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Efficient simulation of three-dimensional anisotropic cardiac tissue
using an adaptive mesh refinement method
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A recently developed space–time adaptive mesh refinement algorithm~AMRA ! for simulating
isotropic one- and two-dimensional excitable media is generalized to simulate three-dimensional
anisotropic media. The accuracy and efficiency of the algorithm is investigated for anisotropic and
inhomogeneous 2D and 3D domains using the Luo–Rudy 1~LR1! and FitzHugh–Nagumo models.
For a propagating wave in a 3D slab of tissue with LR1 membrane kinetics and rotational anisotropy
comparable to that found in the human heart, factors of 50 and 30 are found, respectively, for the
speedup and for the savings in memory compared to an algorithm using a uniform space–time mesh
at the finest resolution of the AMRA method. For anisotropic 2D and 3D media, we find no
reduction in accuracy compared to a uniform space–time mesh. These results suggest that the
AMRA will be able to simulate the 3D electrical dynamics of canine ventricles quantitatively for
1 s using 32 1-GHz Alpha processors in approximately 9 h. ©2003 American Institute of Physics.
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Cardiac arrhythmias present a serious health problem,
resulting in about 250 000 adult deaths annually in the
United States alone. Ventricular fibrillation, an often le-
thal arrhythmia, develops when normally coordinated
waves of electrical activation break apart into multiple
smaller activations, initiating only localized contractions
that cannot effectively pump blood. Understanding the
mechanisms responsible for the initiation and evolution
of cardiac arrhythmias is a challenging medical problem.
Because computer simulations can provide clean and
comprehensive data acquisition, reproducible results, and
systematic searches of parameter space, they are an im
portant tool for studying arrhythmias. However, simula-
tions of cardiac tissue are computationally intensive be-
cause of the differences in temporal and spatial scales o
the dynamics. One method already shown to increase the
efficiency of simulations for isotropic 2D domains uses
the different scales of cardiac dynamics to vary the spa-
tial and temporal resolution of the solution grid auto-
matically according to the local dynamics, resulting in
less demanding computations. This paper analyzes th
performance of an extension of the earlier adaptive mesh
refinement algorithm „AMRA … to anisotropic and inho-
mogeneous domains in 2D and 3D. Using the AMRA
computational speedups and memory reductions of fac-
tors of 50 and 30, respectively, are obtained for 3D propa-
gating wave solutions using the Luo–Rudy 1 model of
membrane kinetics. With extensions to support more re-
alistic geometries and parallelization using 32 1-GHz Al-
8531054-1500/2003/13(3)/853/13/$20.00
pha processors, we anticipate that the AMRA can be used
to simulate more than 2 s ofcomplex ventricular dynam-
ics in realistic three-dimensional domains such as canine
ventricles in under 1 day.

I. INTRODUCTION

Sudden cardiac death, mostly from ventricular fibrill
tion, is responsible for 250 000 deaths in the U.S. each ye1

Despite decades of research, the mechanisms responsib
inducing and sustaining fibrillation are not well understoo
Experiments are difficult to conduct and data cannot be
tained easily. In the best case, electrical potential data ca
gathered directly from arrays of points on the epicardial a
endocardial surfaces and possibly from a few points in
midmyocardium adjacent to the edge of a tissue slab. Opt
mapping using voltage-sensitive dyes can provide data
higher spatial resolutions than electrodes, but the volta
must be inferred from optical signals that reflect the dyna
ics of cells through a certain depth and still usually are o
tained only from the epicardial surface, with dual epicardia
endocardial data being gathered only in a small numbe
experiments in extracted tissue.2 With data limited primarily
to two dimensions, experiments so far have not elucida
the mechanisms responsible for the three-dimensio
phenomenon3,4 of ventricular fibrillation. The roles of prop-
erties such as the heart’s size,5 geometry,6–8 electrical state,
anisotropic fiber structure,9 and inhomogeneities10,11have yet
to be established.
© 2003 American Institute of Physics
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Because of the experimental difficulties involved
studying the three-dimensional dynamics of the heart and
mathematical complexities of even the simplest cardiac m
els, simulations play a crucial role both in testing hypothe
and in identifying and understanding experimentally o
served dynamics. However, quantitatively accurate sim
tions of an entire three-dimensional human heart are not
feasible. The essential difficulty is that human heart mus
is a strongly excitable medium whose electrical dynam
involve narrow, rapidly varying fronts. The width of a fron
is about two orders of magnitude smaller than the long a
of a human-size right ventricle. Similarly, the fastest tim
scale in heart dynamics, associated with the rapid depo
ization of the cell membrane, is about four orders of mag
tude smaller than the time required to observe the estab
ment of a fibrillating state. As described elsewhere,12 a
simulation of a whole heart for several seconds using a qu
titatively accurate model and adequate spatial and temp
resolution may require about 1010 variables associated wit
the spatial mesh to be evolved over about 106 time steps. A
uniform mesh calculation of such magnitude exceeds c
rently existing computational resources and has not yet b
carried out.

