).

3.1.1. Linear Regression

Linear regression is one of the most popular ML algorithms, due to its ability to predict
continuous variables easily. Linear regression works based on the relationship between the
target variable (dependent variable) and the predictor variable (independent variable). A
sloped straight line of regression shows the relationship between these variables. It can
be a negative linear relationship (the dependent variable decreases while the independent
increases) or a positive one (both variables increase). Thus, the mathematical representation
is written in Equation (1) [82].

y = bx + c (1)

where y represents the dependent variable, x represents the independent variable, b rep-
resents the slope of the line, and c represents the intercept of the line. Meanwhile, to
determine the accuracy of the predicted value, linear regression uses the mean squared
error (MSE) cost function, written in Equation (2).

MSE =
1
N

n

∑
i=1

(yi − (bx + c))2 (2)

where N represents the total number of observations.

3.1.2. Logistic Regression

The logistic regression model is widely used to predict binary outcomes based on
probabilities. In contrast to linear regression, which assumes a linear relationship between
predictors and the target variables, logistic regression uses a sigmoid or S-shaped logistic
function to reflect the non-linear relationship between predictors and the likelihood of a
specific result. The logistic regression can be given as follows:

f (x) =
1

1 + e−x (3)
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where f (x) represents the predicted probability of the binary outcome, x denotes the linear
combination of predictor variables and their corresponding coefficients, and e is the base of
the natural logarithm.

A threshold value is applied to the predicted probabilities in order to classify the binary
outcome. Traditionally, the threshold is set at 0.5, with predictions above 0.5 classified as
1 (positive outcome), and predictions below 0.5 classified as 0 (negative outcome). The
threshold can, however, be adjusted according to the specific requirements of the problem
to achieve the appropriate balance between sensitivity and specificity.

In logistic regression, the predicted outcome is obtained by comparing the predicted
probability to the threshold value. For example, if the predicted probability is greater than
a threshold, it is classified as 1, and if it is less than a threshold, it is classified as 0 [82].

3.1.3. Decision Tree

Decision trees are a popular supervised ML technique used for both classification and
regression problems. They provide an intuitive and interpretable approach by representing
data in a tree-like structure. In this structure, the root node represents the entire dataset, the
branches correspond to decision rules based on attribute values, and the leaves represent
the output or prediction [83].

Attribute selection is a critical step in constructing decision trees. The goal is to
determine the most informative attributes that effectively split the data to maximize pre-
dictive accuracy. Two commonly used attribute selection measures are the Gini index and
information gain.

The Gini index measures the impurity or disorder of a node in a decision tree. It
calculates the probability of a specific attribute being incorrectly classified. The Gini index
and information gain are mathematically represented in Equations (4) and (5), respectively.

Gini = 1−
n

∑
i=1

p2
i (4)

In f ormationGain = E(S)− [WE(s)] (5)

E(S) =
n

∑
i=1
−pi log2 pi (6)

where pi represents the probability that a feature is classified as class i, W represents the
weighted average, and E(S) and E(s) indicate the entropy of the main node and each
feature, respectively.

The mathematical formulations of the Gini index and information gain provide a solid
foundation for attribute selection in decision trees. These measures allow decision trees
to effectively partition the data and make informed decisions at each node, leading to
accurate predictions. Decision trees’ interpretability and ability to handle both categorical
and numerical data make them valuable tools for various applications in various domains.

3.1.4. Random Forest

Similar to the decision tree technique, the random forest technique is widely used for
classification and regression problems in ML. A random forest leverages the concept of
ensemble learning by combining multiple decision trees to make predictions. This approach
harnesses the collective wisdom of multiple models to enhance the accuracy and robustness
of predictions [83].

In a random forest, each decision tree is constructed independently, utilizing a subset
of the training data and a random selection of features. This sampling process, known
as bootstrap aggregating or “bagging”, introduces diversity among the trees. By aggre-
gating the predictions from all the individual trees, the random forest predicts the final
output based on the majority vote (for classification) or the average (for regression) of the
predictions generated by the constituent trees.
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The random forest algorithm offers several advantages over a single decision tree.
Firstly, it reduces the risk of overfitting, as the averaging of multiple models helps to
mitigate the effects of noise and biases in the training data. Additionally, by randomly
selecting a subset of features for each tree, a random forest introduces feature diversity and
reduces the influence of dominant features, leading to a more balanced and robust model.

The number of trees in a random forest is a crucial parameter that impacts the model’s
performance. As the number of trees increases, the random forest becomes more capable
of capturing complex patterns and relationships in the data. However, there is a trade-off
between predictive accuracy and computational efficiency, as the inclusion of more trees
typically results in longer computation times.

The random forest technique has been extensively applied in various domains, includ-
ing finance, healthcare, and image analysis. It has demonstrated its effectiveness in tackling
complex problems, such as fraud detection, disease diagnosis, and object recognition.

Ensemble learning is an ML approach that seeks better prediction by combining
multiple models. In general, there are four methods of ensemble learning which are
bagging, boosting, staking, and a mixture of experts.

• Bagging: a technique that generates multiple training data subsets and trains the
model on each subset, then combines the output;

• Boosting: a method that creates multiple models where each model is trained on a
modified version of the training dataset;

• Stacking: a method that generates bootstrapped data subsets and adds a meta-classifier
at the end of the process to rectify any incorrect behavior from the initial classifiers;

• Mixture of experts: a technique that utilizes a whole dataset for each classifier input.
A gating network is applied to produce weights for each initial classifier before going
through a linear combination.

3.1.5. Gradient Boosting

Gradient boosting is a supervised ML that takes the concept of boosting method of
ensemble learning. This algorithm is designed to solve both classification and regression
problems by combining multiple weak learners into strong learners.

In gradient boosting, the algorithm iteratively builds a sequence of weak learners,
where each learner is trained to correct the errors of the previous model’s predictions.
At each iteration i, the algorithm fits a decision tree to the negative gradient of the loss
function, aiming to minimize the residuals or errors of the previous model’s predictions.
Gradient boosting in mathematical representation is shown in Equation (7).

f (x) = ∑
i

αihi(x) (7)

where f (x), αi, and hi represent strong learners, the weight of the last iteration, and weak
learners, respectively.

Each weak learner is designed to capture a specific aspect or pattern in the data that the
previous models may have missed. By iterative training and combining these weak learners,
gradient boosting gradually improves its predictive performance, reducing the overall error or
loss. The choice of loss function depends on the problem at hand. For example, in classification
problems, the cross-entropy loss or exponential loss may be used, while in regression problems,
mean squared error or mean absolute error could be employed.

Gradient boosting has gained significant attention and popularity in various domains
due to its ability to handle complex problems and deliver high predictive accuracy. It has
proven successful in diverse applications such as click-through rate prediction, anomaly
detection, and recommendation systems.
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3.1.6. Support Vector Machines (SVMs)

SVMs are powerful and versatile ML algorithms that have gained considerable attention
in the field of supervised learning. They belong to the class of discriminative classifiers, and are
widely used for both classification and regression tasks [83]. SVMs have proven to be effective
in various domains, including image recognition, text categorization, and bioinformatics.

The fundamental concept behind SVMs is to find an optimal decision boundary or
hyperplane that maximally separates the data points belonging to different classes. The
key idea is to identify a decision boundary with the maximum margin, which represents
the distance between the boundary and the closest data points of each class. This property
makes SVMs robust and less susceptible to overfitting.

SVMs excel in scenarios where the data is not linearly separable in the original feature
space. To address this, SVMs employ a technique called the “kernel trick”, which implicitly
maps the input data into a higher-dimensional feature space where linear separation
becomes feasible [83,84]. This allows SVMs to capture complex, nonlinear relationships
between the input features and the target variable.

It is necessary to find the optimal hyperplane when training an SVM in order to
maximize the margin and minimize the classification error. It is common for convex
optimization techniques to be used in order to solve this optimization problem. An SVM’s
generalization performance is influenced by the support vectors, which are the data points
closest to the decision boundary.

Moreover, SVMs can handle both binary and multi-class classification problems. Bi-
nary classification involves separating data into two classes, while multi-class classification
extends the SVM framework to handle multiple classes by using strategies such as one-vs-
one or one-vs-rest.

There are several advantages to using SVMs, including their ability to handle high-
dimensional data and their robustness against overfitting. As well as providing a clear
sense of decision boundary, SVMs can also be used to gain insights into the classification
process, because they provide a clear sense of the decision boundary.

3.2. Unsupervised Learning

The Unsupervised Learning type of ML is trained using no pre-existing labels and
input data that is not classified, in order to discover patterns within the data. Thus, it does
not need external supervision to learn the data, and does not have a predefined output.

3.2.1. K-Means Clustering

The K-means algorithm, also known as the K-nearest neighbors algorithm, is a method
of clustering data instances based on pairwise distances between them. This algorithm is
aimed at minimizing the variance between clusters.

