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Abstract: Carotenoids are substantially hydrophobic antioxidants. Hydrophobicity is this 

context is rather a disadvantage, because their utilization in medicine as antioxidants or in 

food chemistry as colorants would require some water dispersibility for their effective 

uptake or use in many other ways. In the past 15 years several attempts were made to 

synthetize partially hydrophilic carotenoids. This review compiles the recently synthetized 

hydrophilic carotenoid derivatives. 
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1. Introduction  

There are substantially two reasons for the synthesis of carotenoids with increased hydrophilic 

character: their possible use in medicine because of the altered or enchanced biological activity of the 

new compounds or their use in food (or feed) industry. Only a few hydrophilic carotenoids can be 

found in Nature, and among them the abundantly occuring crocin shows true water-solubility. 

Several methods have been published (mostly patented) for enhancing the hydrophilicity of 

carotenoids. These formulations are typically obtained by physical methods, like polyethyleneglycol 

(PEG) dispersions. In this review only chemical derivatization including complexation is covered. The 

most important questions that arise in connection of the new derivatives—besides the extent of 

hydrophilicity—are whether they have at least the same antioxidant effect as the unmodified 

carotenoids and what are their toxicological and pharmacokinetic properties; the latter questions 

should be answered in the future for most of the following compounds. The antioxidant activity of 
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some hydrophilic carotenoids increased in water when compared to the antioxidant activity of the 

hydrophobic parent compounds in organic solvents, as shown by Sliwka et al. [1]. 

2. Hydrophilic Salts of Carotenoid Esters 

It seems quite obvious that transformation of a carotenoid into a hydrophilic derivative can be 

achieved by the synthesis of charged salt-like compounds or molecules that contain very polar groups 

(i.e., the COOH groups of bixin or crocetin makes them at least slightly water-dispersible). In fact such 

compounds have been synthesized in the past few years, mainly by Lockwood et al. and Sliwka et al.  

The astaxanthin disuccinate disodium salt 2 (Figure 1) [2,3], which has moderate water 

dispersibility, was one of the first hydrophilic carotenoid derivatives synthetized and it has already had 

a significant career as a powerful antioxidant. It is now in the clinical trials phase as a potential 

cardioprotective drug under the name Cardax [4–6]. Other derivatives like diphosphate 1 [7,8] and 

dilysinate 3 [9–11] are more hydrophilic for being more ionized (Figure 1). Compounds 1  

(29.27 mg/mL) and 2 showed moderate water dispersibility (2.85 mg/mL), whereas 3 (181.6 mg/mL) 

is the first synthetic truly water-soluble carotenoid. Very recently Sliwka et al. synthetized some new 

cationic carotenoid lipids, where a quaternary ammonium moiety is responsible for the amphipatic 

character of the molecules [12,13]. 

Figure 1. Hydrophilic carotenoid salts. 
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Sliwka et al. also synthetized and studied thoroughly remarkable phospholipid derivatized 

carotenoids like 4 [14–16], and also investigated the physicochemical properties of natural hydrophilic 

carotenoids such as bixin and crocin [17–19]. Recently, they have synthetized aldoxime and ketoxime 

hydrochlorides from oxo carotenoids, which showed moderate water dispersibility [20]. The 

antioxidant and aggregation properties of all these compounds were extensively studied in the above 

mentioned articles [21]. 

3. Complexation with Cyclodextrins 

Cyclodextrins (CD) are known biocompatible oligosaccharides of truncated cone shape, that have 

been applied in many fields of chromatography, environmental chemistry and also as food additives 

and complexing agents. Until the year 2000 there were no studies in connection with carotenoids that 

would reveal the real interaction between CDs and carotenoids. CDs were used as solubilizing agent, 

simply mixed with carotenoids in different proportions [22–25]. Later it was found that carotenoids 

without cyclic end groups at least on one end (e.g., lycopene or bixin) could form 1:1 inclusion 

complexes which are more stable than the native carotenoids [26–31]. We have found that cyclic  

end-groups cannot enter the relatively apolar cavity of CDs because of their size, but 3-4 CD 

molecules surround each end-group and are bound there through secondary interactions. A lot of CD 

derivatives were tested with various carotenoids and the most successful formulations were the 

randomly methylated -CD (RAMEB) complexes of capsanthin, capsorubin and lutein [32]. The major 

drawback of these nanocapsulated carotenoids is that they contain a relatively high percent (95%) of 

CD which is required to maintain their complexation ability and the water solubility of the complexes. 

The aqueous solutions of these complexes are stable over months, so no aggregation can be observed, 

and the complexation is not pH dependent. The RAMEB-lutein complex has been recently found to 

facilitate the incorporation of lutein in neurons [33].  

