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1. Introduction

The polynomial

Pm(a) =
m∑
�=0

d�(m)a� (1.1)

with

d�(m) = 2−2m
m∑
k=�

2k
(

2m− 2k
m− k

)(
m + k

m

)(
k

�

)
(1.2)

made its appearance in [1] in the evaluation of the quartic integral

∞∫
0

dx

(x4 + 2ax2 + 1)m+1 = π

2m+3/2(a + 1)m+1/2Pm(a). (1.3)
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Properties of the sequence of numbers {d�(m)} are discussed in [10]. Among them is the fact that this is 
a unimodal sequence. Recall that a sequence of real numbers {x0, x1, · · · , xm} is called unimodal if there 
exists an index 0 ≤ j ≤ m such that x0 ≤ x1 ≤ · · · ≤ xj and xj ≥ xj+1 ≥ · · ·xm. The sequence is called 
logconcave if x2

j ≥ xj−1xj+1 for 1 ≤ j ≤ m − 1. It is easy to see that if a sequence is logconcave then it is 
unimodal [14].

The sequence {d�(m)} was shown to be unimodal in [2] by an elementary argument and it was conjectured 
there to be logconcave. This conjecture was established by M. Kauers and P. Paule [9] using four recurrence 
relations found using a computer algebra approach. W.Y. Chen and E.X.W. Xia [6] introduced the notion 
of ratio-monotonicity for a sequence {xm}:

x0

xm−1
≤ x1

xm−2
≤ · · · ≤ xi

xm−1−i
≤ · · · ≤

x�m2 �−1

x
m−�m2 �

≤ 1. (1.4)

The results in [6] show that {d�(m)} is a ratio-monotone sequence and, as can be easily checked, this implies 
the logconcavity of {d�(m)}. The logconcavity of {d�(m)} also follows from the minimum conjecture stated 
in [11]: let b�(m) = 22md�(m). The function

(m + �)(m + 1 − �)b2�−1(m) + �(� + 1)b2�(m) − �(2m + 1)b�−1(m),

defined for 1 ≤ � ≤ m, attains its minimum at � = m with value 22mm(m + 1)
(2m
m

)2. This has been proven 
in [7], providing an alternative proof of the logconcavity of {d�(m)}.

Further study of the sequence {d�(m)} are defined in terms of the operator

L
(
{xk}

)
=

{
x2
k − xk−1xk+1

}
. (1.5)

For instance, {xk} is logconcave simply means L({xk}) is a nonnegative sequence. The sequence is called 
i-logconcave if Lj({xk}) is a nonnegative sequence for 0 ≤ j ≤ i. A sequence that is i-logconcave for every 
i ∈ N is called infinitely logconcave.

Conjecture 1.1. The sequence {d�(m)} is infinitely logconcave.

There is a strong connection between the roots of a polynomial P (x) and ordering properties of its 
coefficients. For instance, if P (x) has only real negative zeros, then P is logconcave (see [14] for details). 
Therefore, the expansion of (x + 1)n shows that the binomial coefficients form a logconcave sequence. 
P. Brändén [3] showed that if P (x) = a0 + a1x + · · · + anx

n, with aj ≥ 0 has only real and negative roots, 
then the same is true for

P1(x) = a2
0 +

(
a2
1 − a0a2

)
x + · · · +

(
a2
n−1 − an−2an

)
xn. (1.6)

This implies that the binomial coefficients are infinitely logconcave. This approach fails with the sequence 
{d�(m)} since the polynomial Pm(a) has mostly non-real zeros. On the other hand, Brändén conjectured 
and W.Y.C. Chen et al. [5] proved that Qm(x) =

∑m
�=0

d�(m)
�! x� and Rm(x) =

∑m
�=0

d�(m)
(�+2)!x

� have only real 
zeros. These results imply that Pm(a) in (1.1) is 3-logconcave.

The goal of this paper is to present an improved version of the original proof of the theorem

Theorem 1.2. The sequence {d�(m)} is unimodal.