Initially, the algorithm partitions the input points into K initial sets. The sets can be
randomly assigned or determined by heuristic methods based on the data. The centroid
is the mean or center of its clusters, whose values are updated for each iteration i, where
the initial centroids of k clusters are chosen randomly. The objective function of K-means
clustering P is shown as follows:

(P)min
k

∑
j=1

n

∑
i=1

∥∥∥xj
i − cj

∥∥∥2
(8)

where
∥∥∥xj

i − cj

∥∥∥ represents the distance function.
The number of clusters is a critical parameter in K-means clustering. A large number

of clusters may improve data separation, but it can also lead to overfitting. The Elbow
method is a popular technique for determining the optimal number of clusters in K-means
clustering. The within-cluster sum of squares (WCSS) plotting can be used to determine
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the optimal number of clusters, where the optimal number of clusters is the point at which
the WCSS decreases sharply.

3.2.2. Hierarchical Clustering

Hierarchical clustering differs from K-means in that it allows the number of clusters
to change during each iteration. It can be divided into two categories: divisive clustering
and agglomerative clustering. The divisional clustering algorithm starts with all data
instances grouped into a single cluster, and then splits them in each iteration, resulting in
a hierarchical cluster structure. Agglomerative clustering, on the other hand, requires a
bottom-up approach, where each instance is considered a separate cluster and is merged
iteratively. Regardless of the method used, the resulting hierarchy will have N levels, where
N represents the total number of instances.

Hierarchical clustering, in contrast to other clustering methods, does not provide a
single definitive clustering solution for the data. Instead, it generates N − 1 clusterings,
leaving it up to the user to determine the most suitable one for their specific objectives. To
aid in this decision-making process, statistical heuristics are sometimes employed.

After the training phase, the resulting arrangement of clusters forms a hierarchical
structure, often visualized using a dendrogram. In the dendrogram, nodes represent clusters,
and the length of an edge connecting a cluster to its split reflects the dissimilarity between
the resulting split clusters. Dendrograms have contributed to the popularity of hierarchical
clustering, as they offer an easily interpretable visualization of the clustering structure.

It should be noted that selecting the appropriate clustering solution from the hierar-
chical structure requires careful consideration, and may involve domain knowledge and
expertise. The dendrograms serve as a valuable tool in understanding and interpreting the
clustering outcomes.

The use of hierarchical clustering and the interpretation of dendrograms have found
wide applications across various domains due to their ability to provide an intuitive and
accessible view of the clustering structure

3.2.3. Principal Component Analysis (PCA)

PCA is a popular unsupervised ML technique widely used for dimensionality reduc-
tion and data analysis. It aims to transform high-dimensional data into a lower-dimensional
space while retaining maximum information.

The key objective of PCA is to identify the underlying structure or patterns within
the data. It achieves this by splitting the data into a k-dimensional space based on the
principal components, which are the eigenvectors of the covariance matrix. Each principal
component captures a different aspect of the data’s variability.

The eigenvalues associated with the principal components represent the variances
explained by each component. Higher eigenvalues indicate a greater proportion of the total
variance explained by the corresponding principal component.

By leveraging PCA, analysts and researchers can gain insights into the essential
features and relationships within complex datasets while reducing the dimensionality.
This technique has found widespread application across various fields, including image
processing, genetics, and finance, among others.

3.3. Deep Learning (DL)

DL is a sub-branch of ML consisting of multiple NN layers that can be implemented
for data prediction, classification, or other data decision-making by learning its represen-
tations. The structure of DL consists of input, output, and hidden layers. Based on the
forward-propagation cycle, the neurons in every hidden layer calculate the weighted sum
of the input of the previous layer and forward it to the following layers using a nonlinear
activation function. DL converts the raw data into pairs of nonlinear input–output mapping
used for executing actions to achieve the objective. While learning the characteristics of the
raw data in high complexity, each layer of NN will transform to a higher level.
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3.3.1. Artificial Neural Networks (ANNs)

ANNs are fundamental neural network models, often referred to as feed-forward
neural networks. They comprise a group of interconnected neurons organized in layers,
where information propagates in a unidirectional manner, from the input layer through
intermediate hidden layers (if present) to the output layer [85].

In an ANN, the input data is processed only in the forward direction, with each neuron
receiving input from the previous layer and generating an output that becomes the input
for the subsequent layer. The hidden layers, which may or may not be included in an ANN
model, provide a means for the network to learn and capture complex representations of
the input data [83].

The absence of hidden layers in an ANN simplifies its operation and interpretation.
Without hidden layers, ANNs primarily function as linear models, with input data being
mapped directly to the output layer. This characteristic makes ANNs particularly suitable for
problems that involve linear relationships and straightforward decision-making processes.

The simplicity of ANNs, both in terms of their structure and interpretability, has
contributed to their widespread usage and understanding in various domains. Researchers
and practitioners often employ ANNs as a starting point to explore more complex neural
network architectures and advanced ML techniques.

3.3.2. Deep Neural Networks (DNNs)

DNNs represent the most widely implemented algorithm in DL. DNNs are character-
ized by their fully connected structure, where multiple layers are stacked, and each neuron
is connected to all neurons in the preceding and following layers. The architecture of a
DNN allows for the extraction of increasingly complex representations as information flows
through each layer. This hierarchical representation learning enables DNNs to capture
intricate patterns and relationships in the data [86].

Optimizing the learning performance of DNNs is crucial, and a key consideration
is the weight of the model. The weights determine the strength of connections between
neurons, and play a vital role in the network’s ability to accurately learn from the data.
Careful adjustment of the weights is necessary to prevent issues such as vanishing or
exploding gradients, which can hinder the training process [85].

Efficient weight initialization, regularization techniques, and appropriate optimization
algorithms are employed to ensure effective weight management in DNNs. These practices
contribute to enhancing the learning capacity and overall performance of DNN models.

Due to their ability to handle complex data and learn intricate representations, DNNs
have achieved remarkable success in various domains, including computer vision, natural
language processing (NLP), and speech recognition. Their flexibility and versatility have
made DNNs a powerful tool for solving challenging problems and advancing the field
of DL.

3.3.3. Convolutional Neural Networks (CNNs)

CNN architecture focuses on identifying similarities within 2D feature vectors. Typ-
ically, CNN models start with convolutional layers, followed by nonlinear activation
functions, pooling layers, and additional convolutional layers. The fundamental concept
underlying CNN architecture is local connection and weight sharing.

Unlike DNNs that employ a fully connected structure, a CNN’s convolutional layers
have each unit connected to a local patch in the preceding layer, and all connections within
the patch share the same weight matrix. This weight-sharing property significantly reduces
the number of learnable parameters in CNNs [83].

By leveraging local connections and weight sharing, CNNs excel in capturing local
patterns and spatial relationships in data. This makes them highly effective in tasks such as
image recognition and computer vision, where identifying local features is crucial.
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The architecture of CNNs enables them to automatically learn hierarchical representa-
tions from raw data, starting from low-level features and progressively extracting more
complex and abstract features. This hierarchical feature learning contributes to CNNs’
ability to achieve impressive performance in various domains.

3.3.4. Recurrent Neural Networks (RNNs)

RNNs differ from DNNs and CNNs in that they process input sequences iteratively
and have the ability to retain information from the past, thus avoiding memory loss. The
architecture of an RNN can vary depending on the specific application it is designed for.

In an RNN, the hidden layers share parameters across different time steps, similar to
the weight-sharing technique used in CNNs. This shared structure reduces the model’s
complexity and helps prevent overfitting. However, training RNNs using backpropagation
through time can present challenges. The backpropagation algorithm, which leverages a
stochastic gradient descent, unfolds in time and can impede the smooth flow of information,
leading to difficulties in training.

To address the issues of vanishing or exploding gradients, and to enhance the mem-
ory capabilities of traditional RNNs, Long Short-Term Memory (LSTM) networks were
introduced as a robust alternative. LSTM networks incorporate specialized memory cells
that enable them to selectively retain and forget information, making them more effective
in capturing long-range dependencies in sequential data. LSTM networks have gained
significant popularity due to their ability to overcome the limitations of traditional RNNs
and provide improved memory and learning capabilities.

The utilization of RNNs and LSTM networks has led to significant advancements in
various domains, including NLP, speech recognition, and time series analysis. Their ability
to model sequential data and capture temporal dependencies makes them well-suited for
tasks involving dynamic patterns and contextual information.

3.4. Reinforcement Learning (RL)

In recent years, ML has played an important role by allowing machines to make deci-
sions automatically based on their datasets. RL is an advancement in ML, specifically DL.
As derivatives of ML, RL algorithms allow machines to interact with a dynamic environ-
ment while considering their experience dataset to make the most accurate decision [87–89].
Based on the Markov decision process (MDP) formula, the RL algorithm consists of three
stages: state, action, and reward.