In this paper, we discuss new features of an adap
mesh refinement algorithm~AMRA ! introduced in a recen
previous paper.12 There, we showed that the AMRA reduce
by a factor of 5 the computation time and memory requi
ments of a two-dimensional calculation in a many-spi
state using the Luo–Rudy 1~LR1! model.13 Here, we exam-
ine additional applications not included in the previous stu
Specifically, we provide examples in two and three spa
dimensions and demonstrate that the AMRA is sufficien
general to include inhomogeneities and anisotropy easily
to treat them efficiently and accurately.

Previous efforts to improve the efficiency of cardi
simulations have followed three main approaches. The fir
to use reduced mathematical models that reproduce som
the behavior observed in more complex models but with o
a few coupled fields. One widely studied example is the tw
variable FitzHugh–Nagumo model,14 which describes be
havior of a general excitable medium and which can
modified to approximate some types of cardiac dynamics8,15

A second example is a three-variable model developed
Fenton and Karma9 and designed to reproduce the restituti
curves of more complex cardiac models. While these
other simplified models can reproduce many known featu
of cardiac electrical propagation, there may be some dif
ences, such as electrotonic effects.16,17 In addition, modeling
drug effects in reduced models with fewer ionic currents
not as straightforward. For these reasons, efficient algorit
for more quantitatively-based models are still desirable.

A second approach is to retain more complex models
to solve them more efficiently by improved numerical alg
rithms, such as time integration schemes that are fully
semi-implicit.9,18–21 Implicit methods avoid a bound on th
time step determined by the spatial resolution that exp
schemes incur, and for this reason they permit larger t
steps at higher spatial resolutions than explicit metho
Even using a semi-implicit method based on opera
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splitting,22 which treats only linear terms involving high
order spatial derivatives implicitly while continuing to tre
other terms explicitly, can result in stability of time steps o
to two orders of magnitude larger than those required
stability of a comparable explicit scheme. However, us
larger time steps may lead to a decrease in solu
accuracy23,24 and consequently to substantial errors in co
puted physical quantities. For instance, calculating cond
tion velocity in the LR1 model at the forward Euler~FE!
stability limit gives less than 5% error compared to the v
locity obtained by extrapolating linearly to a zero-size tim
step, while the error increases to 20% and to 50% wh
compared with a semi-implicit method using time steps
and 50 times larger than the FE stability limit, respective
In addition, the cost of integrating a system of equations
one time step often is substantially higher for an impli
integration scheme compared to explicit schemes, so that
plicit schemes also may be computationally inefficient if t
overall number of time steps required is not reduced su
ciently.

The spatiotemporal structure of wave dynamics in ex
able media suggests a third approach: adjusting the res
tion of the calculation locally, dynamically, and automa
cally. Cardiac electrical dynamics are sparse in that the sh
fronts occupy only a small fraction of the tissue volume. B
varying the spatiotemporal resolution to concentrate com
tational effort primarily along the areas with large spatial a
temporal gradients, it is possible to reduce greatly the co
putational effort and memory required. Thus the algorith
will have complexity proportional to the area or volume
the wave fronts, rather than to the area~or volume in the 3D
case! of the domain. For highly excitable media like cardia
tissue, this area or volume fraction generally is small, bu
can be much larger for fibrillating states with many spiral
scroll waves.

