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Efficient simulation of three-dimensional anisotropic cardiac tissue
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A recently developed space—time adaptive mesh refinement algo(AMiRA) for simulating
isotropic one- and two-dimensional excitable media is generalized to simulate three-dimensional
anisotropic media. The accuracy and efficiency of the algorithm is investigated for anisotropic and
inhomogeneous 2D and 3D domains using the Luo—Ru@yR1l) and FitzHugh—Nagumo models.

For a propagating wave in a 3D slab of tissue with LR1 membrane kinetics and rotational anisotropy
comparable to that found in the human heart, factors of 50 and 30 are found, respectively, for the
speedup and for the savings in memory compared to an algorithm using a uniform space—time mesh
at the finest resolution of the AMRA method. For anisotropic 2D and 3D media, we find no
reduction in accuracy compared to a uniform space—time mesh. These results suggest that the
AMRA will be able to simulate the 3D electrical dynamics of canine ventricles quantitatively for

1 s using 32 1-GHz Alpha processors in approximately 9 h2@3 American Institute of Physics.

[DOI: 10.1063/1.1594685

Cardiac arrhythmias present a serious health problem, pha processors, we anticipate that the AMRA can be used
resulting in about 250000 adult deaths annually in the to simulate more than 2 s of complex ventricular dynam-
United States alone. Ventricular fibrillation, an often le- ics in realistic three-dimensional domains such as canine
thal arrhythmia, develops when normally coordinated  ventricles in under 1 day.

waves of electrical activation break apart into multiple
smaller activations, initiating only localized contractions
that cannot effectively pump blood. Understanding the
mechanisms responsible for the initiation and evolution
of cardiac arrhythmias is a challenging medical problem.
Because computer simulations can provide clean and
comprehensive data acquisition, reproducible results, and
systematic searches of parameter space, they are an im-
portant tool for studying arrhythmias. However, simula-
tions of cardiac tissue are computationally intensive be-

I. INTRODUCTION

Sudden cardiac death, mostly from ventricular fibrilla-
tion, is responsible for 250 000 deaths in the U.S. each’year.
Despite decades of research, the mechanisms responsible for
inducing and sustaining fibrillation are not well understood.
Experiments are difficult to conduct and data cannot be ob-
tained easily. In the best case, electrical potential data can be
) ) ; gathered directly from arrays of points on the epicardial and
cause of the differences in temporal and spat_lal scales of endocardial surfaces and possibly from a few points in the
the dynamics. One method already shown to increase the - iqmyocardium adjacent to the edge of a tissue slab. Optical
efﬁugncy of simulations fqr |sotrop|c_ 2D domains uses mapping using voltage-sensitive dyes can provide data at
the different scales of cardiac dynamics to vary the spa- higher spatial resolutions than electrodes, but the voltages
tial and temporal resolution of the solution grid auto- st pe inferred from optical signals that reflect the dynam-
matically according to the local dynamics, resulting in jcs of cells through a certain depth and still usually are ob-
less demanding computations. This paper analyzes the tained only from the epicardial surface, with dual epicardial—
performance of an extension of the earlier adaptive mesh  endocardial data being gathered only in a small number of
refinement algorithm (AMRA) to anisotropic and inho-  experiments in extracted tisst&Vith data limited primarily
mogeneous domains in 2D and 3D. Using the AMRA, to two dimensions, experiments so far have not elucidated
computational speedups and memory reductions of fac- the mechanisms responsible for the three-dimensional
tors of 50 and 30, respectively, are obtained for 3D propa- phenomenoh® of ventricular fibrillation. The roles of prop-
gating wave solutions using the Lue-Rudy 1 model of erties such as the heart’s sizgeometny’~8 electrical state,
membrane kinetics. With extensions to support more re-  anisotropic fiber structurdand inhomogeneitié$'*have yet
alistic geometries and parallelization using 32 1-GHz Al-  to be established.
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Because of the experimental difficulties involved in splitting?? which treats only linear terms involving high-
studying the three-dimensional dynamics of the heart and therder spatial derivatives implicitly while continuing to treat
mathematical complexities of even the simplest cardiac modether terms explicitly, can result in stability of time steps one
els, simulations play a crucial role both in testing hypothese$o two orders of magnitude larger than those required for
and in identifying and understanding experimentally ob-stability of a comparable explicit scheme. However, using
served dynamics. However, quantitatively accurate simulalarger time steps may lead to a decrease in solution
tions of an entire three-dimensional human heart are not yetccuracy™?* and consequently to substantial errors in com-
feasible. The essential difficulty is that human heart musclguted physical quantities. For instance, calculating conduc-
is a strongly excitable medium whose electrical dynamicgion velocity in the LR1 model at the forward Eul€FE)
involve narrow, rapidly varying fronts. The width of a front stability limit gives less than 5% error compared to the ve-
is about two orders of magnitude smaller than the long axidocity obtained by extrapolating linearly to a zero-size time
of a human-size right ventricle. Similarly, the fastest timestep, while the error increases to 20% and to 50% when
scale in heart dynamics, associated with the rapid depolacompared with a semi-implicit method using time steps 10
ization of the cell membrane, is about four orders of magni-and 50 times larger than the FE stability limit, respectively.
tude smaller than the time required to observe the establisha addition, the cost of integrating a system of equations for
ment of a fibrillating state. As described elsewh®rey  one time step often is substantially higher for an implicit
simulation of a whole heart for several seconds using a quariategration scheme compared to explicit schemes, so that im-
titatively accurate model and adequate spatial and temporalicit schemes also may be computationally inefficient if the
resolution may require about 1variables associated with overall number of time steps required is not reduced suffi-
the spatial mesh to be evolved over abouf fithe steps. A ciently.
uniform mesh calculation of such magnitude exceeds cur- The spatiotemporal structure of wave dynamics in excit-
rently existing computational resources and has not yet beesble media suggests a third approach: adjusting the resolu-
carried out. tion of the calculation locally, dynamically, and automati-

In this paper, we discuss new features of an adaptiveally. Cardiac electrical dynamics are sparse in that the sharp
mesh refinement algorithtAMRA) introduced in a recent fronts occupy only a small fraction of the tissue volume. By
previous papel’ There, we showed that the AMRA reduced varying the spatiotemporal resolution to concentrate compu-
by a factor of 5 the computation time and memory require-tational effort primarily along the areas with large spatial and
ments of a two-dimensional calculation in a many-spiraltemporal gradients, it is possible to reduce greatly the com-
state using the Luo—Rudy (1LR1) model® Here, we exam- putational effort and memory required. Thus the algorithm
ine additional applications not included in the previous studywill have complexity proportional to the area or volume of
Specifically, we provide examples in two and three spatiathe wave fronts, rather than to the afea volume in the 3D
dimensions and demonstrate that the AMRA is sufficientlycase of the domain. For highly excitable media like cardiac
general to include inhomogeneities and anisotropy easily antissue, this area or volume fraction generally is small, but it
to treat them efficiently and accurately. can be much larger for fibrillating states with many spiral or