• State: A set of environment’s characteristics (S) received by the agent provided by the
environment. s1 represents the initial state and the environment for each time step t
indicated by st ∈ S;

• Action: a set of actions taken by the agent (A) in response to the characteristics of the
environment, while next state st+1 indicates the latest environmental characteristics
sent to the agent each time the agent executes an action at ∈ A in a time instant t;

• Reward: A set of feedback provided by the environment based on the action given
by the agent. When the result obtained are better than those previously achieved, the
environment will give a reward rt to the agent for every time instant t. In contrast, a
punishment will be given when the results obtained are worse than the previous ones;

• Q-Value function: a state–action value function Q(s, a) received by the agent that
indicates the level of action at we took for each given state st.

RL methodology can be classified as policy-based or value-based, based on the ap-
proach taken to decide what action to take [90]. The value-based method considers the
optimal Q-value Q∗(s, a), while the policy-based considers the optimal policy value or
transition probability π∗(s, a).
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The combination of DNN and RLs is beneficial in solving intricate problems. The
DNN could act as a Q-value estimator Q(s, a) in the value-based Deep RL (DRL), as in
Equation (5). In addition, it could also perform as a gradient estimator Oθ J(θ) to estimate
the probability value of J(θ) in the policy-based method, as shown in Equation (6).

Q(s, a; θ) ≈ Q(s, a) (9)

Oθ J(θ) ≈ ∑
t≥0

r(τ)Oθ log πθ(at, st) (10)

where θ represents the weight of the DNN, r(τ) indicates the reward for each trajectory
(path), and log πθ(at, st) indicates the probability of the performed action in each state.
Linear in its development, a study has recently been carried out on the application of DRLs
in various branches of technology, one of which is emerging technology.

Due to its characteristic that works based on each environment, RL is useful in a
constantly changing environment and suitable to handle very large and complex data at
the cost of the computation. In contrast, it will be unavailing for simple problems because
it will be hard to achieve the maximum reward. Furthermore, RL is highly dependent on
their reward function quality, and it is difficult to debug and interpret RL implementation.

Based on the discussion in this section, Table 2 shows the comparison of each ML
algorithm in terms of their concept, advantages, and limitations for their implementation.

Table 2. Summary of the ML techniques.

Category Algorithms Concept Advantages Limitations

Supervised
learning

Linear Regression
Predicts continuous

output based on
input features

Easy to implement
Assumes a linear

relationship between
features and target

Logistic Regression
Predicts binary or

multi-class outcomes
using logistic function

Easy to implement and
interpretable results

Assumes linear
decision boundaries

Decision Trees
Creates a tree-like

structure to
make predictions

Intuitive and easy to
interpret, faster

computation, and capture
non-linear relationships

Prone to overfitting

Random Forest
Ensemble of decision

trees to improve
prediction accuracy

Reduces overfitting
compared to individual

trees, and effectively
handling noisy and

missing data

Computationally
expensive during training
and slower computation

Gradient Boosting
Boosts weak learners

(usually decision
trees) sequentially

High prediction accuracy Sensitive to noisy data
and outliers

Support Vector Machine

Finds the optimal
hyperplane for

binary/multi-class
classification

Effective in
high-dimensional spaces

Requires proper selection
of kernel functions

Unsupervised
learning

K-Means Clustering
grouping data into

clusters based
on similarities

Simple and easy to
understand

Requires pre-determined
number of clusters (K)

Hierarchical Clustering
Creates a tree-like

hierarchy of clusters based
on data similarities

No need to specify the
number of

clusters beforehand

Sensitive to noise
and outliers

Principal Component
Analysis

Reduces dimensionality
while preserving variance

Efficient for large
feature spaces

Information loss due to
dimensionality reduction
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Table 2. Cont.

Category Algorithms Concept Advantages Limitations

DL

ANN
A set of interconnected
artificial neurons that

process input data

Suitable for complex tasks
like image recognition

Prone to overfitting,
especially with
small datasets

DNN
Fully connected NN with

more than one
hidden layer

Can learn complex
features and patterns

Longer training time,
especially for

deep architectures

CNN

Multi-layer NNs with
convolution layer
connected to the
previous layer

Highly effective in image
and video analysis

Requires significant
computational resources

for training

RNN
Multi-layer NNs

trained using
back-propagation method

Can handle sequential
data and suitable for
time-series and NLP

Can suffer from vanishing
gradient problems,

computationally
expensive to train, and
difficult to parallelize

the computation

RL

Trains agents to make
decisions in an
environment to

maximize rewards

Useful in sequential
decision-making tasks,

suitable for super complex
data, maximizes behavior,

provides a decent
minimization of

performance standards

Not preferable for a simple
problem, high sample

complexity and training
time, highly depend on

the reward function
quality, and difficult to

debug and interpret

4. ML Algorithm Implementation for Emerging Technologies in a 6G Network
4.1. Intelligent Reflecting Surfaces (IRSs)

IRS or RIS is a technology that has been intensively discussed by researchers to support
6G communication networks because of its ability to improve signal quality by working
passively and having low installation and maintenance costs. The IRS is an artificial two-
dimensional planar metasurface that has reconfigurable features implemented through
electronic circuits. IRS helps transmit data and avoid NLOS propagation in wireless
communications by reflecting electromagnetic waves (EMs) to the desired receiver to
enhance the transmission quality of service (QoS) significantly. Several things in IRS-aided
communication need to be considered to support the QoS obtained, such as channel state
information (CSI), phase shift configuration, beamforming, power and spectral efficiency,
and physical layer security. These issues can be overcome by optimizing using ML. Table 3
provides a concise summary of the studies that are discussed in this subsection.

The study in [91] applied two DNNs to find the relationship between the pilot signals,
the optimal phase shift, and the downlink transmit beamforming vector. The proposed
system was shown to reduce pilot overhead while still providing performance comparable
to communication with perfect CSI. Whereas in [92], the optimum IRS phase shift and
overhead reduction are obtained by implementing the CNN architecture. The system can
converge to near-optimal data rates using less than 2% of the receiver locations. Appli-
cations of ML to maximize spectral efficiency have been applied in [93–95]. The system
proposed by authors of [93] achieved almost the same performance as the alternative opti-
mization method with less computational complexity by using a learning phase-shift NN
(LSPNet) that is trained using an unsupervised learning method. Other than that, in [94,95],
the system improved spectral and power efficiencies by applying a DL-based framework
in RIS-assisted MIMO and MIMO–NOMA communication systems with STAR-RIS, respec-
tively. The approach suggested in [94] can configure real-time phase shifts, improve rate
performance in low signal-to-noise ratios (SNRs), and provide higher energy efficiency
(EE) than the optimal beamforming solution. In comparison, the DL-based framework
in [95] provided the low complexity iterative algorithm with guaranteed convergence at a
relatively optimal level, and predicted the optimal user’s power allocation and phase shift
configuration at STAR-RIS.
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Table 3. Summary of the applications of ML for IRS-aided communications.

References ML Model Architecture Contributions Remarks

[91] Two full-layer DNNs Optimization of phase matrix
and beamforming vector

Reduced the pilot overhead
and provided performance

very close to communication
with perfect CSI

[92] CNN architecture IRS phase shift optimization
and overhead reduction

Converged to near-optimal
data rates using less than 2%

of receiver’s location

[93] LPSNet Spectral efficiency

Achieved almost the same
performance as the alternating
optimization method with less

computational complexity

[94] Three full-layer DNNs Spectral and
power efficiencies

Could configure real-time
phase shift while improved

rate performance in low SNRs
and provided higher EE

[95] DL-based framework Spectral and
power efficiencies

Provided the low complexity
iterative algorithm with

guaranteed convergence at a
relatively optimal level

[96] TD3 algorithm Transmit power efficiency Reduced the transmit power
with lower computation delay

[97] PDS and PER schemes The learning convergence rate
and efficiency

Enhanced the secrecy rate and
the satisfied QoS probability

[98] MA-DRL Optimization of secrecy rate
and throughput

Significantly improved the
secrecy rate and throughput

Another study focused on minimizing transmit power in an RIS-assisted MISO-OFDM
system by implementing a DRL-based framework, which is a twin delay deep deterministic
policy gradient (TD3) algorithm [96]. The system was shown to be effective in reducing
transmit power, which is almost the same as the lower bound obtained by the manifold
optimization algorithm, but with a much shorter computation time. Another crucial issue
for 6G communication networks is privacy and security. Several works have explored
the application of ML in IRS-aided PLS communications. In [97], the authors aimed to
enhance the efficiency and the learning convergence rate by implementing post-decision
state (PDS) and prioritized experience replay (PER) schemes. The result outperformed
the deep q-learning (DQN) method by increasing the system’s secrecy rate as well as
the probability of satisfied QoS, while the authors of [98] were optimizing the average
secrecy rate and throughput in IRS-assisted secure buffer-aided cooperative networks. The
proposed multi-agent DRL (MA-DRL) method significantly improved those two parameters
over the max-ratio algorithm.