The proof of Theorem 1.2 given in [2] is based on the difference

Δd�(m) = d�+1(m) − d�(m). (1.7)
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A simple calculation shows that

Δd�(m) = 1
22m

(
m + �

m

) m∑
k=�

2k
(

2m− 2k
m− k

)(
m + k

m + �

)
× k − 2�− 1

� + 1 . (1.8)

For �m
2 � ≤ � ≤ m − 1, the inequality

k − 2�− 1 ≤ k − 2
⌊
m

2

⌋
− 1 ≤ k −m ≤ 0 (1.9)

shows that Δd�(m) < 0 since the term for k = � has a strictly negative contribution. In the range 0 ≤ � <
�m

2 �, the difference Δd�(m) > 0. This is equivalent to

2�∑
k=�

2k(2� + 1 − k)
(

2m− 2k
m− k

)(
m + k

m + �

)
<

m∑
k=2�+2

2k(k − 2�− 1)
(

2m− 2k
m− k

)(
m + k

m + �

)
. (1.10)

This establishes the following result.

Lemma 1.1. The inequality (1.10) implies Theorem 1.2.

The required inequality (1.10) is valid in an even stronger form, obtained by replacing k− 2� − 1 on the 
right hand side of (1.10) by 1 to produce

2�∑
k=�

2k(2� + 1 − k)
(

2m− 2k
m− k

)(
m + k

m + �

)
<

m∑
k=2�+2

2k
(

2m− 2k
m− k

)(
m + k

m + �

)
, (1.11)

and then made even stronger by replacing the sum on the right hand side of (1.11) by its last term. 
Therefore, if

2�∑
k=�

2k(2� + 1 − k)
(

2m− 2k
m− k

)(
m + k

m + �

)
< 2m

(
2m

m + �

)
, (1.12)

then Δd�(m) > 0. This last inequality is now written as

Sm,� :=
2�∑
k=�

(
m− �

m− k

)(
m + k

2k

)(
2m
2k

)−1

× 2� + 1 − k

2m−k
< 1. (1.13)

This proves the following statement.

Lemma 1.2. The inequality (1.13) implies Theorem 1.2.

In [2], the proof of (1.13) is divided into two parts: first

Theorem 1.3. For fixed m ∈ N and 0 ≤ � < �m
2 �, the sum Sm,� is increasing in �

and then

Theorem 1.4. The maximal sum S
m,�m−1

2 � is strictly less than 1. For m even, the maximal sum S2m,m−1

is given by
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Tm := S2m,m−1 =
m+1∑
r=2

(
2r
r

)(
m + 1

r

)
(r − 1)
2r
(4m

r

) , (1.14)

with a similar expression for m odd.

Note. It is clear that Theorems 1.3 and 1.4 imply (1.13). Lemma 1.2 then completes the proof of Theorem 1.2.

Theorems 1.3 and 1.4 were established in [2] by some elementary estimates. The goal of the present work 
is to present a new proof of Theorem 1.4. This is given in Section 2. Section 3 contains a proof based on a 
hypergeometric representation of Tm. Section 4 shows that Tm converges to the value

lim
m→∞

m+1∑
r=2

(
2r
r

)(
m + 1

r

)
(r − 1)
2r
(4m

r

) = 1 − 1√
2
∼ 0.292893. (1.15)

This limit was incorrectly conjectured in [2] to be 1 − ln 2 ∼ 0.306853. The authors have failed to produce 
a proof of Theorem 1.3 by the automatic techniques developed in [12]. These methods yield recurrences 
for the summands in (1.13), but it is not possible to conclude from them that Sm,� is increasing. These 
automatic methods do succeed in producing a proof that the sequence {Tm : m ≥ 2} is increasing. The 
details are presented in the last section.

2. The bound on Tm

The result stated in Theorem 1.4 is equivalent to the bound

Tm :=
m+1∑
r=2

(
2r
r

)(
m + 1

r

)
(r − 1)
2r
(4m

r

) < 1, for all m ≥ 1. (2.1)

A direct proof of this result is given next. Section 3 presents a proof based on a hypergeometric repre-
sentation of Tm.