Until recently, adaptivity for excitable media was imple
mented by varying either the spatial or temporal resoluti
but not both, locally and dynamically. Previou
studies19,20,25–27have used time-adaptive strategies to va
the size of the time steps used in various regions of
domain depending on the local dynamics, but for a spatia
uniform mesh. This technique allowed those areas in the
main without any propagating fronts to use larger time ste
while the spatial resolution remained constant over the en
domain. Moore21 used a different adaptive approach,
which the spatial resolution was varied, but the time ste
did not vary locally with the spatial resolution. However, th
method kept the global time step small as long as a front
present in the domain and generally could not yield com
tational savings as significant as the time-adaptive strat
Both of these adaptive approaches have the advantages
they are largely model- and method-independent. We h
recently shown that combining spatial and temporal adap
ity can yield further savings.12 Our space–time adaptive a
gorithm was based on a method developed by Berger
co-workers28–30 and used successfully for two- and thre
dimensional simulations of hyperbolic systems of different
equations, such as the Euler equations of fluid dynamics
fluid dynamics applications, regions of fine space–time re
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lution automatically follow traveling shocks, while the re
of the domain uses a coarser spatial mesh and larger
steps. In cardiac applications, higher resolution areas a
with propagating wavefronts of electrical activation.

The rest of this paper is organized as follows. Section
contains an overview of the computational models we use
our results, including both the quantitatively-based L
model for cardiac tissue13 and the FitzHugh–Nagumo mode
for general excitable media.14 Section III provides a brief
review of the AMRA. In Sec. IV, we show how our algo
rithm correctly and accurately encloses sharp fronts for
Luo–Rudy 1 model with areas of fine spatial and tempo
resolution, even in the presence of anisotropy and inho
geneities. We also present results for 2D and 3D FitzHug
Nagumo simulations with spiral and scroll waves and est
lish that there is no significant reduction in accuracy wh
using the AMRA compared to an algorithm that uses a s
tially uniform mesh and constant time step at the fin
space–time resolution of the AMRA. Furthermore, we a
lyze the AMRA’s efficiency and show that for a propagati
wave in 3D using the LR1 model, the AMRA provides su
stantial savings of a factor of 50 in runtime and a factor of
in memory. Finally, in Sec. V, we use our results to estim
that a quantitatively accurate AMRA simulation of fibrilla
tion in realistic cardiac anatomies for several seconds with
effective 125mm resolution should already be practical wi
existing computers.

II. MODELS

We used two different models to investigate the accur
and efficiency of the AMRA. Most of our results were o
tained for the physiologically-based LR1 model,13 which can
be written in the form

Cm] tV~ t,x!5
1

b
~¹•D~x!¹V!2I ion~V,m,@Ca21# i!

2I stim~ t,x!, ~1!

dm

dt
5f~V,m!, ~2!

d@Ca21# i

dt
5g~V,m,@Ca21# i!, ~3!

where V(t,x) is the membrane potential at timet and at
position x5(x,y) in 2D or x5(x,y,z) in 3D, Cm is the
membrane capacitance per unit area,b is the surface-to-
volume ratio of a heart cell,D(x) is the conductivity tensor
I ion is the total ionic current flowing across the membra
andI stim is a specified current injected to initiate a propag
ing wave. The six voltage-sensitive membrane variab
mi(t,x) represent gating variables which, along with the
tracellular calcium concentration@Ca21# i , determine the
flow of ions across the membrane. The tissue anisotropy
troduced by cardiac muscle fibers, which conduct curr
quickly along the fiber axis and slowly in other directions,
included through the conductivity tensorD. If all fiber axes
are aligned parallel to one of the coordinate axes,D becomes
a diagonal matrix whose entries are the conductivities al
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and across the fibers. In our 3D simulations, we follo
Ref. 9 and chooseD to allow the fiber orientation to rotate
smoothly with tissue depth from the epicardium to the e
docardium, with the fiber axis always located in a plane p
allel to the epicardium.