4.2. Unmanned Aerial Vehicles (UAVs)

UAVs are one of the most widely applied unmanned vehicles, and have the potential
for future communications. UAV-aided communications have become increasingly popular
for communications applications in recent years due to several advantages they offer,
such as mobility, high maneuverability, low-cost maintenance, and easy deployment [99].
Their ability to hover and move around an area allows communication to occur in an
infrastructure lacking due to NLOS. By optimizing various parameters, such as the UAV
trajectory, UAV placement, bandwidth, and power allocation, the performance of a UAV-
assisted communication network can be significantly improved. This can lead to a number
of benefits, such as increased coverage, improved QoS, and reduced costs.



Sensors 2023, 23, 7709 19 of 40

In [100], the authors developed an RL approach to allow a UAV to traverse a given
trajectory autonomously. The proposed system gave fewer localization errors compared
to other methods mentioned in the study by considering the fixed amount of UAV en-
ergy consumption, path length, flying time, and velocity, while in [101], the authors have
implemented a MA q-learning algorithm, ESN algorithm, for placement optimization,
trajectory acquisition, and power control. The proposed ESN algorithm predicted the
user’s movement at high accuracy and provided a high quality of maintaining the tra-
jectory and power control. Another study focused on UAV path planning and obstacle
avoidance by implementing a DQN-based algorithm [102]. The proposed modified q-
learning showed reducing 50% in computation time and 30% of the path length than the
state–action–reward–state–action (SARSA) algorithm. Another algorithm, called DL-based
energy optimization (DEO), has been proposed to optimize energy for edge devices in [103].
It is used to dynamically adjust the emission energy of the edge device so that the received
power of the UAV is equal to the receiver’s sensitivity. They used DL to predict the UAV lo-
cation information. The results showed that the DEO algorithm achieved a weighted mean
absolute percentage error (WMAPE) of less than 2% under the effect of a communication
delay of less than 1 s.

In [104], the authors were concerned about the required energy in a moving UAV. They
used the mean-fielded game (MMFG) method to obtain the optimal trajectory and proposed
the mean-field trust region policy optimization (MFTRPO) algorithm, which proved to be
effective in robustness and superiority in energy efficiency. Furthermore, ML can be used
for UAV-aided communication for resource allocation and handover management. The
authors of [105] presented an algorithm for handovers and radio resources management
(H-RRM) in UAV communications. They used DQN to make decisions about the way to
allocate resources and time to perform handovers. The proposed system was shown to
result in fewer handovers, less interference, and less delay experienced by terrestrial users.
This was achieved by setting appropriate coefficients for delay, interference, and handover
in the reward function. In addition, concerning the energy efficiency of the moving UAV,
a study proposed a system for mobile charging scheduling in distributed multi-drone
networks [106]. They proposed a DL-based method to troubleshoot possible problems in
distributed multi-drone networks effectively. The proposed system reduced the number of
false bids made by drones by increasing the payment for those bids. That method resulted
in a revenue-optimal auction, even without bid distribution among the drones. Table 4
provides a concise summary of the studies discussed in this subsection.

Table 4. Summary of the applications of ML for UAV-aided communication.

References ML Model Architecture Contributions Remarks

[100] RL approach UAV trajectory

Superiority in terms of
average localization error by
considering the fixed amount
of UAV energy consumption,

path length, flying time,
and velocity

[101] ESN algorithm
Placement optimization,

trajectory acquisition, and
power-control

Predicted the user’s
movement at high accuracy

and provided a high quality of
maintaining the trajectory and

power control

[102] DQN-based algorithm UAV path planning and
obstacle avoidance

Reduction of 50% of
computation time and 30% of

the path length
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Table 4. Cont.

References ML Model Architecture Contributions Remarks

[103] DEO algorithm Energy optimization

Achieved WMAPE in less
than 2% under the effect of a
communication delay of less

than 1 s

[104] MFTRPO algorithm Optimal UAV trajectory
Effective in robustness and

superiority in
energy efficiency

[105] ML-powered H-RRM scheme Resource allocation and
handover management

Outperformed the number of
handovers, interference

incurred, and delay
experienced by setting
coefficients for delay,

interference, and handover

[106] Two full layer DNNs Energy efficiency of the
moving UAV

Provided fewer false bids
made by drones and

revenue-optimal auction
without bid distribution

among the drones

4.3. Autonomous Underwater Vehicles (AUVs)

Underwater communication is receiving a lot of attention from researchers lately. The
increasing need for sensor applications and cellular communication through this environ-
ment encourages the importance of optimizing underwater communications. However,
a crucial issue that needs to be considered is that the underwater environment can only
occur by using optical or EM waves, which only occur in short-distance communication.
Other than that, the water flow, movement of living things, uneven surfaces, and oceanic
turbulence can cause a high level of multipath fading, reducing the quality of the trans-
mitted signal [107]. An AUV is expected to serve the deployed nodes of the Internet of
Underwater Things (IoUwT) by moving from one node to another to provide a better QoS,
which resembles traditional mobile relaying [108]. AUV application can also be integrated
with UAVs or IRS, where an AUV is well suited for carrying RIS to optimize the transmitted
signals. Therefore, the AUV trajectory and limited energy are essential things to consider.
Thus, further research is required to realize this strategy to support underwater wireless
communication networks fully.

In [109], DRL has been proposed to find an AUV’s optimal trajectory tracking con-
trol. The proposed system has proven robust and effective in different kinds of trajectory
tracking, while in [110], the authors proposed the asynchronous multithreading proximal
policy optimization-based path planning (AMPPO-PP) and trajectory tracking (AMPPO-
TT) algorithms for autonomous planning, tracking, and emergency obstacle avoidance in
underwater vehicles. AMPPO-PP proved effective in planning paths around underwater
communication by outperforming the classical path-planning algorithm and performing
at the same level as the advanced sampling-based path-planning method. In contrast,
AMPPO-TT is a trajectory-tracking algorithm that provides good tracking performance in
three-dimensional coastline detection scenarios. Another study applied RL-based methods
to control the underwater vehicle by redesigning the cost function, which allowed the
vehicle to avoid obstacles smoothly [111]. The proposed system proved the effectiveness of
completing the tracking task by avoiding obstacles. In comparison, the authors of [112] pro-
posed an RNN with a convolution (CRNN) algorithm to overcome the obstacle avoidance
issues. The CRNN solved the obstacle avoidance planning problem with fewer parameters
and shorter computation times, leading to shorter paths and improved energy efficiency.
Table 5 provides a concise summary of the studies discussed in this subsection.
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Table 5. Summary of the applications of ML for AUV-aided communication.

References ML Model Architecture Contributions Remarks

[109] DRL algorithm AUV optimal trajectory
Robust and effective in

different kinds of
trajectory tracking

[110] AMPPO-PP and
AMPPO-TT algorithms

Autonomous planning,
tracking, and emergency

obstacle avoidance

Outperformed the classical
path-planning algorithm and

advanced sampling-based
path-planning algorithm

[111] RL-based methods Tracking and
obstacle avoidance

Effective in completing the
tracking task by

avoiding obstacles

[112] CRNN algorithm Obstacle avoidance

Avoided obstacles with fewer
parameters and shorter

computation times, provided
shorter paths, and improved

energy efficiency

4.4. Non-Orthogonal Multiple Access (NOMA)

The rapidly growing need for massive connectivity and the growth predictions of the
use of emerging technologies on the 6G network makes spectrum efficiency a crucial issue
that needs to be solved. NOMA is a promising and suitable technique to overcome that
issue, due to its ability to provide highly efficient spectrum multiple access in a 6G wireless
network [113]. In NOMA, several clusters are formed by a wireless terminal to transmit
data over the same frequency channel. In addition, to prevent interference between clusters,
each cluster implemented successive interference cancellation (SIC) [114].