Previous efforts to improve the efficiency of cardiac scroll waves.
simulations have followed three main approaches. The firstis  Until recently, adaptivity for excitable media was imple-
to use reduced mathematical models that reproduce some ofented by varying either the spatial or temporal resolution,
the behavior observed in more complex models but with onlybut not both, locally and dynamically. Previous
a few coupled fields. One widely studied example is the twostudied®?>%-2’have used time-adaptive strategies to vary
variable FitzHugh—Nagumo mod¥,which describes be- the size of the time steps used in various regions of the
havior of a general excitable medium and which can belomain depending on the local dynamics, but for a spatially
modified to approximate some types of cardiac dynafifcs. uniform mesh. This technique allowed those areas in the do-
A second example is a three-variable model developed bynain without any propagating fronts to use larger time steps,
Fenton and Karntsand designed to reproduce the restitutionwhile the spatial resolution remained constant over the entire
curves of more complex cardiac models. While these andlomain. Mooré® used a different adaptive approach, in
other simplified models can reproduce many known featurewhich the spatial resolution was varied, but the time steps
of cardiac electrical propagation, there may be some differelid not vary locally with the spatial resolution. However, this
ences, such as electrotonic effet®d’ In addition, modeling method kept the global time step small as long as a front was
drug effects in reduced models with fewer ionic currents ispresent in the domain and generally could not yield compu-
not as straightforward. For these reasons, efficient algorithmtational savings as significant as the time-adaptive strategy.
for more quantitatively-based models are still desirable.  Both of these adaptive approaches have the advantages that

A second approach is to retain more complex models buthey are largely model- and method-independent. We have
to solve them more efficiently by improved numerical algo-recently shown that combining spatial and temporal adaptiv-
rithms, such as time integration schemes that are fully oity can yield further saving¥’ Our space—time adaptive al-
semi-implicit>*®~2 Implicit methods avoid a bound on the gorithm was based on a method developed by Berger and
time step determined by the spatial resolution that explicico-workeré®=3° and used successfully for two- and three-
schemes incur, and for this reason they permit larger timelimensional simulations of hyperbolic systems of differential
steps at higher spatial resolutions than explicit methodsequations, such as the Euler equations of fluid dynamics. In
Even using a semi-implicit method based on operatoffluid dynamics applications, regions of fine space—time reso-
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lution automatically follow traveling shocks, while the rest and across the fibers. In our 3D simulations, we follow
of the domain uses a coarser spatial mesh and larger tinfieef. 9 and choos® to allow the fiber orientation to rotate
steps. In cardiac applications, higher resolution areas aliggmoothly with tissue depth from the epicardium to the en-
with propagating wavefronts of electrical activation. docardium, with the fiber axis always located in a plane par-
The rest of this paper is organized as follows. Section llallel to the epicardium.
contains an overview of the computational models we use for  For all calculations reported below, the Neumann bound-
our results, including both the quantitatively-based LR1ary conditions {i-V)V=0 were used, wheré is the unit
model for cardiac tissd@and the FitzHugh—Nagumo model vector normal to a given boundary point. Except where noted
for general excitable med4. Section Ill provides a brief below, the same membrane parameter values as those of
review of the AMRA. In Sec. IV, we show how our algo- Ref. 13 were used except for the maximum calcium conduc-

rithm correctly and accurately encloses sharp fronts for thQanceECa in the |, term, whose value was changed from
Luo—Rudy 1 model with areas of fine spatial and temporab.09 to 0.045 m$/F. The medium in 2D was anisotropic
resolution, even in the presence of anisotropy and inhomayith the conductivities along and across fibeRs e and
geneities. We also present results for 2D and 3D FitZHugh-Dperpv respective|y, set to 2 mS/cm and 0.2 mS/cm, g|v|ng
Nagumo simulations with spiral and scroll waves and estabconduction velocities of approximately 60 cm/s and 20 cm/s,
lish that there is no significant reduction in accuracy wherrespectively, and a 10:1 anisotropy ratio within the range of
using the AMRA compared to an algorithm that uses a spavalues observed for cardiac tissue. The surface-to-volume
tially uniform mesh and constant time step at the finestatio 8 was set to 2000 cit. In 3D, the medium included
space—time resolution of the AMRA. Furthermore, we anarotational anisotropy, with the conductivity along fibers,
lyze the AMRA's efficiency and show that for a propagating D . e, Set to 2 mS/cm, and the transverse and transmural
wave in 3D using the LR1 model, the AMRA provides sub- conductivities, D per, and Dyans, respectively, both set to
stantial savings of a factor of 50 in runtime and a factor of 300.2 mS/cm. The fiber orientation changed by 120° from the
in memory. Finally, in Sec. V, we use our results to estimatespicardium to the endocardium.

that a quantitatively accurate AMRA simulation of fibrilla- For some simulations, the FitzHugh_Nagurﬂ('-j{N)

tion in realistic cardiac anatomies for several seconds with amodef* was used in the following form:

effective 125um resolution should already be practical with
existing computers.

1
Ju(t,x)= ;(u—u3—v)+ D(x)V?u,
II. MODELS (4)

We used two different models to investigate the accuracy  g,v(t,x)=e€(u+ 8- yv).
and efficiency of the AMRA. Most of our results were ob-
tained for the physiologically-based LR1 mod&tyhich can

X : Hereu is the excitatory variable ang is the inhibitory vari-
be written in the form

able at timet and positionx. As in the LR1 modelD(x) is
1 the conductivity tensor, with conductivities along and across
E(V'D(X)VV)_Iion(Vrma[Ca2+]i) fibers set to 1 and 0.2, respectively, a lower aniostropy ratio
than we use for the LR1 but also within the range observed
—lsim(t,X), (1)  in cardiac tissue. The parameterrepresents the ratio of
recovery rate to excitation rate, the parameseacts as a
m .
—=f(V,m), (2) threshold, and the parametey is the slope of the
dt v-nullcline3* which determines whether the system has one
d[ca*7; stablg equilibrium or one unstable and two stablg _equilibria.
T =g(V,m,[C&"]), 3 As with the LR1 model, Neumann boundary conditions were
used. While this FHN model is not based on experimentally
where V(t,x) is the membrane potential at timteand at measured quantities, it can exhibit phenomena similar to
position x=(x,y) in 2D or x=(x,y,z) in 3D, C,, is the  whatis found in more quantitatively-based models like LR1,
membrane capacitance per unit arghjs the surface-to- such as rotating spiral waves in 2D and scroll waves in 3D.
volume ratio of a heart celD(x) is the conductivity tensor, We used the dimensionless FHN model to analyze tra-
lion IS the total ionic current flowing across the membrane jectories of spiral wave tips and scroll wave filaments be-
andl i, is a specified current injected to initiate a propagat-cause the dynamics of spiral tips in this model have been
ing wave. The six voltage-sensitive membrane variablesvell documented? A similar understanding of spiral tip dy-
m;(t,X) represent gating variables which, along with the in-namics for the LR1 model has not yet been realized due to
tracellular calcium concentratiofCa *];, determine the the model’s much larger parameter space and often unstable
flow of ions across the membrane. The tissue anisotropy inspiral wave behavior. Model parameters in E4). are set as
troduced by cardiac muscle fibers, which conduct currenfollows: e=0.1, 8=0.6, andy=0.5. In 2D and 3D, the
quickly along the fiber axis and slowly in other directions, is conductivities along and across fibers are set to 1.0 and 0.2,
included through the conductivity tensbr. If all fiber axes  respectively. In addition to aiding our accuracy analysis, use
are aligned parallel to one of the coordinate ax®®ecomes of the FHN model also demonstrates that our AMRA is not
a diagonal matrix whose entries are the conductivities alongestricted to only one model.