For all calculations reported below, the Neumann bou
ary conditions (n̂•¹)V50 were used, wheren̂ is the unit
vector normal to a given boundary point. Except where no
below, the same membrane parameter values as thos
Ref. 13 were used except for the maximum calcium cond
tanceḠCa in the I ion term, whose value was changed fro
0.09 to 0.045 mS/mF. The medium in 2D was anisotropi
with the conductivities along and across fibers,Dparallel and
Dperp, respectively, set to 2 mS/cm and 0.2 mS/cm, givi
conduction velocities of approximately 60 cm/s and 20 cm
respectively, and a 10:1 anisotropy ratio within the range
values observed for cardiac tissue. The surface-to-volu
ratio b was set to 2000 cm21. In 3D, the medium included
rotational anisotropy, with the conductivity along fiber
Dparallel, set to 2 mS/cm, and the transverse and transm
conductivities, Dperp and D trans, respectively, both set to
0.2 mS/cm. The fiber orientation changed by 120° from
epicardium to the endocardium.

For some simulations, the FitzHugh–Nagumo~FHN!
model31 was used in the following form:

] tu~ t,x!5
1

e
~u2u32v !1D~x!¹2u,

~4!

] tv~ t,x!5e~u1b2gv !.

Hereu is the excitatory variable andv is the inhibitory vari-
able at timet and positionx. As in the LR1 model,D(x) is
the conductivity tensor, with conductivities along and acro
fibers set to 1 and 0.2, respectively, a lower aniostropy ra
than we use for the LR1 but also within the range obser
in cardiac tissue. The parametere represents the ratio o
recovery rate to excitation rate, the parameterb acts as a
threshold, and the parameterg is the slope of the
v-nullcline,31 which determines whether the system has o
stable equilibrium or one unstable and two stable equilib
As with the LR1 model, Neumann boundary conditions we
used. While this FHN model is not based on experimenta
measured quantities, it can exhibit phenomena similar
what is found in more quantitatively-based models like LR
such as rotating spiral waves in 2D and scroll waves in 3

We used the dimensionless FHN model to analyze
jectories of spiral wave tips and scroll wave filaments b
cause the dynamics of spiral tips in this model have b
well documented.31 A similar understanding of spiral tip dy
namics for the LR1 model has not yet been realized due
the model’s much larger parameter space and often unst
spiral wave behavior. Model parameters in Eq.~4! are set as
follows: e50.1, b50.6, andg50.5. In 2D and 3D, the
conductivities along and across fibers are set to 1.0 and
respectively. In addition to aiding our accuracy analysis,
of the FHN model also demonstrates that our AMRA is n
restricted to only one model.
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III. SOME DETAILS OF THE ALGORITHM

Our algorithm is a straightforward extension of a
AMRA that has been used by other researchers to integ
hyperbolicsystems of conservation laws such as the Eu
equations of fluid dynamics.28–30 Since the algorithm was
developed in 1982, it has been successfully used for m
applications, including combustion,32 porous media,33

compressible34 and incompressible magnetohydrodynam
flows,35 incompressible Navier–Stokes fluid flow,36 biofluid
dynamics,37 cosmology,38,39and excitable media.12 Since key
mathematical and algorithmic details are availa
elsewhere,12,24,28–30only some essential ingredients and o
modifications to the original formulation are described he
In this section, we first give an overview of the adapti
mesh refinement strategy. Then, the time integration met
is discussed. Finally, we describe briefly the use of a loo
table that further improves performance for the LR1 mod

A. Overview of the AMRA

The algorithm is founded on the use of Cartesian or lo
cally box-shaped grids. Cartesian grids have the advantag
being substantially simpler to program than unstructu
grids. Traditionally, unstructured grids have been able to
commodate boundaries with complex shapes more ea
than Cartesian grids, although recent research has expa
the use of irregular boundaries within Cartesian g
structures.40 Using Cartesian grids allows the use of integ
tion methods for rectangular grids whose convergence p
erties are well understood.29 The corresponding code can b
parallelized more easily and efficiently by avoiding the co
associated with indirect memory referencing on unstructu
grids.41

The AMRA approximates a given continuous field su
as the cardiac membrane potentialV(t,x) on a set of nested
locally-uniform patches ofd-dimensional Cartesian meshe
in a d-dimensional Cartesian box. Each grid patch is defin
as a separate data structure, independent of other pat
Field values are represented as cell-centered quantitie
shown in Fig. 1~a! for a one-dimensional example. Gri
points align from one level to the next, but because the g
spacing varies and the fields are cell-centered, the data p
on different levels never align. The locations of grid poin
~filled circles! and data points~open squares! are shown in