In [115], unsupervised and supervised learning is implemented for spectrum sensing
in NOMA communication. The proposed system achieved optimal power allocation
between two primary users and accurate and effective spectrum sensing, while in [116],
the authors focused on implementing LSTM-based DL models for signal detection. The
results showed that the DL approach performed better than the SIC receiver, and was more
robust than the limited radio resources. Other than that, ML can also be applied to NOMA
communication to improve energy efficiency. In comparison, an energy-efficient ML power
optimization algorithm was developed to meet QoS constraints in [117]. The proposed
system significantly minimized energy consumption in a network while maintaining
low complexity using an energy-efficient co-training-based semi-supervised learning (EE-
CSL) algorithm. Due to its high spectral efficiency, the proposed system applied in the
MIMO network achieved a more significant sum rate than conventional MIMO orthogonal
multiple access, while in [118], the authors implemented a Double DQN (DDQL)-based RL
to optimize the transmission power. The proposed DDQL algorithm reached the desired
target value in 91% of the test cases. Compared to the sequential least squares programming
algorithm (SLSQP) and trust-region constrained (TCONS) algorithms, the proposed DDQL
algorithm significantly provided better results. Another study implemented a NOMA-
based federated learning (DREAM-FL) system for client selection [119]. DREAM-FL proved
to select more qualified clients with higher model accuracy than frequency division multiple
access (FDMA)- and time division multiple access (TDMA)-based solutions, while in [120],
the DL-based algorithm was implemented in the NOMA system for channel estimation.
The LSTM-based DL algorithm is utilized to predict the channel coefficients. The bit-error-
rate (BER), outage probability, sum rate, and individual capacity have verified that the
proposed system provided reliable performance, even when cell capacity is increased.
Table 6 provides a concise summary of the studies discussed in this subsection.
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Table 6. Summary of the applications of ML for NOMA communications.

References ML Model Architecture Contributions Remarks

[115] Combined unsupervised and
supervised learning Spectrum sensing

Provided an accurate and
effective spectrum sensing
while maintaining optimal

power allocation

[116] LSTM-based DL models Signal detection
Outperformed the (SIC)
receiver and the limited

radio resources

[117] EE-CSL algorithm Power optimization

Significantly minimized
energy consumption for low
computational complexity

and achieved more significant
sum rate than conventional

MIMO orthogonal
multiple access

[118] DDQL-based RL algorithm Transmission power
optimization

Converged successfully in
91% of the test cases with a
value better than the target,
and performed better than

SLSQP and
TCONS algorithms

[119] DREAM-FL scheme Client selection

Provided more qualified
clients with high model

accuracy than FDMA- and
TDMA-based solutions

[120] LSTM-based DL algorithm Channel coefficients
prediction

Provided reliable performance
even when cell capacity

is increased

4.5. Millimeter-Wave and Terahertz Communications

By focusing on enhancing system performance, especially for throughput, 6G net-
works are expected to take advantage of the high-spread multi-band spectrum by allowing
hundreds of gigabits per second to terabits per second links [121]. Other than that, for
the sake of seamless connectivity of emerging technologies-based communication, higher
spectrum frequency is something that can be considered to achieve fast and reliable com-
munication, such as the combined use of mmWave band (30–300 GHz) and THz band
(0.1–10 THz) [122]. However, these high-frequency communications will suffer from dis-
tance limitation, energy efficiency, physical layer improvement, and intense phase noise.
The increasing frequency will result in higher spreading loss and stronger multipath fading
losses. In addition, transceivers that can transmit at high power in the THz band are not yet
available, which means that THz communication has lower transmit power than mmWave
communication systems. Traditional transmission techniques are difficult to apply di-
rectly due to their inability to overcome intense phase noise caused by radio-frequency
impairments in higher frequencies [123,124].

Several studies have proposed their schemes and algorithms to overcome some of the
problems in mmWave wireless communication. In [125], ML is used for low-complexity
beam selection in mmWave MIMO communication by implementing a random forest
classification (RFC) algorithm. The proposed system achieved the maximum uplink sum
rate, which is similar to the sub-optimization method and significantly better than the
SVM-based method. Furthermore, it converged faster than SVM-based methods, and nearly
reached the optimal performance. The RFC-based method could especially reduce the
complexity of the system by 99.8% with massive users, while in [126], the authors proposed
a supervised ML algorithm to improve the blind handover success rate in sub-6 GHz LTE
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and mmWave bands. The proposed system predicts the success or failure of the handover
using previous calculations. The results showed that the proposed system improved the
inter-radio access technology (inter-RAT) handover success rate and no longer kept the
session in the optimal band for an extended time. Therefore, it likely has a high chance
of supporting the self-organizing network regarding high availability, bandwidth, low
latency, and reducing degraded service in a handover time. In [127], the authors applied
three unsupervised learning algorithms to cluster secondary users without knowing the
number of clusters and degrading the primary user’s performance. Three unsupervised
ML algorithms, namely K-means, agglomerative hierarchical clustering, and density-based
spatial clustering of applications with noise (DBSCAN), were used in the THz-NOMA
network. Based on the sum data rates results, the agglomerative hierarchical clustering
outperformed the other two algorithms as the number of secondary users increased. Table 7
provides a concise summary of the studies discussed in this subsection.

Table 7. Summary of the applications of ML for mmWave and THz communications.

References ML Model Architecture Contributions Remarks

[125] RFC algorithm Low-complexity
beam selection

Achieved better the maximum
uplink sum rate, converged

faster than the existing
methods, and saved 99.8% of

the complexity with for
massive users

[126] Supervised ML algorithm Blind handover success
rate prediction

Improved the inter-RAT
handover success rate, kept
the session in the optimal

band, had a high chance of
supporting the

self-organizing network

[127] Unsupervised ML-based user
clustering algorithms

Secondary user clusterization
and data rates improvement

The agglomerative
hierarchical clustering

outperformed the K-means
and DBSCAN algorithms as

the number of secondary
users increased

4.6. Free Space Optics (FSO)

Optical wireless communication (OWC) techniques can be an alternative to the RF spec-
trum, especially on 6G networks and in the future, due to their available bandwidth [128].
FSO communication is a type of communication that uses light to transmit data through
free space rather than through wired cables. Therefore, FSO is more versatile and flexible
than traditional wired communication. However, the signal will experience much inter-
ference, which can reduce the quality of the transmitted signal, such as multipath fading,
atmosphere turbulence, and others. A concise summary of the studies discussed in this
subsection is described in Table 8.

The authors of [129] focused on avoiding the effects of amplified spontaneous emission
(ASE) noise, turbulence, and pointing errors by predicting the FSO channel for different
transmission speeds using CNN and SVM. The results showed that CNN outperformed
the SVM in most cases, and similar results for the rest. The CNN regressor could accurately
predict channels with ASE noise regardless of the transmission speed. However, the
turbulence and pointing error prediction was more accurate for low-speed than high-speed
transmission, while in [130], the authors focused on atmospheric turbulence problems in
the FSO-MIMO communication system. The dense CNN (DCNN) algorithm, which is
DNN with a convolutional layer, was implemented in the proposed system’s transmitter,
receiver, and transceiver sides. The results showed that the proposed DL-based methods
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performed better than ML-based methods in the case of optimum performance and lower
complexity. In comparison, the DL-based detector with 16 modulation orders is two times
faster, three times faster for 64 modulation orders, and 7.5 times faster for 256 modulation
orders than the ML-based detector.

Table 8. Summary of the applications of ML for FSO communications.

References ML Model Architecture Contributions Remarks

[129] CNN and SVM algorithms Channel prediction

CNN outperformed the SVM,
predicted channels with ASE
noise well, and provided an

accurate prediction for
turbulence and pointing error

in low-speed transmission

[130] DCNN algorithm Atmospheric turbulence
problems detection

Achieved the optimum
performance with low

complexity, 2×, 3×, and 7.5×
faster for 16, 64,

and 256 modulation
orders, respectively

[131] Unsupervised-based
technique

Estimated the number of
concurrently transmitting

users sharing time,
bandwidth, and
space resources

Achieved over 92% accuracy
in differentiating

simultaneously transmitting
users, even in moderate
atmospheric turbulence

[132] Supervised learning-based
ML method

Transmission quality
estimation

SVM achieved the highest
accuracy of 92%

[133] Combined GNN and
CNN schemes

Transmission quality
estimation

Efficiently received improved
signals that had deteriorated

and showed better
classification accuracy

In addition, in [131], the authors worked on a cognitive FSO communication net-
work that offers some tantalizing advantages. For example, it can overcome the system
complexity caused by the heterogeneity of supported services, applications, devices, and
transmission technologies, while guaranteeing a high data rate and bandwidth. They
developed an unsupervised-learning-based method to identify the number of concurrently
transmitting users sharing time. The system could also be used to allocate bandwidth,
time, and space resources more efficiently. Based on the empirical model, the number of
communicating users was considered accurate when validated from four users, considering
the number of samples and receiver sampling rate. The result achieved over 92% accuracy
in differentiating simultaneously transmitting users, even in conditions of moderate at-
mospheric turbulence. Another study applied a supervised-learning-based ML method
to estimate the transmission quality for multi-user FSO communication links [132]. They
compared the performance of SVM, RF, K-NN, and ANN to evaluate the proposed system.
The results confirmed that SVM achieved the highest accuracy by 92%, followed by RF
and K-NN with comparable results, and ANN at the lowest with 84.2%, while in [133],
the combination of generative neural networks (GNN) and CNN considered the effects of
turbulent light propagation, attenuation, and receiver noise detectors. Those factors could
degrade the quality of the received state, increase cross-talk, and decrease the accuracy of
symbol classification. The results showed that the proposed system efficiently received
improved signals that had deteriorated from those problems. It also showed improvements
in CNN classification accuracy while implementing GNN.
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4.7. Visible Light Communication (VLC)

VLC is one of the other types of OWC communications, which uses light-emitting
diodes (LEDs) to transmit signals to receivers [134]. VLC has many advantages, including
rich spectrum resources between 400 and 800 THz, robustness against interference, high
confidentiality, affordable implementation costs, and has become the best method to achieve
high speed and long-distance signals in underwater wireless communications [135,136]. A
concise summary of the studies discussed in this subsection is described in Table 9.