Theorem 2.1. The inequality Tm < 1 holds for m ≥ 1.

Proof. First, it is shown by induction that for m fixed and 2 ≤ r ≤ m + 1

am(r) :=
(

2r
r

)(
m + 1

r

)
≤ bm(r) :=

(
4m
r

)
. (2.2)

If r = 2: bm(2) − am(2) = 5m(m − 1) ≥ 0. Now observe that

bm(r + 1)
bm(r) − am(r + 1)

am(r) = 4m− r

r + 1 − 2(2r + 1)(m + 1 − r)
(r + 1)2 = 2(m− 1) + 3r(r − 1)

(r + 1)2 > 0.

This gives the inductive step written as

bm(r)bm(r + 1)
bm(r) > am(r)am(r + 1)

am(r) .

The inequality am(r) < bm(r) now yields

Tm =
m+1∑
r=2

am(r)
bm(r)

r − 1
2r <

m+1∑
r=2

r − 1
2r = 1 − m + 2

2m+1 < 1. �
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3. A hypergeometric representation of Tm

This section provides a hypergeometric representation of

Tm =
m+1∑
r=2

(
2r
r

)(
m + 1

r

)
(r − 1)
2r
(4m

r

) (3.1)

and an alternative proof of Theorem 1.4.

Proposition 3.1. The sequence Tm is given by

Tm = 1 − 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣2
)

+ m + 1
4m 2F1

( 3
2 ,−m

1 − 4m

∣∣∣∣2
)
. (3.2)

Proof. Since 
(
m
k

)
= (−1)k(−m)k

k! , it follows that 
(m+1

r

)(4m
r

) = (−1−m)r
(−4m)r . This relation and (1

2 )r = (2r)!/(22rr!) give

Tm =
m+1∑
r=2

(1
2 )r
r!

(r − 1)2r(−1 −m)r
(−4m)r

. (3.3)

Therefore

Tm = −
m+1∑
r=2

(1
2 )r(−1 −m)r2r

(−4m)rr!
+

m+1∑
r=2

(1
2 )r(−1 −m)r2r

(r − 1)! (−4m)r

= 1 + m + 1
4m −

m+1∑
r=0

(1
2)r(−1 −m)r2r

(−4m)rr!
+ m + 1

4m

m+1∑
r=2

(1
2 )r(−1 −m)r2r

(−4m)r(r − 1)!
4m

m + 1

= 1 −
m+1∑
r=0

(1
2 )r(−1 −m)r

(−4m)r
2r

r! + m + 1
4m

{
1 +

m+1∑
r=2

(1
2 )r2r

(r − 1)!
4m

m + 1
(−1 − 4m)r

(−4m)r

}

= 1 − 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣2
)

+ m + 1
4m

m+1∑
r=2

(1
2 )r2r

(r − 1)!
4m

m + 1
(−1 −m)r
(−4m)r

= 1 − 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣2
)

+ m + 1
4m

m∑
r=0

(3
2)r
r!

2r(−m)r
(1 − 4m)r

= 1 − 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣2
)

+ m + 1
4m 2F1

( 3
2 ,−m

1 − 4m

∣∣∣∣2
)
. �

The next result provides an integral representation for Tm.

Proposition 3.2. The sequence Tm is given by

Tm = 3(m + 1)
16(4m− 1)

2∫
0

t 2F1

( 5
2 , 1 −m

2 − 4m

∣∣∣∣t
)
dt. (3.4)

Proof. Integrate by parts and use

d

dt
2F1

(
a, b

c

∣∣∣∣t
)

= ab

c
2F1

(
a + 1, b + 1

c + 1

∣∣∣∣t
)

(3.5)
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to produce

2∫
0

t 2F1

( 5
2 , 1 −m

2 − 4m

∣∣∣∣t
)
dt = 4(4m− 1)

3m 2F1

( 3
2 ,−m

1 − 4m

∣∣∣∣2
)
− 2(4m− 1)

3m

2∫
0

2F1

( 3
2 ,−m

1 − 4m

∣∣∣∣t
)
dt.