FIG. 1. One-dimensional illustration of the AMRA data structure. G
points are shown as black circles and data points are shown as open sq
~a! Locations of grid points and data points on three levels of spatial re
lution. Level 1 uses the coarsest resolution and level 3 uses the finest.
that data points from different levels never coincide.~b! Effective grid cre-
ated by the union of the finest data available throughout the domain sh
in ~a!. Both grid points and data points are distributed nonuniformly.
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Fig. 1~a! for three levels of spatial resolution. When com
bined, these three grid levels give an effectively nonunifo
grid, as shown in Fig. 1~b!. On each patch, spatial derivative
in the dynamical equations at a given point are approxima
by second-order-accurate cell-centered finite differences
ing neighboring points.

Associated with each levell are both a spatial resolutio
Dxl and a time stepDt l . While multiple grid patches may
exist at a given level of spatial resolution, the same time s
is used for all of them to facilitate data synchronization. T
spatial resolutionDxl is an integer multipler s ~often two! of
the resolutionDxl 11 used for the next finer level, wher
level 1 has the coarsest resolution. Similarly, the time s
Dt l is an integer multipler t of the time stepDt l 11 . For
parabolic systems of equations such as models of car
electrical activity, the stability restrictions for explic
schemes are of the formDt,cDx2, and sor t generally
should equalr s

2 . The ratio ofDt l to Dxl
2 for all levels is

fixed, which allows the same explicit difference scheme to
stable on all grid patches and also allows larger time step
be used in parts of the domain using coarser spatial res
tion. In some cases it may be desirable to eliminate an in
mediate level by setting the spatial resolution of one le
equal to the resolution of the next finest level multiplied
r s

2 instead ofr s , with the time step similarly adjusted to kee
Dt l /Dxl

2 constant on all levels of resolution.
The AMRA assumes that some explicit finite differen

scheme~specified by the user! has been chosen to approx
mate both space and time derivatives. Each grid patc
defined separately and maintains its own solution vector
that grid patches can be integrated independently of o
patches, except for the determination of boundary data~dis-
cussed below!. Integration of grids of different spatial reso
lutions proceeds from coarse to fine levels to ensure
internal boundary data for fine grids always can be inter
lated from data already computed on coarser grids. Beca
the temporal resolution varies with the spatial resolutio
more time steps are needed for finer patches, which lead
an asynchronous updating of data. Steps on different le
are interleaved, so that before advancing a levelk grid patch
to time t1Dtk , all coarser grid patches~level l grid patches
with l ,k) have been integrated to timet. Data on all grid
levels are synchronized only after one full time step on
coarsest grid level is completed. The same integrat
scheme is applied at every level. Because the integra
method is contained in only one subroutine that is cal
whenever needed, the AMRA allows the flexibility of imple
menting different numerical methods and models as easil
a uniform mesh code.

Communication among grids occurs at two points in t
AMRA integration algorithm. When a levell cell is over-
layed by a finer grid level, the cell’s value at timet is re-
placed by the average of the fine grid values at levell 11
that comprise the coarse cell once they are computed~four
cells in 2D, or eight cells in 3D!. This process ensures tha
the most accurate data available are used on all grid lev
The other procedure that requires communication am
grid patches is the determination of internal~nonphysical!
boundary values for fine grid patches. Nonphysical bound