Table 9. Summary of the applications of ML for VLC communications.

References ML Model Architecture Contributions Remarks

[137] Deep RL algorithm Beamforming control
Significantly increased the secrecy rate,

decreased the BER, and outperformed the
zero-forcing and other existing algorithms

[138] GRUs–CNN
prediction algorithm

UAV deployment optimization,
user allocation, and

energy efficiency

Solved the non-convex optimization problem
in low complexity and reduced total transmit

power by up to 68.9%

[139]
Model-driven
DL-nonlinear

post-equalizer scheme

Channel estimation and
symbol detection

Successfully proved the robustness and
generalization ability, compensated for overall

channel impairment, and demodulated
distorted symbols to bit streams

[140] ANN-based AE structure Low-frequency noise
effect prediction

Achieved speeds up to 0.325 Gbps faster than
another scheme, and robustness to bias,

amplitude, and bitrate changes

[141] LSTM-AE scheme
Sequential data input handling

and sequential data
output prediction

Significantly reduced the PAPR while
maintaining BER

A study aimed to prevent eavesdropping in a MISO-VLC system by developing
a secure and efficient way using the Deep RL algorithm [137]. The system proposed
two ways to control beamforming, namely RL-based MISO VLC and DRL-based MISO
VLC beamforming control schemes. Those two schemes were used to derive the optimal
beamforming policy and to efficiently and effectively deal with the high-dimensional and
continuous action and state spaces. The results showed that the proposed system greatly
increases the secrecy rate, decreases BER, and outperforms the zero-forcing beamforming
than other existing algorithms, while in [138], gated recurrent units (GRUs) with a CNN
prediction algorithm were proposed to jointly optimize UAV deployment, user allocation,
and energy efficiency of VLC-enabled UAV-based networks. The combined algorithms
could model the long-term historical illumination distribution and predict the future
illumination distribution, which could solve the non-convex optimization problem in low
complexity. The proposed system showed a great result by reducing the total transmit
power by up to 68.9%, by enabling UAVs to determine their deployment and user allocation.
Another study proposed a model-driven DL-nonlinear post-equalizer scheme to cope with
severe channel impairments of OFDM communication [139]. The authors showed how to
estimate the channel and detect symbols that worked in a VLC system. The result showed
that the overall channel impairment of intensity modulation and direct detection was
effectively compensated, and the distorted symbols were efficiently demodulated to the bit
stream. Furthermore, the VLC systems demonstrated that the proposed scheme is robust
and generalizable, which can work effectively in various conditions.

The authors of [140] focused on the effect of low-frequency noise on the signal quality
of LED-based VLC communication systems. The problem was overcome by mapping the
LED-VLC system as an ANN-based AE structure and introducing an in-band channel
model (IBCM) channel modeling strategy. High SNR training data was obtained for ANN-
based IBCM. Furthermore, the embedded in-band autoencoder (IBAE) and IBCM were
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trained to combat the precise-estimated channel impairment, while avoiding performance
degeneration due to the influence of the strong low-frequency noise. It achieved speeds
of up to 0.325 Gbps faster than another scheme, indicating robustness to bias, amplitude,
and bitrate changes. Another effect of distorted signals due to the nonlinearity of LEDs
is the peak-to-average power ratio (PAPR). In [141], the LSTM autoencoder (LSTM-AE)
dealt with variable input sequential data and predicted variable length output sequences in
OFDM systems. The proposed model reduces the PAPR of the transmitted signal without
increasing the BER.

4.8. Mobile Edge Computing (MEC)

The traditional cloud computing model has been widely adopted in the last decade.
Computation offloading can extend the usability of mobile terminals. However, sending
data to a central cloud is expensive and adds overhead delays, which can reduce the QoS
of each user and can cause heavy losses for service providers [142]. Moreover, recently,
the increasing growth of mobile terminals and the considerable transmission distance
between the remote cloud and the user has increasingly driven this problem [143]. MEC is a
technology that can reduce latency, improve energy efficiency, and provide more resources
for mobile devices by performing computing tasks at the edge of the wireless network.

In [144], the base station (BS) was equipped with MEC to optimize spectrum and
transmit power allocation. A multi-stack RL algorithm was proposed to help BS optimize
its resource allocation for different tasks, including adjusting subcarriers, transmit power,
and task allocation schemes. The proposed system enhanced learning efficiency and
convergence speed by tracking past resource allocation schemes and user data at each
BS. Therefore, it was more efficient than Q-learning, requiring 18% fewer iterations and
resulting in 11% less maximal delay for users, while in [145], the ML algorithm was used for
multiuser MEC systems in a cognitive eavesdropping environment. The authors proposed
an FL framework to improve the efficiency of offloading tasks, allocating bandwidth, and
distributing computational resources. The framework took latency and power consumption
into account. The task offloading and resource allocation were formulated into a Markov
decision process problem, while the state and action spaces were designed with DQN-
based RL. FL framework distributed the DQN scheme to be run by each user to reduce
the communication overhead and protect data privacy. The proposed method improved
performance by reducing latency and energy consumption, while ensuring more bandwidth
and computational resources for higher task-priority users. MEC is suitable for processing
IoT computing-intensive tasks where the generated tasks can be offloaded to MEC. In
addition, MEC is a promising technology to provide services for massive IoT devices.
However, acquiring system information comprehensively and accurately had become
a challenge in offloading multi-edge servers. In [146], the DRL-based energy efficient
task offloading (DEETO) algorithm was proposed to enhance the energy efficiency and
workload balance among the edge servers. The DEETO algorithm was found to be more
energy-efficient and reduce edge server workload compared to the other RL algorithms
mentioned in the paper.

Apart from supporting IoT communications, MEC can also be applied to the imple-
mentation of other emerging technologies. In [147], the DDPG-based RL algorithm was
applied to optimize the physical-layer security of the IRS-assisted MEC network. The
proposed system allocated the offloading ratio, bandwidth, and computational abilities to
users. The results showed that the DDPG scheme found a more efficient way to offload
tasks, resulting in a lower total cost than the all-local scheme. Furthermore, the system
demonstrated the ability to work well in the MEC network under various conditions.
Besides the IRS, UAV communication has also received widespread attention in MEC
systems. In [148], the authors proposed a single-agent scheme based on Q-learning and a
MA scheme based on Nash Q-learning (NQL) algorithms to maximize the secure offload-
ing of multi-UAV-assisted MEC networks. The system solved the optimization problem
while considering the limitations of the secure offloading transmission rate, computing
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latency, power consumption, and task types. The proposed system demonstrated that the
MA scheme was better at optimizing the offloading and achieving greater system utility
than the single-agent and random-offloading schemes. In contrast, the MA-TD3 (MATD3)
approach was proposed in [149] to design a joint strategy of trajectory, task allocation, and
power management. The result showed that the total system cost was significantly higher
while applying the proposed approach than the other optimization method mentioned.
Besides that, the proposed UAV-assisted edge cloud adapts to be flexible and adaptable to
changing conditions, making it a promising technology for future wireless networks that
are expected to become increasingly complex and dynamic. Table 10 provides a concise
summary of the studies discussed in this subsection.

Table 10. Summary of the applications of ML for MEC communications.

References ML Model Architecture Contributions Remarks

[144] Multi-stack RL algorithm Subcarriers, transmit power, and
task allocations

Reduced iterations by 18% and the maximal
delay by 11% among users, compared to the

Q-learning algorithm

[145] FL framework with
DQN-based RL algorithm

Offloading ratio, bandwidth, and
computational ability optimization

Reduced the latency and energy
consumption, ensured more bandwidth and
computational capability for the higher task

priority users

[146] DEETO algorithm Energy efficiency and workload
balance maximization

Improved the energy efficiency and
minimized the edge servers’ workload

[147] DDPG-based RL
algorithm Physical-layer security optimization

Made a lower total cost decision and
demonstrated the ability to work well under

various conditions

[148] MA scheme based on
NQL algorithm

Multi-UAV secure
offloading maximization

Outperformed the single-agent and
random-offloading schemes in a better

manner and achieved larger system utility

[149] MATD3 scheme Trajectory design, task allocation,
and power management

Proven adaptable to EU mobility, changes in
communication and computing resources,

and dynamics of computing tasks

Based on the discussion in this section, Table 11 shows the application of ML algo-
rithms for emerging technologies that could be implemented in 5G/6G communications to
overcome several issues.