The last integral is evaluated using (3.5) to write

2F1

( 3
2 ,−m

1 − 4m

∣∣∣∣t
)

= 8m
m + 1

d

dt
2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣t
)

and the result follows. �
The next result provides a bound for the integrand in Proposition 3.2.

Proposition 3.3. Let n ∈ N, n ≥ 2 and 0 ≤ t ≤ 2. Then
∣∣∣∣2F1

( 5
2 , 1 −m

2 − 4m

∣∣∣∣t
)∣∣∣∣ ≤ 9

√
3(3 − t)−5/2.

Proof. The hypergeometric function is given by

2F1

( 5
2 , 1 −m

2 − 4m

∣∣∣∣t
)

=
m−1∑
k=0

(
5
2

)
k

(1 −m)k
(2 − 4m)k

.

The bound

(1 −m)k
(2 − 4m)k

≤ 1
3k (3.6)

follows directly from the observation that bk(m) = 3k(1 − m)k/(2 − 4m)k satisfies b0(m) = 1 and it is 
decreasing in k. Indeed,

bk+1(m)
bk(m) = 3(1 −m + k)

2 − 4m + k
< 1. (3.7)

Then (3.6) gives

2F1

( 5
2 , 1 −m

2 − 4m

∣∣∣∣t
)

≤
m−1∑
k=0

(
5
2

)
k

tk

3kk!

≤
∞∑
k=0

(
5
2

)
k

(t/3)k

k!

= 1F0

( 5
2
−

∣∣∣∣ t3
)
.

The evaluation of the final hypergeometric sum comes from the binomial theorem

1F0

(
a

−

∣∣∣∣z
)

= (1 − z)−a, for |z| < 1. � (3.8)

The bound in Theorem 1.4 is now obtained.



1160 T. Amdeberhan et al. / J. Math. Anal. Appl. 420 (2014) 1154–1166
Corollary 3.4. For m ∈ N, the sequence Tm satisfies Tm < 1.

Proof. It is easy to compute that T1 = 1
4 . For m ≥ 2, observe that

3(m + 1)
16(4m− 1) = 3

16

(
1
4 + 5/4

4m− 1

)
≤ 9

112 (3.9)

and thus

Tm ≤ 9
112

2∫
0

9
√

3t dt
(3 − t)5/2

= 27
28 < 1. � (3.10)

Note 3.5. This inequality completes the proof that {d�(m)} is unimodal.

4. The limiting behavior of Tm

This section is devoted to establish that Tm → 1 −1/
√

2 as m → ∞. Section 5 proves that this convergence 
is monotone increasing, thus improving the bound in Theorem 2.1 to Tm < 1 − 1/

√
2 < 3/10.

Theorem 4.1. The sequence Tm satisfies

lim
m→∞

Tm = 1 − 1√
2
. (4.1)

The arguments will employ the classical Tannery theorem. This is stated next, a proof appears in [4], 
page 136.

Theorem 4.2 (Tannery). Assume αk := limm→∞ αk(m) satisfies |αk(m)| ≤ Mk with 
∑∞

k=0 Mk < ∞. Then 
limm→∞

∑m
k=0 αk(m) =

∑∞
k=0 αk.

Three proofs of Theorem 4.1 are presented here. In each one of them, the argument reduces to an exchange 
of limits. The first one is based on the integral representation of Tm and it uses bounded convergence 
theorem and Tannery’s theorem. The second one deals directly with the hypergeometric sums and it employs 
Tannery’s theorem for passing to the limit in a series. A similar argument can be employed in the third 
proof.