4. Glycosides 

Carotenoid glycosides occur in Nature as constituents of cell membranes of certain heat-resistant 

microorganisms. These compounds, also called thermoxanthins, are slightly more hydrophilic than 

simple carotenoids, however, their amphiphilic structure is noteworthy. The length of the thermoxanthins 

is equal to the width of the phospholipid bilayer, and they are incorporated into the cell membrane 

modifying its properties. This particular behaviour of thermoxanthins is believed to be partially 

responsible for the heat resistance of the Thermus species [34]. 

Only a few methods have been published for the chemical synthesis of carotenoid glycosides: direct 

glycosylation of carotenoid alcohols using the classical Königs-Knorr procedure [35,36] and total 

synthesis starting from 3-hydroxy-β-ionone [37,38]. Glycosides of astaxanthin were also prepared by a 

biosynthetic process [39].  

Mimetics of natural thermoxanthins were prepared by the generation of dications from -carotene 

or isozeaxanthin, which were treated with appropriate sugar derivatives as nucleophiles to make mono- 

and dithioglycosides [40]. The most successful reaction, to synthesize a thioglycoside in this case, can 

be seen in Scheme 1. After deprotection partially water-soluble thermoxanthin mimetics could be 

obtained. With this method CDs could be also coupled to carotenoids in the future. 
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Scheme 1. Synthesis of thermoxanthin mimetics. 
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In a similar way sulphur-containing amino acids can be coupled to carotenoids in good yields. With 

N-acetylcysteine as a nucleophile the products obtained are carotenoid-cysteine conjugates in which 

the amino acid moiety binds the carotenoid via sulphur (compound 7, Figure 2). The water-dispersibility 

of the products can be increased by deprotection of the amino group to obtain compounds like 8 [41]. 

Figure 2. Cysteine conjugates of carotenoids. 

 

5. PEGylated Carotenoids 

Polyethyleneglycol (PEG) conjugates of a wide range of biomolecules (especially peptides) are 

known [42,43], however, no covalently-bound PEG-carotenoid conjugates have been synthesized 

before. The hydrophilic PEG conjugates usually have better pharmacokinetic behaviour and, in 

general, are more efficient in drug targeting. There are examples of carotenoid-PEG dispersions in the 

literature which enhance the bioavailability of carotenoids [44]. PEG conjugates change the osmotic 

homeostasis much less than ionic compounds (such in those mentioned in Section 2). Furthermore, the 

water-solubility of PEG conjugates is independent of pH. If the PEG moiety is connected to the 
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carotenoid through a relatively labile bond, which can be cleaved under physiological conditions, the 

PEG will serve solely as an indifferent, polar carrier for carotenoids.  

Carotenoid-PEG esters and diesters were synthesized from several carotenoid succinates [45] with 

polyethyleneglycols of different chain length [tetraethyleneglycol (TEG), octaethyleneglycol (OEG), 

PEG-550 monomethyl ether (mPEG-550), Scheme 2] [46]. The same way carotenoid dimers and trimers 

that have a PEG spacer between the carotenoids were synthetized in good yields (Scheme 3) [47].  

Scheme 2. Synthesis of TEG- and OEG conjugates from mono- and disuccinates (Car = Carotenoid). 

 

Scheme 3. Trimers with OEG spacer. 

 



Molecules 2012, 17 5008 

 

 

The water dispersibility of the products was compared and found, as expected, to be proportional 

with the PEG content of the conjugates. Although the conjugation via ester bond makes these 

compounds susceptible to hydrolysis (e.g., by pancreatic secretions), it might as well be an advantage 

that they are regenerated to the parent hydroxy-carotenoids under physiological conditions. 

Preliminary studies showed elevated antioxidant activity of some PEG-carotenoid ester conjugates 

(Scheme 2) in H2O2 induced oxidative stress.  

Recently, we introduced azide-alkyne click chemistry to the field of carotenoid synthesis. After 

optimization of the reaction conditions, PEG azides could be coupled to carotenoid derivatives bearing 

an alkyne moiety [48]. This method seems to work well with carotenoids (Scheme 4), so it could be 

used in the future to synthesize not only carotenoid-PEG conjugates but conjugates with other, 

bioactive molecules. 

Scheme 4. Synthesis of carotenoid-PEG conjugates via click-reaction. 

 

6. Conclusions  

Intensive research into hydrophilic carotenoid formulations of any kind commenced less than 15 

years ago. In the past few years some attempts were made to make the carotenoids water dispersible 

via derivatization. As the example of Cardax shows, water-dispersible carotenoids can be more 

effective antioxidants and can display new properties in comparision with the parent carotenoids. 

Although some physiological and antioxidant studies were made on almost all of the compounds of 

this review, there is still a long way to go until the understanding of the action of hydrophilic 

carotenoids in contrast to native carotenoids. 
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