Cm&tV(t,X) =
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{a) Fig. 1(a) for three levels of spatial resolution. When com-

bined, these three grid levels give an effectively nonuniform

grid, as shown in Fig. (b). On each patch, spatial derivatives

in the dynamical equations at a given point are approximated

by second-order-accurate cell-centered finite differences us-

5 ing neighboring points.

o) Associated with each levélare both a spatial resolution

# 0% 0 sosososos o & o0 = * Ax, and a time step\t,. While multiple grid patches may

FIG. 1. One-dimensional illustration of the AMRA data structure. Grid €Xist at a given level of spatial resolution, the same time step

points are shown as black circles and data points are shown as open squarigs.used for all of them to facilitate data synchronization. The

(a). Locations of grid points and data points on three levels of spa_ttlal resosnatial resolutionx, is an integer multiple  (often two of

lution. Level 1 uses the coarsest resolution and level 3 uses the finest. NoI[ lutionA d for th t fi | | h

that data points from different levels never coinci@®. Effective grid cre- € resolutonax, ., used for e nexl !ner evel, .W ere

ated by the union of the finest data available throughout the domain showlevel 1 has the coarsest resolution. Similarly, the time step

in (a). Both grid points and data points are distributed nonuniformly. At, is an integer multipler, of the time stepAt,,,. For
parabolic systems of equations such as models of cardiac
electrical activity, the stability restrictions for explicit

lll. SOME DETAILS OF THE ALGORITHM schemes are of the formt<cAx2 and sor, generally

Our algorithm is a straightforward extension of anShould equakg. The ratio of At to Axf for all levels is
AMRA that has been used by other researchers to integraf@‘eda which allows the same explicit difference scheme to be
hyperbolic systems of conservation laws such as the Eulestable on all grid patches and also allows larger time steps to
equations of fluid dynamic®~%° Since the algorithm was be used in parts of the domain using coarser spatial resolu-
developed in 1982, it has been successfully used for man§v0”- In some cases it may be desirable to eliminate an inter-
applications, including combustidh, porous medid® mediate level by setting the spatial resolution of one level
compressibi¥ and incompressible magnetohydrodynamicequal to the resolution of the next finest level multiplied by
flows® incompressible Navier—Stokes fluid fidfupiofluid s instead ofr s, with the time step similarly adjusted to keep
dynamics®” cosmology?®3and excitable medi¥ Since key ~ At;/Ax{ constant on all levels of resolution.
mathematical and algorithmic details are available = The AMRA assumes that some explicit finite difference
elsewheré??42-3gnly some essential ingredients and ourscheme(specified by the usghas been chosen to approxi-
modifications to the original formulation are described heremate both space and time derivatives. Each grid patch is
In this section, we first give an overview of the adaptivedefined separately and maintains its own solution vector, so
mesh refinement strategy. Then, the time integration methothat grid patches can be integrated independently of other
is discussed. Finally, we describe briefly the use of a lookugpatches, except for the determination of boundary ¢t

table that further improves performance for the LR1 model.cussed belo Integration of grids of different spatial reso-
. lutions proceeds from coarse to fine levels to ensure that
A. Overview of the AMRA

internal boundary data for fine grids always can be interpo-
The algorithm is founded on the use of Cartesian or logidated from data already computed on coarser grids. Because
cally box-shaped grids. Cartesian grids have the advantage tife temporal resolution varies with the spatial resolution,
being substantially simpler to program than unstructurednore time steps are needed for finer patches, which leads to
grids. Traditionally, unstructured grids have been able to acan asynchronous updating of data. Steps on different levels
commodate boundaries with complex shapes more easilgre interleaved, so that before advancing a lé&vgtid patch
than Cartesian grids, although recent research has expandedtimet+ At,, all coarser grid patchdgevel | grid patches
the use of irregular boundaries within Cartesian gridwith 1<k) have been integrated to tinte Data on all grid
structured? Using Cartesian grids allows the use of integra-levels are synchronized only after one full time step on the
tion methods for rectangular grids whose convergence progeoarsest grid level is completed. The same integration
erties are well understodd.The corresponding code can be scheme is applied at every level. Because the integration
parallelized more easily and efficiently by avoiding the costamethod is contained in only one subroutine that is called
associated with indirect memory referencing on unstructuresvhenever needed, the AMRA allows the flexibility of imple-
grids menting different numerical methods and models as easily as
The AMRA approximates a given continuous field sucha uniform mesh code.
as the cardiac membrane potentil,x) on a set of nested Communication among grids occurs at two points in the
locally-uniform patches ofl-dimensional Cartesian meshes AMRA integration algorithm. When a levél cell is over-
in ad-dimensional Cartesian box. Each grid patch is definedayed by a finer grid level, the cell's value at tinias re-
as a separate data structure, independent of other patch@saced by the average of the fine grid values at ldvel
Field values are represented as cell-centered quantities, #sat comprise the coarse cell once they are comp(ftad
shown in Fig. 1a) for a one-dimensional example. Grid cells in 2D, or eight cells in 3D This process ensures that
points align from one level to the next, but because the gridhe most accurate data available are used on all grid levels.
spacing varies and the fields are cell-centered, the data pointhe other procedure that requires communication among
on different levels never align. The locations of grid pointsgrid patches is the determination of interrfabnphysical
(filled circles and data pointgopen squargsare shown in  boundary values for fine grid patches. Nonphysical boundary

Level 3 sOsO%Os O
level? « o ¢« o ¢ o % O % O & O =

Level1 = o » o » o » o »
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values are needed to provide the data necessary to use thpeedup of 3.4 compared to a serial cdtaith an effi-
finite difference stencil for all grid patches that have at leastiency of about 85%, while Allard and Trangensféifound

one edge not touching the physical boundary. These bounder an algorithm based on that of Berger and collaborators
ary data are either provided directly from neighboring gridapplied to a linear elasticity problem that a 32-processor dis-
patches at the same lev@ available or interpolated from tributed memory machinéhe Cray T3 yielded a factor of
neighboring grid patches at the next coarsest level. Integra8 speedup. We expect that our AMRA code can achieve a
ing from coarse to fine levels ensures that internal boundargimilar speedup for cardiac applications.