Proposition 4.3. Assume 0 ≤ t < 4 is fixed. Then

lim
m→∞ 2F1

( 5
2 , 1 −m

2 − 4m

∣∣∣∣t
)

= 1F0

( 5
2
−

∣∣∣∣ t4
)

= 32
(4 − t)5/2

. (4.2)

First proof. Start with

2F1

( 5
2 , 1 −m

2 − 4m

∣∣∣∣t
)

=
m−1∑
k=0

(5
2 )k(1 −m)k
(2 − 4m)k

tk

k! (4.3)

and observe that

(1 −m)k
(2 − 4m)k

=
k−1∏ m− 1 − j

4m− 2 − j
→ 1

4k (4.4)

j=0
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as m → ∞. Therefore

lim
m→∞ 2F1

( 5
2 , 1 −m

2 − 4m

∣∣∣∣t
)

=
∞∑
k=0

(5
2 )k
k!

(
t

4

)k

= 1F0

( 5
2
−

∣∣∣∣ t4
)
. (4.5)

The hypergeometric sum is now evaluated using (3.8).
The passage to the limit in (4.5) uses Tannery’s theorem. In this case

αk(m) =
(5
2 )k(1 −m)k
(2 − 4m)k

tk

k! (4.6)

satisfies

lim
m→∞

αk(m) = lim
m→∞

(
5
2

)
k

tk

k!
( 1
m − 1)( 2

m − 1) · · · ( k
m − 1)

( 2
m − 4)( 3

m − 1) · · · (1+k
m − 4)

=
(

5
2

)
k

tk

k! 4k

exists. This limit is denoted by αk.
The result now follows from the bound

∣∣αk(m)
∣∣ ≤ Mk :=

(
5
2

)
k

tk

k! 3k , (4.7)

and the sum

∞∑
k=0

Mk =
∞∑
k=0

(
5
2

)
k

tk

k! 3k =
(

1 − t

3

)−5/2

(4.8)

valid for 0 ≤ t ≤ 2. Tannery’s theorem gives

lim
m→∞

m−1∑
k=0

αk(m) =
∞∑
k=0

αk =
∞∑
k=0

(
5
2

)
k

tk

k! 4k =
(

1 − t

4

)−5/2

. (4.9)

The expression in Proposition 3.2, the bound (3.6) and Proposition 3.3 give, via the dominated conver-
gence theorem, the value

lim
m→∞

Tm = lim
m→∞

3(m + 1)
16(4m− 1)

2∫
0

2F1

( 5
2 , 1 −m

2 − 4m

∣∣∣∣t
)
t dt

= 3
64

2∫
0

1F0

( 5
2
−

∣∣∣∣ t4
)
dt

= 3
64

2∫
0

32t
(4 − t)5/2

dt

= 1 − 1√
2
. (4.10)

This completes the first proof. �
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Second proof. The limiting value of Tm is now obtained using the hypergeometric representation (3.2). It 
amounts to proving

lim
m→∞ 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣2
)
− m + 1

4m 2F1

( 3
2 ,−m

1 − 4m

∣∣∣∣2
)

= 1√
2
. (4.11)

The contiguous relation [13], page 28,

2F1

(
a + 1, b

c

∣∣∣∣z
)

= 2F1

(
a, b

c

∣∣∣∣z
)

+ bz

c
2F1

(
a + 1, b + 1

c + 1

∣∣∣∣z
)

(4.12)

is used with a = 1
2 , b = −1 −m, c = −4m and z = 2 to obtain

2F1

( 3
2 ,−1 −m

−4m

∣∣∣∣2
)

= 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣2
)

+ m + 1
2m 2F1

( 3
2 ,−m

1 − 4m

∣∣∣∣2
)

and this gives

(m + 1)
4m 2F1

( 3
2 ,−m

1 − 4m

∣∣∣∣2
)

= 1
2

(
2F1

( 3
2 ,−1 −m

−4m

∣∣∣∣2
)
− 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣2
))

. (4.13)

Thus if suffices to prove

lim
m→∞

3 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣2
)
− 2F1

( 3
2 ,−1 −m

−4m

∣∣∣∣2
)

=
√

2. (4.14)

A direct calculation shows that

3 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣2
)
− 2F1

( 3
2 ,−1 −m

−4m

∣∣∣∣2
)