Table 11. ML-based algorithms for 5G/6G applications.

ML-Based Algorithm Definition 5G/6G Applications References

Supervised
learning

ML algorithm that requires
input and output pairs in
advance to train the model

Spectral efficiency [115]

Energy efficient
communication [117]

Computational reduction [125]

Throughput improvement [125]

Reliable communication [126,131,132]

Unsupervised
learning

ML algorithm that finds
pattern data without labeled
input and predefined output

Computational reduction [93]

Spectral efficiency [93,115]

Throughput improvement [127]

ANN
Collection of neurons at each
layer with inputs working in
the feed-forward structure

Reliable communication [140]

Computational reduction [140]
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Table 11. Cont.

ML-Based Algorithm Definition 5G/6G Applications References

DNN
Fully connected structure
connected with neurons in
each layer

Reliable communication [91,95,139]

Spectral efficiency [94,95]

Energy efficient
communication [94,95,106]

Throughput improvement [94]

CNN

Structure with the same
weight for all links with the
convolution layer connected
to the local path in the
previous layer

Throughput improvement [92]

Spectral efficiency [129]

Computational reduction [130]

Reliable communication [132,138]

Energy efficient
communication [138]

RNN

Multi-layer feed-forward NNs
Trained using the back-
propagation method which
considers input, weights, and
memory for each output layer

Energy efficient
communication [103]

Reliable communication [112,116,120]

Throughput improvement [120,141]

RL

ML algorithms that allow
machines to continuously
learn from their experience
data sets to automatically
make the most
accurate decisions

Energy efficient
communication [96,101,104,118,144–146,149]

Reliable communication [96,100–102,105,109–111,119]
[144,148,149]

Secure communication [97,98,137,147]

Throughput improvement [98]

Computational reduction [144–146]

Spectral efficiency [145]

5. Potential Challenges for 6G Network Requirements

The ITU-R workshop on IMT addressed several usage scenarios and key capability
indicators for 2030 and beyond. These indicators include in the KPIs for 6G communica-
tion networks, which need to be considered to design the future communication network,
including high throughput (Gbps/Tbps), extended coverage, low latency, and high relia-
bility. Furthermore, the network should have the capacity to support the interconnection
of terrestrial and non-terrestrial technologies for both sensing and communication needs,
while also being highly efficient in its operations.

5.1. Throughput Improvement

Throughput is a critical performance metric for wireless networks, and the demand
for higher throughput is growing with each generation of technology. 6G networks are
expected to deliver extremely high throughput, up to more than 1 Gbps [150]. One of the
technologies that can enhance throughput in 6G networks is m-MIMO. However, m-MIMO
requires a large number of antennas, which may not be feasible for handheld devices. A
more practical solution is optimizing the beamformer, which is the antenna array used to
transmit and receive signals.

ML can potentially enhance beamforming optimization by scanning wireless CSI,
which is constantly changing and inherently imperfect. In particular, RL, a type of ML
well-suited for unstable environments, can accurately optimize CSI. By utilizing the RL
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algorithm to select the optimal communication channel, we can achieve a throughput that
approaches the theoretical maximum, even in the presence of imperfect CSI.

Another potential solution to the challenge of realizing a Tbps wireless network is
to implement an optical spectrum. Optical spectrum, which works through free space,
has the potential to achieve Tbps speeds due to its ability to overcome the limitations of
coaxial cables. Despite the existence of certain limitations, such as the effects of atmospheric
turbulence, ASE noise, and channel error, these can be minimized by applying an ML
algorithm. This algorithm can learn the statistical properties of the optical spectrum and
create a model to predict and mitigate these effects. Therefore, this would enable reliable
and efficient data transmission at Tbps speeds over the optical spectrum.

5.2. Coverage Extension

The ever-increasing demand for wireless communication is inversely proportional
to the decreasing availability of frequency capacity and the difficulty of constructing new
BS. Implementing emerging technologies such as IRS and UAV can help address these
issues by extending terrestrial BS coverage without overburdening the infrastructure. IRS,
a software-defined meta-material that can be programmed to reflect wireless signals in
desired ways, can extend the coverage of existing BS without requiring any new infras-
tructure, while UAVs are becoming increasingly sophisticated and can carry a variety
of payloads, including BS equipment. This makes them a flexible and versatile tool for
improving wireless coverage and a cost-effective way to provide in remote areas. Therefore,
these technologies can be strategically positioned to transmit signals, such as providing
a communication network in disaster-prone areas and on the high seas by implementing
aerial BS or expanding the network in underwater and underground environments.

5.3. Ultra-High Reliability

The 6G cellular networks are expected to provide reliable and ultra-low latency com-
munication. Especially with the presence of emerging technologies, the reliability of the 6G
network is increasingly being anticipated. It is increased from 99.9 percent to 99.999 percent,
which is ten times higher than 5G [151]. Despite the importance of ultra-low latency, it
is difficult to achieve both low latency and high reliability. This is a significant challenge
in developing architectures that support ultra-low latency, as well as spectral and energy
efficiency [152].

AI-empowered technologies can be a solution to gain high reliability due to their pre-
dictable ability to solve complex problems and improve generative learning abilities [153].
AI-empowered technologies can be used to improve the reliability and availability of 6G
networks in several ways. One of them is a single computing core that combines high-
performance computing (HPC) and AI. HPC is the use of computers to solve complex
problems that would be too time-consuming to solve using traditional methods. A combina-
tion of HPC and AI could help the system develop new algorithms to better manage traffic,
optimize the use of network resources, and detect and prevent problems without human
intervention [154,155]. It can predict and prevent network failures by analyzing historical
data and identifying patterns that could lead to them. This information can then be used
to take preventive measures, such as adjusting network settings or deploying additional
resources. It can also be used to develop self-healing capabilities for 6G networks. Thus,
these features could make the network more reliable by reducing the number of outages
and the load on the network.

However, there are some challenges that need to be addressed in order to develop a
single computing core. The development of new hardware that can combine the capabilities
of HPC and AI is a major challenge, due to their need to be able to handle the high
processing power and memory requirements of HPC. Furthermore, the software needs to
be able to scale to large networks, handle a wide variety of data traffic, and protect the
network from cyberattacks which can exploit the vulnerabilities of a single computing core.
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In linear technologies with AI, which need to select information to avoid privacy
concerns carefully, FL is one of the keys to this drawback, due to its ability to allow each
user to run the learning algorithms individually without exchanging personal data. Other
than that, as AI technologies, the ability to make decisions should not be questioned.
Therefore, the role of DL will be indispensable for the smooth realization of this technology.

5.4. Low Latency Communication

Due to the massive connectivity in the 6G network, which is predicted to increase
from 5G leading to unbearable latency, one of the demand requirements for the 6G network
is URLLC, which requires latency of less than 0.1 ms [156]. There are two main challenges
to achieving URLLC in 6G networks. First, the limited frequency bands available for
cellular networks make it difficult to increase spectrum utilization rates [157]. Second,
future communication networks may not be able to meet the latency, reliability, and other
QoS requirements of URLLC, such as spectrum efficiency, energy efficiency, capacity, and
network coverage [158].

ML algorithms offer a promising solution to these challenges. ML algorithms can
be used to optimize network resources, such as spectrum and power, and to predict and
prevent network failures, which would improve the network’s overall efficiency and reduce
latency. In addition, ML algorithms can be used to develop self-healing capabilities, as
mentioned in the last subsection. This is crucial for URLLC, as even a small amount of
latency can significantly impact the applications’ performance. Even though the potential
benefits of ML for URLLC are significant, and it is likely that ML will play a significant
role in developing 6G networks, continuous research is needed on implementing ML to
support the realization of optimal URLLC communication in various scenarios.

Other than that, as mentioned before, AI-empowered technologies can be implemented
to improve reliability. They can also be used to achieve low-latency communication, such
as predictive analytics to predict future traffic patterns. The predictive information will be
used to adjust network settings and optimize routing, which would help reduce latency.
Additionally, it can also reduce the latency by caching data in 6G networks, meaning
frequently accessed data would be stored close to the user. Thus, applying the ML algorithm
is one of the promising technologies to overcome these complex problems. Continuous
research is needed on implementing ML to support the realization of optimal URLLC
communication in various scenarios.

5.5. Energy Efficient Communication

The widespread adoption of emerging technologies in 6G communication networks is
expected, which raises concerns about their impact on energy consumption. Even though
realizing zero-energy IoT is very challenging, energy efficiency should be a critical issue in
6G networks. m-MIMO is expected to be a key technology in 6G networks, and emerging
technologies such as IRS, UAVs, and AUVs are expected to play a significant role in m-
MIMO communication. While MIMO can improve both spectral and energy efficiency [159],
power consumption is a critical issue that must be considered when implementing emerging
technologies-aided wireless communication. This is because emerging technologies are
often more complex and require more power.