data for fine grids always can be interpolated from data al-

ready computed on coarser grids. Once the boundary data

have been obtained, their values are stored with the findp- Time integration method

grids to permit each grid patch to be integrated indepen-  The AMRA can use a variety of explicit time integration
dently of the other patches and to allow for greater parallelyethod<® Consideration of the dynamics exhibited by the
ization potential for future applications. LR1 model suggests that explicit methods may be acceptable
The power of the AMRA arises from its ability to refine for strongly excitable media like cardiac tissue because small
or to coarsen the spatial representations of fields automatjime steps are required to resolve the temporal gradients. The
cally and efficiently by varying the number of grid points fastest time scale associated with the LR1 model is the open-
|0ca.”y. Grid patChes with hlgher resolution in space and tlang of the sodium channels, which requires approximate]y
are created when an estimate of the local truncation error 0p.3 ms to increase the fraction of open sodium channels from
a coarser mesh exceeds a specified tolerance and are deletgs, to 90%. A reasonable temporal resolution would require
when no longer required. The errors are estimated on eagibout ten data points to resolve this change and therefore
level everyk, time steps for some integés,. Errors are  would need a time step of about 0.03 ms. Some researchers
estimated more often on finer grids because their time stepgcommend ensuring that the change in potentigl from
are smaller. However, errors are never estimated for grids &ne time step to the next is no greater than 1 mV, which
the finest level available, since the error in that region cannoimplies that over a change from80 mV to 20 mV, at least
be reduced by using a finer grid. We chose to regrid every00 time steps should be taken. Since the 100 mV change
two time steps, as we found that this value balanced théakes place in roughly 1 msAt can be no larger than
competing desires to minimize the computational expense aj.01 ms to kee@\ V<1 mV during the upstroke. Time steps
regridding and to keep grid patches closely aligned to waven the order of 0.01-0.03 ms are stable for the forward Euler
fronts in order to avoid unnecessary refinement. (FE) scheme at the spatial resolutions needed to use the LR1
Error estimates of a field such &§t,x,y) are calculated model without numerical artifacts causing propagation to
using Richardson extrapolatidh.On a given level of reso- cease(100—200 um), suggesting that methods that allow
lution, a time step is taken starting from the current time andarger time steps are not necessary during the upstroke.
the solution obtained is coarsened by a factor of 2. This  Using FE to solve Eq$1)—(3) showed that for values of
coarsened solution then is compared with the solution obAx above 25um, the size of the maximum stable time step
tained from a grid twice as coarse using a coarsened versiam longer varied withAx but remained constant. The source
of the previous solution value at the given level of resolutionof this constant restriction on the time step size was not the
and a time step twice as large. When the difference in soludiffusion portion of Eq. (1), but rather came from the
tions exceeds a specified absolute tolerance for some regioopupled ordinary differential equations. As noted in Ref. 45,
a fine grid patch is added. The algorithm includes flexibility Eq. (2) can be solved analytically at each time step/ifs
to use refinement criteria other than Richardson extrapolareated as a constant potential. We solved &.using a
tion, such as refining only where spatial gradients exceedemi-implicit backward Eule(BE) method, which gave re-
some specified tolerance or where some physiological prosults indistinguishable from those obtained using the analyti-
cess known to invoke a fast time scasich as the opening cal scheme. Equatiof8) cannot be solved analytically for a
of the sodium channel that excites the reltcurs. fixed potential and instead was solved by using the old val-
Once a subset of cells on a given level has been identes of the potentiaV and the gating variablas to calculate
fied as meeting the refinement criterion, the selected cells analues used to updafeCe™];, then using BE to integrate
formed into box-shaped grid patches at the next finest levein time: [C&*]"*'=[C&" "+ Atg(V",m"[C&*]""1),
A buffer zone consisting of cells whose error estimates davhereg(V,m,[C&*]) is given in Ref. 13. When Eqg2)
not require them to be refined, but which are near a refinednd (3) were integrated using a semi-implicit BE method
region, is added to prevent regions of high error from propawith the current value of the potenti&l, and when the dif-
gating outside the fine grids before regridding next takedusion term was solved using the explicit FE method, the
place. The size of the buffer zone depends on the regriddinmaximum stable time step was 1-2 orders of magnitude
frequencyk, . larger than what a FE scheme by itself would allow for spa-
Finally, we emphasize that this AMRA scheme can betial resolutions of 100-50@«:m and resumed the expected
parallelized. Because grid patches are integrated indepedependence on spatial resolution. When incorporated into the
dently, patches can be updated on separate processors WAMRA, the integration schemes described yielded greater
only limited communication needs to provide boundary con-computational savings at coarser resolutions than the purely
ditions for fine grids. Berger showed for a 2D fluid calcula- explicit FE method while retaining desired accuracy at fine
tion that running the code on four processors resulted in ¢evels.
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Finally, we note that numerical stability issues applied tofront width depending on the local direction of propagation.
the AMRA as expected for parabolic partial differential equa-In strongly anisotropic domains, achieving an adequate spa-
tions. For each level of resolutidn the stability criterion for  tial resolution is important to prevent distortion of the wave-
an explicit methodAt|<ch|2 must be met for a level- fronts during propagation. Such distortions can alter the ratio
independent constant When compared to a uniform mesh, of longitudinal to transverse conduction velocity and change
stability constraints were neither appreciably tightened nothe shapes of the trajectories of individual points in the
appreciably relaxed. We conclude that the AMRA imposedv-4dV/dt phase space.

no new stability constraints for explicit methods. Figure 2 shows some of the effects that can result when
Ax and At are not fully resolved. In this example, a
C. Use of a lookup table 2 cmx 2 cm domain was stimulated in a small square region

An additional reduction i ional effort by a f in the center of the tissue to initiate propagating waves. Pa-
fr} a |t|?c_na re uctt|)on_|n (cj:obmput_atlonal ekort %ﬁ? aC rameters for the LR1 model are as given in Sec. Il and the
tor offour to five was obtained by using a lookup tabi® anisotropy ratio is 10:1. Pangla) and(b) illustrate the shape

avoid r(_apeateq evaluations.c_)f exponentig!s when integratingf the propagating wave after 15 ms using different resolu-
the gating variables. Specifically, quantities that depende ons. Both use 125m and 0.02 ms as the coarsest spatial

and temporal resolutions, but par@) uses the AMRA to
Wdd two additional levels of mesh as needed, down to finest

tials, f“’”.‘ 12.0 mV to .70 mV. When these values WETE e solutions of 31.2%m and 0.00125 m#actors of 4 and 16
needed, linear interpolation from the two nearest table entries . : )

. . . . Smaller, respectively As seen in the figure, not only are the
was used, in 0.05 mV increments. In simulating a full

. . . ; . conduction velocities along and across fibers faster at higher
action potential at spatial resolutioAx=125um with . : . .
. resolutions, leading to a larger elliptical front, but the ratio of
At=0.002 ms, use of the lookup table produced a relatlvgon itudinal to transverse velocity changes as well, alterin
error of <1% compared to the solution found with no g Y g ! g

. . , . the overall shape of the front. When the coarser resolutions
lookup table. Along with a comparison of the action potential . ) . .