=
m+1∑
k=0

αk(m)

with

αk(m) =
m+1∑
k=0

[3(1
2 )k − (3

2)k](−1 −m)k2k

(−4m)k k! . (4.15)

The question is now reduced to justifying passing to the limit in

lim
m→∞

m+1∑
k=0

αk(m) =
∞∑
k=0

lim
m→∞

αk(m) (4.16)

since

lim
m→∞

αk(m) =
(

3
(

1
2

)
k

−
(

3
2

)
k

)
1

k! 2k (4.17)

and

∞∑
lim

m→∞
αk(m) =

∞∑(
3
(

1
2

)
−

(
3
2

) )
1

k! 2k

k=0 k=0 k k



T. Amdeberhan et al. / J. Math. Anal. Appl. 420 (2014) 1154–1166 1163
= 3
∞∑
k=0

(1
2 )k2−k

k! −
∞∑
k=0

(3
2)k2−k

k!

= 3(1 − 1/2)−1/2 − (1 − 1/2)−3/2

=
√

2.

The last step is justified using Tannery’s theorem. In the present case αk(m), given in (4.15), satisfies

∣∣αk(m)
∣∣ ≤ (

3
(

1
2

)
k

+
(

3
2

)
k

)
2k

k!
(−1 −m)k
(−4m)k

. (4.18)

The proof of the inequality

(−1 −m)k
(−4m)k

≤ 1
3k , (4.19)

is similar to the proof of (3.6). This is then used to verify that the hypothesis of Tannery’s theorem are 
satisfied. The details are omitted. �
Third proof. This is based on the analysis of a function that resembles the formula for Tm. �
Proposition 4.4. For 0 ≤ x < 1 define

Wm(x) =
m+1∑
r=0

(
2r
r

)(
m + 1

r

)(
4m
r

)−1

xr. (4.20)

Then

lim
m→∞

Wm(x) = 1√
1 − x

and lim
m→∞

d

dx
Wm(x) = 1

2(1 − x)3/2
. (4.21)

Proof. Note that the sum defining Wm(x) can be extended to infinity since 
(
m+1
r

)
has compact support. 

The proof now follows from

Wm(x) =
∞∑
r=0

(
2r
r

)(
x

4

)r r∏
i=1

(1 − i−2
m

1 − i−1
m

)
→

∞∑
r=0

(
2r
r

)(
x

4

)r

= 1√
1 − x

,

as m → ∞. The passage to the uniform limit is justified by Weierstrass M-test or dominated convergence 
theorem. The second assertion is immediate. �
Corollary 4.5. The sequence Tm satisfies

lim
m→∞

Tm = 1 − 1√
2
. (4.22)

Proof. This follows from the identity

Tm = lim
x→1/2

1
2

d

dx
Wm(x) −Wm(x) + 1. � (4.23)

Note 4.6. The function Wm(x) can be expressed in hypergeometric form as

Wm(x) = 2F1

( 1
2 ,−1 −m

−4m

∣∣∣∣4x
)
. (4.24)
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5. The monotonicity of Tm

This last section describes the convergence of T (m) to its limit given in (4.1).

Theorem 5.1. The sequence Tm is monotone increasing.

Proof. Let

F (r,m) =
(

2r
r

)(
m + 1

r

)
r − 1

2r
(4m

r

) . (5.1)

The proof is based on a recurrence involving F (r, m) that is obtained by the WZ-technology as developed 
in [12]. Input the hypergeometric function F (k, m) into WZ-package with summing range from r = 2 to 
r = n + 1. The recurrence relations that come as the output is

anTn − bnTn+1 + cnTn+2 + dn = 0, (5.2)

where

an = 7 195 230 + 87 693 273n + 448 856 568n2 + 1 263 033 897n3 + 2 147 597 568n4

+ 2 279 791 176n5 + 1 502 157 312n6 + 586 779 648n7 + 121 208 832n8 + 9 732 096n9

bn = 9 661 680 + 123 557 904n + 651 005 760n2 + 1 865 031 680n3 + 3 206 772 480n4