Likewise, the IRS mostly requires an energy supply due to the lack of power ampli-
fiers [160]. UAVs and AUVs, on the other hand, consume energy when they move around
and forward signals [161,162]. As a result, an energy-efficient mechanism must be consid-
ered to address this issue. This could involve developing a suitable optimization method
to minimize power consumption or implementing wireless power transfer to recharge the
required energy.

5.6. Interconnection of Terrestrial and Non-Terrestrial Technologies

Terrestrial and non-terrestrial technologies are being considered for use in 6G networks,
because the interconnection of both technologies is one of the key enablers for a wide range
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of applications and benefits. However, some of the challenges need to be addressed in
order to achieve seamless integration and to overcome some complex challenges, due to
some issues such as heterogeneity, mobility, and security.

The upcoming 6G networks are predicted to be heterogeneous and support high mobility,
comprising a range of disparate technologies, such as mmWave, THz, and m-MIMO. Network
slicing, full duplex, and beamforming could also be implemented to address the challenges.
Network slicing allows for the creation of virtual networks within a physical network, which
will enhance spectrum efficiency and make it easier to interconnect terrestrial and non-
terrestrial networks. By implementing these technologies, the interconnection of terrestrial
and non-terrestrial technologies in 6G networks can be achieved, and it will allow for a wide
range of new applications, such as VR, AR, self-driving cars, and critical infrastructure.

However, seamless integration will require new security protocols, as it will be nec-
essary to ensure the data is secure as it moves between different networks. Other than
that, standardization and cost should be the other issues that need to be considered. There
is currently no agreed-upon standard for 6G networks, which makes it hard to confirm
that different networks will be able to work together seamlessly. Furthermore, the cost of
implementing seamless integration for 6G networks could be high, making it difficult for
some businesses and organizations to adopt this technology.

5.7. Sensing and Communication

The 6G cellular networks are anticipated to utilize the broad spectrum of multiple
frequency bands to enhance data transfer rates. This will be achieved through the new
radio access technologies and the exploitation of the unique characteristics of the sub-THz
spectrum. The sub-THz spectrum refers to the portion of the electromagnetic spectrum
that lies between the microwave and infrared bands. This spectrum has a large amount of
unused bandwidth, which can be used to achieve higher data rates [163,164].

In addition, the use of the sub-THz spectrum can lead to the development of integrated
sensing and communication technology. This technology considers the entire communica-
tion system as a sensor and enables a wide range of new services, such as environmental
reconstruction and high-accuracy imaging [165]. Localization obtained from sensing could
enhance communication performance, such as improving beamforming, traffic routing,
directing radio waves in a specific direction, reducing interference, and improving the SNR
value [166,167].

Other than that, embedded space building (ESB) is another key technology that will
be explored for 6G networks. ESB refers to the use of wireless networks to create virtual
spaces that can be accessed by users. It involves embedding small, low-power sensors and
actuators in the environment to create a distributed network of devices [168,169]. ESB can
be used to create virtual space to support gaming, education, environment and healthcare
monitoring, and training. It can provide users with a more immersive and realistic gaming
experience, a more interactive and engaging learning experience, and provides trainees
with a safe and realistic environment. It can also be used to monitor environmental changes
and patient health, in order to provide remote tasks.

However, the sub-THz spectrum and ESB also pose some challenges, such as being
easily absorbed by water vapor and oxygen, which limits their range. Furthermore, the
use of integrated sensing and communication technology will require the development of
new hardware and software. Other than that, there is no common standard for ESB yet,
and the expected new services and applications, which implement high-definition virtual
reality, augmented reality, and autonomous driving, are still being developed. Therefore,
even though using the sub-THz spectrum and developing ESB offers beneficial things
for communication networks, it still requires further research to fully implement it in a
real-world scenario.
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5.8. Secure Communication

Linearly with the high data traffic expected to occur in 6G communications, data secu-
rity risks are also likely to increase due to wireless transmission characteristics [170]. Data
privacy and security are crucial requirements for 6G communication. Besides protecting
communication privacy for both parties, data security also affects the quality of the signal
received by the receiver. Communication over the Internet is susceptible to cyber-attacks
from malicious users, such as eavesdropping on important information being shared by
others. In another scenario, jamming is a major security threat to wireless networks. It
occurs when malicious parties intentionally transmit signals that interfere with legitimate
communication or capture network bandwidth, thereby leaking vital information shared
between communicating parties. Additionally, attackers may share or broadcast incorrect
information to conduct data integrity attacks [171].

Therefore, we need security measures to those challenges while maintaining the
security of wireless communication and protecting the data privacy and security of users
who are communicating in the network. Strong authentication or encryption will be
essential to prevent unauthorized access to 6G networks. This could be achieved using
techniques such as biometric authentication or multi-factor authentication. Physical layer
security (PLS)-based secret key generation is a promising new technique for securing
communications and reducing shared information for eavesdroppers due to its more secure
and efficient potential than traditional cryptographic schemes. Nevertheless, using PLS
may be hindered by NLoS propagation when channel estimation is constrained by low
SNR, high bit agreement rates, and low secret key rates (SKR) [172].

Network security monitoring is also needed to detect and respond to security threats,
which can be achieved using techniques such as intrusion detection systems (IDS) and
intrusion prevention systems (IPS). While specific to jamming problems, there are several
ways that can be implemented to deal with jamming attacks. Frequency hopping is a
technique where the network periodically changes its frequency [173]. It will make it
difficult for attackers to keep up with the network and maintain the jamming signal.
Implementing AI technology that can identify suspicious signals and dynamically adjust
the modulation scheme used by networks could also help to ensure communication even
in the presence of jamming. Spread spectrum and MIMO are also other techniques that can
be implemented to improve the robustness of the network to interference [174,175]. Other
than that, it is important to provide security education and raise awareness among all users,
which will help users understand the potential security risks and acquire the fundamental
skills to protect themselves.

In addition, quantum computing technology is an advanced method that is being
developed to create secure communication. Compared with the classical binary-based
communication systems that use bits either 0 or 1 to represent information, quantum com-
munication uses qubits, which can be in a superposition of 0 and 1. This means that qubits
can represent both 0 and 1 simultaneously, making it much more difficult to eavesdrop
on [176,177]. It makes quantum communication carry a much more significant amount of
information than classical communication systems [178]. Furthermore, it could significantly
improve the transmission quality, as it is less susceptible to noise and interference, because
qubits are not affected by the same physical processes as bits. Quantum communication
also offers another potential benefit, which is absolute randomness and security. It is inher-
ently secure because the act of eavesdropping will collapse the quantum state of qubits,
which will be instantly detectable by the legitimate parties.

By implementing those measures, it could ensure a safer and more secure environment
for all parties involved. Therefore, further research focusing on optimizing the parameters
of each measure is required due to the limited research exploring this issue. Meanwhile,
the development of quantum communication is still in its early stages, which also requires
further research to implement it in real-world situations.
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6. Conclusions

In the realm of communication networks, integrating emerging technologies is a
critical factor to consider, especially in developing the forthcoming 6G network. These tech-
nologies can significantly boost the speed, security, and overall quality of communication
services, even in locations or circumstances deemed challenging or hazardous to access. By
leveraging cutting-edge technologies, 6G networks can offer unparalleled performance and
reliability, making them a key enabler of a wide variety of applications and use cases in the
future. However, implementing emerging technology-assisted wireless communications
proved challenging for the model-driven approach, due to its inaccuracy. Furthermore, the
high overhead and computational complexity of major emerging technologies hindered
the system’s optimization, which conventional mathematical solutions cannot resolve.
Therefore, ML algorithms, which are well-known and proven for their reliability in solving
complex problems, are the leading solution for these concerns.

It is of utmost importance to create efficient algorithms and techniques that can cater
to the needs of the upcoming 6G network. The 6G network is expected to have high require-
ments in terms of throughput, connectivity reliability, and energy efficiency. It is imperative
to tackle these needs without the burden of high workloads and time complexities, as doing
so is critical to the success of the network. Therefore, this article provides a comprehensive
review of implementing ML, DL, RL, and DRL algorithms to optimize some of the difficul-
ties that every emerging technology may face to meet the 6G network requirements. This
study has revealed that the application of ML algorithms can effectively address a broad
range of challenges related to spectral and energy efficiency, throughput, computational
reduction, and the establishment of reliable and secure communication channels. However,
despite their success in previous studies, it is essential to note that further research is neces-
sary to fully harness the potential of these tools in advancing innovation. At the end of this
study, we provide possible ML approaches to effectively address other challenges that may
be presented in 6G network technology, such as extending network coverage, minimizing
latency issues, connecting terrestrial and non-terrestrial technologies, and integrating the
latest advances in sensing and communication technologies. Our recommendation aims to
stimulate further discourse and exploration within this critical development area.
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