. o . . are used, the front is longer relative to its width than when
shapes, the conduction velocities and action potential durg; = T . .
. . . he finer resolution is used. Figure(c® illustrates the
tions (APDs) found with the table resolution set to 0.1 mV, AMRA' grid hierarchy corresponding to parié) [panel(a)
0.05 mV, and 0.01 mV were compared with the same quan- 9 y P grop P

tities obtained without using the lookup table. Since the velises a unlform_ mesh with |ntermed!ate-resc_)lut|on gru_:j
atches shown in yellow and overlaid by high-resolution

locities and APDs agreed in all cases to two decimal placeé)

we concluded that the table resolution was not a significangatcmgshsm.);vn n %reen.dltdshould tbe noted that thetprocess
source of inaccuracy. y which grids are formed does not preserve symmetries, so

the grid structure can develop asymmetries even when the
underlying dynamics is symmetric.
IV. RESULTS Figures 2d) and Ze) show the time rate of change in the

This section summarizes results obtained by applyingPotentialV/dt as a function of the potentiaf for two lo-
the AMRA to the LR1 and the FHN models. Because detailscations in space, one to the left of the stimulus site and
showing the accuracy and efficiency of the AMRA in 1D and affected mostly by longitudinal propagatigrircles, and the
2D homogeneous isotropic domains were presented ifther below the stimulation site and affected mostly by trans-
Ref. 12, we do not reproduce them here. Instead, we focus overse propagatiorisquares At adequate resolution, both
domains with anisotropy or inhomogeneities. We demon-lots should be qualitatively similar. At the coarser resolu-
strate how the AMRA can resolve 2D anisotropic domainstion, shown in pane{d), the trace showing transverse propa-
with waves initiated by a point stimulus and analyze whatgation has a pronounced hump during the early part of the
spatial resolution is needed to ensure comparable wavepstroke and an overshoot at the end of the upstroke com-
speeds and shapes when fibers are aligned with the comppared to the longitudinal trace. At finer resolution, these ef-
tational grid or at nonzero angles relative to it. Next, wefects disappear and better agreement is obtained, as shown in
show how the AMRA effectively responds to the presence ofFig. 2(e).
an inhomogeneous region in the tissue. Then we analyze the One way to reduce the numerical artifacts associated
accuracy of the AMRA in 2D and 3D anisotropic domains bywith coarser spatial resolutions on Cartesian grids in the
tracking spiral tips and filaments for the FHN model, whosepresence of a strong anisotropy would be to set the ratio
dynamics are known in various parameter regimes. FinallyAx/Ay not to 1, but instead to the ratio of longitudinal to
we discuss the AMRASs efficiency for a single propagatingtransverse conduction velocity. This could be done using the
pulse in 3D LR1 domains with rotational anistropy and ex-AMRA as easily as with a uniform grid. However, this strat-
trapolate the performance to larger domains with more comegy would be useful only for 2D or 3D domains with fibers
plex dynamics. oriented along the- or y-axes.

When fibers in strongly anisotropic media are oriented at
a nonzero angle relative to theaxis, discretization errors

The human heart is a strongly anisotropic medium, withdistort the propagating waves on Cartesian grids unless suf-
conductivities in the longitudinal and transverse directiondiciently high spatial resolution is used. This effect is similar
differing by roughly a factor of 4—10. These different con- to what has been shown for fibers aligned to the computa-
ductivities lead to differences in both the wave speed and thgonal grid, except that the distortions depend on the fiber

A. Anisotropy in a 2D medium
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FIG. 2. (Color Anisotropic propagation using the LR1 model in a 2x&cm domain, with conductivitie® paraie=2 mS/cm andD pe,= 0.2 mS/cm.(a)
\oltage profile after 15 ms using a uniform mesh witkx=125 m and At=0.02 ms. Values for the voltage are color coded with dark blue for
V=-5mV, red for—5<V=<-65mV, and yellow fo’v< — 65 mV. (b) Voltage profile after 15 ms using three levels of mesh with the same cAarsed

At as in(a) and with fineAx=31.25m andAt=0.00125 ms. Note that with a finérx, the profile is more rounded and the propagation velocity is slightly
faster than can be seen (g). (c) Instantaneous grid structures corresponding to the voltage profile).iThe coarsest resolution is shown in white, the
intermediate resolution in yellow, and the finest resolution in gré®nand (e) Plots of the potential time derivativ#//Jt vs potentialV corresponding to
fixed sites in the domains shown (&) and(b), respectively, over one action potential. The circles show voltage traces gathered from th® 8oiht0, to

the left of the stimulus site and thus affected mainly by longitudinal propagation, and the squares show tra¢g@9fror8, below the stimulus site and
affected mainly by transverse propagation.

angle. Both the shape of the front and the conduction velocidence may not be necessary for all calculations, there may be
ties along and across fibers are affected. Using the AMRA, isome cases where it can affect results. For instance, in 3D
is straightforward to add additional levels of resolution in calculations with rotational anisotropy, where the fiber angle
order to determine the resolution needed to achieve a desiredtates slowly with depth, it may be important to reduce the
small variation in the conduction velocities along and acrossngle dependence by using fine spatial resolution when ana-
fibers for various fiber angles. lyzing interactions among several fronts. The angle depen-
We examined the effect of spatial resolution and fiberdence decreases for smaller anisotropy ratios. In addition,
angle on the longitudinal and transverse conduction velocimodels with upstrokes that are not as sharp as the LR1 up-
ties for the LR1 model using parameters as described abowaroke do not require as high resolution to avoid the angle
in Sec. Il with the same anisotropy ratio of 10:1. Figure 3dependence. For example, the Fenton—Karma modi¢h
shows isochrones spaced every 5 ms for 20 ms using anglesodified LR1 kinetics can achieve.10% variation with
of 0° and 45° for finest spatial resolutions of 128n, angle in both longitudinal and transverse conduction veloci-
62.5 um, and 31.25um. To allow easier comparison be- ties at a spatial resolution of roughly 56m, or <25% at
tween the 0° and 45° results, the isochrones obtained usintD0 um, about twice as coarse as needed for comparable
fiber angles of 45° were rotated 45° in the figure. The agreement using the LR1 model.
isochrones illustrate the decreasing angle dependence of the
shape and speed of the front as the resolution decreases. go
obtain less than 10% variation in both the longitudinal and™"
the transverse conduction velocities at fiber angles of 0° and In Ref. 12, only homogeneous domains were considered.
45°, a spatial resolution of roughly 25m must be used, or However, cardiac tissue contains inhomogeneities inherent to
50 um for <25% variation. While reducing the angle depen-its structure, such as varying fiber directions and cell-to-cell