+ 3 428 727 552n5 + 2 272 235 520n6 + 894 167 040n7 + 187 269 120n8 + 15 499 264n9

cn = 3 265 920 + 41 472 576n + 217 055 232n2 + 618 806 528n3 + 1 062 162 432n4

+ 1 139 030 016n5 + 762 052 608n6 + 305 528 832n7 + 66 060 288n8 + 5 767 168n9

dn = −799 470 − 5 607 945n− 14 906 040n2 − 16 808 745n3 − 2 987 520n4 + 9 906 360n5

+ 8 025 600n6 + 1 858 560n7.

Note that bn = an + cn + dn, then (5.2) becomes

anTn − (an + cn + dn)Tn+1 + cnTn+2 + dn = 0, (5.3)

which is written as

an(Tn − Tn+1) + dn(1 − Tn+1) = cn(Tn+1 − Tn+2). (5.4)

Theorem 2.1 shows that Tn < 1 and Lemma 5.2 below states that dn ≥ 0. Therefore

an(Tn − Tn+1) ≤ cn(Tn+1 − Tn+2). (5.5)

Assume T is not monotone. Define N as the smallest positive integer such that

TN > TN+1. (5.6)

Then (5.5) implies

aN (TN − TN+1) ≤ cN (TN+1 − TN+2) (5.7)

and since aN > 0, cN > 0, it follows that TN+1 > TN+2. Iteration of this argument shows that the sequence 
{Tn : n ≥ N} is monotonically decreasing.
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Let δN = TN − TN+1 > 0, then (5.7) yields

TN+1 − TN+2 ≥ aN
cN

δN . (5.8)

Iterating this procedure gives

TN+p − TN+p+1 > δN

p−1∏
i=0

aN+i

cN+i
, for every p ∈ N. (5.9)

This inequality is now impossible as p → ∞, since the left-hand side converges to 0 in view of (4.1) and

lim
n→∞

an
cn

= 27
16 (5.10)

showing that the right-hand side blows up. �
It remains to establish the sign of dm. This is done next.

Lemma 5.2. The sequence dm is nonnegative for m ≥ 2.

Proof. Simply observe that

dn+2 = 814 627 800 + 2 803 521 195n + 3 780 146 130n2 + 2 680 435 095n3

+ 1 098 008 880n4 + 262 332 600n5 + 34 045 440n6 + 1 858 560n7

is a polynomial with positive coefficients. �
The proof of monotonicity of Tm is complete.

6. An inequality for hypergeometric functions

The hypergeometric representation for the sequence Tm and the monotonicity of Tm give using (4.13),

2F1

( 3
2 ,−m− 2
−4m− 4

∣∣∣∣2
)
− 2F1

( 3
2 ,−m− 1

−4m

∣∣∣∣2
)

> 3
[
2F1

( 1
2 ,−m− 2
−4m− 4

∣∣∣∣2
)
− 2F1

( 1
2 ,−m− 1

−4m

∣∣∣∣2
)]

.

This is the special case x = 1
2 of the inequality given below.

Theorem 6.1. The inequality

2F1

( 3
2 ,−m− 2
−4m− 4

∣∣∣∣4x
)
− 2F1

( 3
2 ,−m− 1

−4m

∣∣∣∣4x
)

> 3
[
2F1

( 1
2 ,−m− 2
−4m− 4

∣∣∣∣4x
)
− 2F1

( 1
2 ,−m− 1

−4m

∣∣∣∣4x
)]

holds for x ≥ 1
2 .

An automatic proof of this result is given in [8]. A traditional proof has escaped the authors.
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7. Conclusion

A sequence of numbers, originally found in the evaluation of a rational integral, had been shown to be 
unimodal. A crucial point in the original proof consisted of establishing an upper bound of an associated 
sequence {Tm}. Several arguments are given for the validity of this bound. Moreover, it is shown that Tm

is a monotone sequence.
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