res.
o-
ote

n



e
as
n

rid

ra
a
a

da
n
en
le

e
a

ts
m
r o
ele
a

te
s
n
e
th
e
av

n
h
ob
si
ion
ol
gi
ity
ol
ee
pr

n
a

ve
d

ne
pa
ke
in

b
pe

w
n

a-
in

ors
dis-

e a

n
e

able
all

The
en-

ely
rom
ire
fore
ers

ich

nge

s
ler

LR1
to

w

f
p
e
the

5,

lyti-
a
al-

d

he
de
a-
d
the
ter
rely
ne

857Chaos, Vol. 13, No. 3, 2003 Efficient simulation of cardiac tissue
values are needed to provide the data necessary to us
finite difference stencil for all grid patches that have at le
one edge not touching the physical boundary. These bou
ary data are either provided directly from neighboring g
patches at the same level~if available! or interpolated from
neighboring grid patches at the next coarsest level. Integ
ing from coarse to fine levels ensures that internal bound
data for fine grids always can be interpolated from data
ready computed on coarser grids. Once the boundary
have been obtained, their values are stored with the fi
grids to permit each grid patch to be integrated indep
dently of the other patches and to allow for greater paral
ization potential for future applications.

The power of the AMRA arises from its ability to refin
or to coarsen the spatial representations of fields autom
cally and efficiently by varying the number of grid poin
locally. Grid patches with higher resolution in space and ti
are created when an estimate of the local truncation erro
a coarser mesh exceeds a specified tolerance and are d
when no longer required. The errors are estimated on e
level everykr time steps for some integerkr . Errors are
estimated more often on finer grids because their time s
are smaller. However, errors are never estimated for grid
the finest level available, since the error in that region can
be reduced by using a finer grid. We chose to regrid ev
two time steps, as we found that this value balanced
competing desires to minimize the computational expens
regridding and to keep grid patches closely aligned to w
fronts in order to avoid unnecessary refinement.

Error estimates of a field such asV(t,x,y) are calculated
using Richardson extrapolation.42 On a given level of reso-
lution, a time step is taken starting from the current time a
the solution obtained is coarsened by a factor of 2. T
coarsened solution then is compared with the solution
tained from a grid twice as coarse using a coarsened ver
of the previous solution value at the given level of resolut
and a time step twice as large. When the difference in s
tions exceeds a specified absolute tolerance for some re
a fine grid patch is added. The algorithm includes flexibil
to use refinement criteria other than Richardson extrap
tion, such as refining only where spatial gradients exc
some specified tolerance or where some physiological
cess known to invoke a fast time scale~such as the opening
of the sodium channel that excites the cell! occurs.

Once a subset of cells on a given level has been ide
fied as meeting the refinement criterion, the selected cells
formed into box-shaped grid patches at the next finest le
A buffer zone consisting of cells whose error estimates
not require them to be refined, but which are near a refi
region, is added to prevent regions of high error from pro
gating outside the fine grids before regridding next ta
place. The size of the buffer zone depends on the regridd
frequencykr .

Finally, we emphasize that this AMRA scheme can
parallelized. Because grid patches are integrated inde
dently, patches can be updated on separate processors
only limited communication needs to provide boundary co
ditions for fine grids. Berger showed for a 2D fluid calcul
tion that running the code on four processors resulted
the
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speedup of 3.4 compared to a serial code,43 with an effi-
ciency of about 85%, while Allard and Trangenstein44 found
for an algorithm based on that of Berger and collaborat
applied to a linear elasticity problem that a 32-processor
tributed memory machine~the Cray T3E! yielded a factor of
28 speedup. We expect that our AMRA code can achiev
similar speedup for cardiac applications.

B. Time integration method

The AMRA can use a variety of explicit time integratio
methods.29 Consideration of the dynamics exhibited by th
LR1 model suggests that explicit methods may be accept
for strongly excitable media like cardiac tissue because sm
time steps are required to resolve the temporal gradients.
fastest time scale associated with the LR1 model is the op
ing of the sodium channels, which requires approximat
0.3 ms to increase the fraction of open sodium channels f
10% to 90%. A reasonable temporal resolution would requ
about ten data points to resolve this change and there
would need a time step of about 0.03 ms. Some research19

recommend ensuring that the change in potentialDV from
one time step to the next is no greater than 1 mV, wh
implies that over a change from280 mV to 20 mV, at least
100 time steps should be taken. Since the 100 mV cha
takes place in roughly 1 ms,Dt can be no larger than
0.01 ms to keepDV,1 mV during the upstroke. Time step
on the order of 0.01–0.03 ms are stable for the forward Eu
~FE! scheme at the spatial resolutions needed to use the
model without numerical artifacts causing propagation
cease~100–200mm!, suggesting that methods that allo
larger time steps are not necessary during the upstroke.