Inhomogeneities in a 2D medium
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Fibers at 0" center of the medium was still recovering from a blocked
stimulus initiated at time=840 ms. Because of the large
spatial gradient, much of the inhomogeneous region was still
e PE—— refined although no wave front or back was present in that
area. At time 986 ms, the new stimulus was propagating
around but not through the refractory area, which caused the
front to split into the two parts shown. In the corresponding
grid structure, the refined regions from the refractory area
and from the propagating front had merged into a heart-
shaped area. Since the refractory region was small and the
medium highly excitable, the front reformed on the other
side of the inhomogeneity, as illustrated tat 998 ms. At
time t=1030 ms, the front had completely passed the inho-
mogeneous region and had left behind an area that was not
excited by the most recent stimulus, because the refractory
region had not recovered enough to be re-excited. At this
125 um 62.5 pm 31.25 pm time and later at=1056 ms, an area in the middle of the
FIG. 3. Isochrones from & . , ) . . .domain remained refined due to the spatial gradients there.
.3 propagating wave in an anisotropic medium using . .
the LR1 model with fibers at Ottop row) and 45° relative to the-axis Another stimulus was applied @t=1080 ms, and be-
(bottom row. The isochrones from the 45° cases have been rotatésP cause the domain was quiescent near the stimulus site,
and spatially truncated at the boundaries to facilitate comparison with th?)ropagation began, as shown at tilre1094 ms. However,
corresponding 0° cases. The larger the valudef the slower the propa- e \wave was blocked because the rest of the medium was
gation velocity and the more different the shapes become for the two fiber . . . .
angles. Conductivities are 2 mS/cm and 0.2 mS/cm in the longitudinal and€fractory. While the exterior portion of the domain recov-
transverse directions, respectively. The domain is X@wem. Isochrones ered, as shown at time=1146 ms, the central region re-
are shown at 5 ms intervals for 20 ms. mained excited from the blocked stimulus, and the corre-
sponding grid structure reflects the spatial gradients that
were still present in the center of the domain even after the

variations in electrophysiological properties. Diseased tissu®/@v€ back had passed through nearly all the rest of the me-

may contain additional inhomogeneities due to conditiongiUm- At timet=1197 ms, just 3 ms before the next stimu-
like ischemia or infarction. It is important for the AMRA to Iu; was applied, t_he medmm remained _refraqtory in the
treat inhomogeneous regions appropriately. In the presené@_'ddle of t_he domqln, with r_ef!nement persisting in the areas
of anisotropy, regions of high error cause refinement onlyVith spatial gradients, similar to the plot shown at

along the wavefront and sometimes along the wave bacl{z 966 ms.

depending on the model used and the accuracy required. 10 Summarize, the AMRA does not treat inhomogeneous
When the domain no longer is homogeneous, the refinemefomains in an intrinsically different manner than it treats the

may last longer in the inhomogeneous tissue if a front linger§loM0geneous domains. Wavefronts and backs still trigger
there longer due to prolonged APD or to slower conductivity, €finement. However, in an inhomogeneous region, propaga-

However, inhomogeneities may cause conduction block, an{on May be blocked while most of the medium recovers
in that case refinement should be triggered even in the a

grom a wave that propagated successfully. This type of dy-

sence of a wavefront or back due to the spatial gradients iff@MICS gives rise to sharp spatial gradients that trigger re-
voltage. finement in areas that may be distant from the wavefronts
We tested how the AMRA refined a domain with an @nd backs.
inhomogeneity in membrane parameters that led to propaga-
tion block. The domain was 3cr3cm with a
1 cmx 0.1 cm inhomogeneity located in the center. Inside
and outside the inhomogeneous region, the calcium conduc- Having shown that the AMRA is capable of handling
tancegc, was set to 0.075 mgF and 0.045 mS(F, respec- anisotropy and inhomogeneities, we next analyze its accu-
tively, causing prolongation of the APD in the inhomoge-racy. In Ref. 12, we established that the action potential
neous region. The conductivities in tixe and y-directions  shape, APD, and conduction velocity found using the AMRA
were set to 2 mS/cm and 0.5 mS/cm, giving an anisotropyagreed with comparable uniform mesh values to within 1%,
ratio of 4:1. The medium was paced every 120 ms from axcept at the peak of the action potential, where the relative
0.05 cm square site in front of the inhomogeneous regionerror was roughly 6%. Here, we use measures of accuracy
Stimuli were unable to propagate through the inhomogeapplicable to 2D and 3D domains to establish that no inac-
neous tissue when it was still refractory and thus an obstacleuracies are incurred when using the AMRA in higher spatial
to conduction could be created. dimensions. To quantify the accuracy of the AMRA code in
Figure 4 shows a series of representative snapshots @D and 3D media, spiral tip and filament trajectories were
the membrane potential and the corresponding grid structurenalyzed. We used the FHN model rather than the LR1
for the inhomogeneous domain. At tinte- 966 ms, a new model, since spirals generally are unstable in LR1 and the
stimulus had been introduced just 6 ms earlier, while thedependence of their trajectories on the LR1 model param-

Fibers at 45°, isochrones rotated -45°

C. Accuracy
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FIG. 4. (Color) Front profiles in a medium with an inhomogeneity dg,. The calculation used three levels of resolution, frdmm=500um and
At=0.32 ms toAx=125 um andAt=0.02 ms. Field value colors are as described in Fig). @r the voltage profiles and in Fig(® for the grid structures.

The first stimulus shown does not affect a small region of refractoriness in the center of the domain, which causes the next stimulus to be blockEd in most
the domain. Additional details are given in the text.

eters has not been studied as thoroughModel parameters In 2D, the tip trajectory traced by the AMRA code with
were set as discussed in Sec. I, producing a spiral tip whickhree levels, fromAx=0.25 to Ax=0.0625 in space and

in an isotropic domain traced out a three-petal flower patterfrom At=0.01 toAt=0.000625 in time, was compared with
that rotated slowly over time. The petals were stretchedhat traced by a uniform mesh code using the finest spatial
somewhat in the presence of anisotropy of strength compand temporal resolutionAx=0.0625, At=0.000625 in a
rable to what is seen in cardiac tisqwee used a ratio of 5)1  square domain with a side length of 30 spatial units. The
compared to the isotropic pattern. location of each tip was identified by finding the intersection
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FIG. 5. (a) Very good agreement is obtained for the spiral tip trajectoriesFIG. 6. Comparison of a filament in the FHN model using the AMRA
produced for the FHN model using the AMR#Alled circles and a uniform  (lines) and a uniform grid at the finest space—time resolution of the AMRA
mesh at the finest space—time resolution of the AM@#e). This is the (circles after 140 time units, or about 12 rotations of the scroll wave. The
final flower produced after about ten rotations. Parameter values are given filaments are compared by depicting their projections inxthe, y—z, and

the text. Thex-axis has been scaled differently than thaxis to clarify the ~ x—Yy planes. The difference in all three projections never exceeds the fine
shape of the flower(b) Difference in the spiral tip trajectory produced for spatial resolution. Parameter values are given in the text.

the FHN model by the AMRA compared to the trajectory produced by a

uniform mesh at the finest space—time resolution of the AMRA. About ten

rotations have occurred during the time plotted. The error grows quickly aplanes, the filaments bent and twisted. The system was 30

the spiral initially forms and then grows more slowly over the remainder of ; [P _ Ai - : ;
the time, but after ten rotations the maximum difference is less than O.OPpatlal units in thex- and y-directions and 6 spatial units

spatial units, which is less than the fine spatial resolution Parameter tHiCK, which was not enough to give rise to transmural fila-
values are given in the text. ment breakup. The uniform grid used resolutions of
Ax=0.25 andAt=0.01, while the adaptive calculation used
these same values at the third and highest level of resolution
and values oiAx=1 andAx=0.16 at the coarsest level. To
avoid large jumps in the fiber orientation from omey
Iplane to the next, we used a rotation rate of 3° per fime

df%r a total of 72° from the top to the bottom surface. Fila-

intersected, and the location of the spiral tip was calculate . o
using linear interpolation. By comparing the tip locations ments were found by the same method used for identifying
: spiral tips in 2D, by looking at the intersection of the

found with images of the solution, it was determined that no . . , .
. . o u=0.5 andg;u=0 contours, in this case at every fine time
false tips were identified.

Figure 5a) illustrates the trajectories produced by both step. The same code was used as for the 2D tip identification,

the uniform mesiltfilled circles and the AMRA(line) codes W'thFSiWueerg i?l\l/;r:][z;{H;Egrr?gr?ty_ré'zﬁ?oenss. in thez
after about ten rotations. The two trajectories are nearly iden—_Z gndx— lanes after 140 time Snitjs or a roxima,ltel
tical. Figure %b) shows the corresponding difference of theY % yp ' PP y

? o . . .~ 12 rotations of the scroll wave. Data from the uniform mesh
AMRA tip position compared to the uniform mesh tip posi- : . .
. o . ) and AMRA calculations are shown as circles and lines, re-
tion over the entire time integrated. After the first few rota-

tions, the difference appears to grow linearly over time,spectwely. In all planes, the filaments are nearly identical,

. . . . . 'and the difference in the filament projections in all cases is
which is consistent with the error being caused by a sligh : . .
. . . ess than the fine spatial resolutidrx. We conclude that the
phase difference. Over ten rotations, the average difference

in tip location is approximately 0.002 spatial units, with the use of the AMRA does not contribute a significant error to

maximum value less than 0.01 spatial units, or roughl the tracking of filaments in this parameter regime for the

Y,
0.03% of the length of one side of the square domain anf N model.

still much less than the fine spatial resolutidr. These data
indicate that the AMRA is not a significant source of error in
the tracing of spiral tips in our 2D anisotropic FHN medium. Having demonstrated the accuracy and utility of the
In 3D, we combined rotational anisotropy with the pa- AMRA in 2D and 3D, we next quantify its efficiency in 3D
rameters already used in 2D. This produced a stack of spiralsing the LR1 model. To test the efficiency of the AMRA for
waves whose tips formed a filament stretching between tha 3D tissue slab at the same spatial and temporal resolutions
z=0 andz=L, planes. As the spirals meandered within therequired to achieve<25% variation in longitudinal and

of the u=0.5 andd,u=0 contours every 0.4 time units to
identify points with zero normal velocifySpecifically, the
coarse grid was swept to find squares where the contou

D. Efficiency in a 3D medium
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FIG. 7. (Color) Instantaneous voltage and grid structures during propagation in the LR1 model with rotational anisotropy. To facilitate visualization of the 3D
data, four 2D slices spaced evenly from the epicardium to the endocardium and parallel to both surfaces are shown, with the slices stacked @hdnthe epica
on top. The activation propagates from the epicardium down through the tissue and is affected by the rotational anisotropy, as can be seendrent the diff
orientations of the propagating fronts in the slices shown. The color scale is the same as in Fig. 2 for both the voltage and the grid structuresopye anis
ratio is 10:1. Additional parameter values are given in the text.

transverse conduction velocities for the 2D case alreadynemory savings by a factor of 2. If the same scaling holds
described(using three levels of refinemenkx=400 um, for regimes with more complex dynamics in 3D, we can
At=0.2ms; Ax=100um, At=0.0125 ms; and expect a speedup of about a factor of 12 and a reduction in
Ax=50 um, At=0.003125 ms), a single front was initiated required memory of about a factor of 15 for the LR1 model.
in a cube centered in the epicardium of a domain measuring
1.6 cm><_1.6 cmx 0.64 cm. F_|gure 7 shows fo_ur 2D s_hces of V. DISCUSSION AND CONCLUSIONS
the 3D tissue from epicardium to endocardium to illustrate
the dynamics within the thickness, along with the corre-  In this paper, we have discussed new features, new ap-
sponding grid hierarchies used on each slice. The fronplications, and new capabilities of a space—time adaptive
spread throughout the domain and the simulation lasted untihethod recently introduced for simulations of cardiac tissue
the entire medium was again quiescent, 260 ms in all. Thand other excitable medid.We have shown the AMRA's
AMRA used the finest level of resolution only when the front ability to simulate inhomogeneous and strongly anisotropic
was present in the domain, which allowed coarser spatial andomains using the LR1 model. Using the AMRA has no
temporal resolution to be used during the much longer resignificant effect on solution accuracy, as quantified by com-
fractory period. This local and dynamic adaptivity led to aparing spiral wave tips and filament locations in the FHN
substantial computational savings: while 84% of the totaimodel found using the AMRA with those found using a uni-
number of function evaluations were performed for the finesform space—time mesh at the finest resolution of the AMRA
resolution, on average the finest resolution cover&®so of  calculations. For a single propagating pulse in a 3D slab of
the physical domain. Overall, the AMRA required a factor of cardiac tissue using the LR1 model and incorporating rota-
50 less computational time and a factor of 30 less memoryional anisotropy with high spatial resolution to minimize
on average than a comparable calculation on a unifornangle dependence, we have demonstrated that our AMRA
space—time mesh using the finest AMRA resolution. Thereduces the computational time and memory requirements
simulation was performed in about 12.8 h on a 750-MHznecessary for a comparable calculation on a uniform space—
Alpha 264 processor with 2 GB of memory. time mesh by factors of 50 and 30, respectively. We empha-
Although the AMRA substantially reduces the resourcessize that the AMRA does not require the use of simpler mod-
required, a simulation of more complex dynamics using theels or special integration schemes. Moreover, the algorithm
LR1 model at this spatial and temporal resolution is stillcan be parallelized straightforwardf¥** which will facili-
beyond our group’s current computational resources. Howtate calculations on larger domains for longer times, particu-
ever, we can extrapolate the algorithm’s performance to dolarly for 3D calculations.
mains with more complex dynamics. In a 2D domain with a  Using the AMRA can provide a variety of advances in
single propagating pulse, we found a speedup of about addition to reductions in time and memory requirements. For
factor of 20 and an average savings in memory of a factor oinstance, it can allow more complex ionic models to be used
10. With multiple spiral waves, we found a speedup of ain place of simpler ones, either to perform a series of simu-
factor of 5 with a comparable reduction in memd&fyin lations or to compare results across models, without altering
moving to a domain with more complex dynamics in 2D, the runtime significantly. Similarly, it can allow the use of
then, the speedup was reduced by a factor of 4 and thekigher spatial and temporal resolution to reduce the angle
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dependence of propagation patterns in domains with rotabenefit more from use of the AMRA than studies of fully
tional anisotropy or to verify that a calculation is sufficiently developed fibrillation.
resolved so that an increase in resolution does not affect the Along with parallelization, there are several other ways
results. to enhance the capabilities of codes using the AMRA. One
Furthermore, using the AMRA can allow simulation of particularly important extension to develop and implement is
larger domains, including published anatomical models, sucthe capability to represent curved physical boundaries within
as rabbit ventricl€sand canine ventriclés.Based on the the Cartesian meshes of the AMRA. Recently, Calhoun and
known efficiencies of the AMRA in 2D and 3D domains with LeVequé® introduced a technique to represent irregular
a single propagating pulse and in 2D with more complexboundaries for a 2D adaptive meth@ahich should gener-
dynamics, we have estimated that using the AMRA in a 3Dalize to 3D based on Berger’s original algorithm. Their
domain with complex dynamics will result in a savings in method uses a capacity function to identify what fraction of
memory of a factor of 15 on average and a speedup of &e area of a boundary cell is contained in the computational
factor of 12 compared to a uniform space—time grid. Assumdomain and from this information varies the treatment of the
ing that the effective spatial and temporal resolutions for thdoundary cell. Another technique that has been used for uni-
models are 5¢:m and 0.003125 ms, respectively, and antici-form grids is the phase field method, which originally was
pating a modest factor of 2 speedup from using more moderfleveloped to follow advancing fronts in solidification where
processorgsuch as the 1-GHz Alpha chipwe can estimate boundaries are continually changiftgand which has been
that simulatiy 1 s of complex dynamics in the rabbit ven- €xtended to model stationary curved boundaries such as
tricles will require approximately 25 days on a single procesthose found on the surfaces of the hédnt'In this formula-
sor, and parallelization would be necessary to reduce this to %N, an additional matrix describing the structure is set up to
more tractable problem. If we gain a speedup of a factor oflescribe a given geometry, with values of 1 representing
28 using 32 processors, as Allard and Trangen&tein points in the domain and values of O representing points
achieved using a similar algorithm for a different class ofoutside the domain. A phase field is generated by assigning
problems, the computation time required to simelats of  intermediate values along the edge of the domain to smooth
fibrillation in the rabbit ventricles at this resolution would be the transition from 1's to 0's. Neumann boundary conditions
reduced to less than a day. Simulgtih s ofactivity on the ~ are imposed correctly provided that algorithmic parameters
much larger and thicker canine ventricles would require subgoverning the width of the phase field and the values for
stantially more time, an estimated factor of 17 longer, andntérmediate points are set to appropriate values for the prob-
likely would require the use of a coarser resolution to obtaif€m. We anticipate that the phase field method will work
results in a reasonable amount of time. For instance, iVithin the AMRA framework by generating phase field ma-
125 um and 0.02 ms were used s using the canine ven- trices for all spatial resolutions before starting the calculation
tricular anatomy would require just ov® h using 32 pro- and using the correct matrices on the corresponding grid
cessors that provide a speedup of 28. levels. _ o _
Our estimate of the speedup anticipated for fibrillating ~ The algorithm also could be made more efficient by in-
3D domains is based on the known efficiency of a planésorporating knoyvn information abo_ut '_[he dynamics into the
wave in 3D and the known reduction in efficiency of the "€gridding algorithm. Because regridding does not occur ev-
AMRA for 2D domains containing multiple waves compared €'Y Step, fine patches currently are slightly enlarged in all
to a single plane wave. However, it is possible that Waveglrec.:tlo.ns to allow propagating fronts to remain refined until
may pack more densely in 3D than in 2D, in which case OUIregrldd!ng next occurs. However, the frpnts re_presented on
estimate will be too optimistic. Nevertheless, we believe that€Se fine patches can propagate only into neighboring qui-
in most cases beneficial speedup will be obtained. We alsBSCeNt regions. Using this knowledge, a front-prediction
note that while implementing other models into the AMRA Scheme could be developed that would enlarge fine patches
code is straightforward, more complex models may pose ne@ly in the directions in which propagation can occur,
challenges. For instance, the Luo—Rudy dynarfiRd) thereby I|m|t|n_g_ the portion of the_ domain re_zso_lved to _fl_ner
modef™*8is known to be sensitive to calcium and requireslevel_s' In addition, the use of_reﬂnement criteria specific to
smaller time steps than the LR1 model. In addition, the LRdc@rdiac models and computationally less expensive than Ri-
and other models can exhibit calcium overload and the supEhardson extrapolation, such as refining in portions of the
sequent release of intracellular calcium during any phase difid where the sodium channel is opening, also could be
the action potential, and these releases may occur more oft&gneficial. o .
during fibrillation. To ensure that adequate resolution is used  With parallelization, curved boundaries, and front-
for these events, it may be necessary to incorporate calciuffediction added, AMRA-based codes will provide ex-
variables into the error estimate that indicates where refindf€mely powerful tools for understanding and eventually
ment is required. With finer resolution needed more often tdréating cardiac arrhythmias.
resolve calcium processes and possibly more complex error
estimation, the savings from using the AMRA may be more  CKNOWLEDGMENTS
modest for models more complex than LR1. However, it is  We thank M. Berger and F. Fenton for useful discussions
important to note that the usefulness of the AMRA dependsind M. Berger for making available to us her 2D and
on the question being studied. Investigations of the onset 3D AMRA codes that we modified to obtain the results
fibrillation, which would involve fewer waves, likely would reported here.
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