Using FE to solve Eqs.~1!–~3! showed that for values o
Dx above 25mm, the size of the maximum stable time ste
no longer varied withDx but remained constant. The sourc
of this constant restriction on the time step size was not
diffusion portion of Eq. ~1!, but rather came from the
coupled ordinary differential equations. As noted in Ref. 4
Eq. ~2! can be solved analytically at each time step ifV is
treated as a constant potential. We solved Eq.~2! using a
semi-implicit backward Euler~BE! method, which gave re-
sults indistinguishable from those obtained using the ana
cal scheme. Equation~3! cannot be solved analytically for
fixed potential and instead was solved by using the old v
ues of the potentialV and the gating variablesm to calculate
values used to update@Ca21# i , then using BE to integrate
in time: @Ca21# i

n115@Ca21# i
n1Dtg(Vn,mn,@Ca21# i

n11),
whereg(V,m,@Ca21# i) is given in Ref. 13. When Eqs.~2!
and ~3! were integrated using a semi-implicit BE metho
with the current value of the potentialV, and when the dif-
fusion term was solved using the explicit FE method, t
maximum stable time step was 1–2 orders of magnitu
larger than what a FE scheme by itself would allow for sp
tial resolutions of 100–500mm and resumed the expecte
dependence on spatial resolution. When incorporated into
AMRA, the integration schemes described yielded grea
computational savings at coarser resolutions than the pu
explicit FE method while retaining desired accuracy at fi
levels.
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Finally, we note that numerical stability issues applied
the AMRA as expected for parabolic partial differential equ
tions. For each level of resolutionl , the stability criterion for
an explicit methodDt l,cDxl

2 must be met for a level-
independent constantc. When compared to a uniform mes
stability constraints were neither appreciably tightened
appreciably relaxed. We conclude that the AMRA impos
no new stability constraints for explicit methods.

C. Use of a lookup table

An additional reduction in computational effort by a fa
tor of four to five was obtained by using a lookup table46 to
avoid repeated evaluations of exponentials when integra
the gating variables. Specifically, quantities that depen
only on the potentialV and that involved at least one exp
nentiation were calculated and stored over a range of po
tials, from 2120 mV to 70 mV. When these values we
needed, linear interpolation from the two nearest table ent
was used, in 0.05 mV increments. In simulating a f
action potential at spatial resolutionDx5125 mm with
Dt50.002 ms, use of the lookup table produced a rela
error of ,1% compared to the solution found with n
lookup table. Along with a comparison of the action potent
shapes, the conduction velocities and action potential d
tions ~APDs! found with the table resolution set to 0.1 m
0.05 mV, and 0.01 mV were compared with the same qu
tities obtained without using the lookup table. Since the
locities and APDs agreed in all cases to two decimal plac
we concluded that the table resolution was not a signific
source of inaccuracy.

IV. RESULTS

This section summarizes results obtained by apply
the AMRA to the LR1 and the FHN models. Because deta
showing the accuracy and efficiency of the AMRA in 1D a
2D homogeneous isotropic domains were presented
Ref. 12, we do not reproduce them here. Instead, we focu
domains with anisotropy or inhomogeneities. We dem
strate how the AMRA can resolve 2D anisotropic doma
with waves initiated by a point stimulus and analyze wh
spatial resolution is needed to ensure comparable w
speeds and shapes when fibers are aligned with the com
tational grid or at nonzero angles relative to it. Next, w
show how the AMRA effectively responds to the presence
an inhomogeneous region in the tissue. Then we analyze
accuracy of the AMRA in 2D and 3D anisotropic domains
tracking spiral tips and filaments for the FHN model, who
dynamics are known in various parameter regimes. Fina
we discuss the AMRA’s efficiency for a single propagati
pulse in 3D LR1 domains with rotational anistropy and e
trapolate the performance to larger domains with more co
plex dynamics.

A. Anisotropy in a 2D medium

The human heart is a strongly anisotropic medium, w
conductivities in the longitudinal and transverse directio
differing by roughly a factor of 4–10. These different co
ductivities lead to differences in both the wave speed and
-
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front width depending on the local direction of propagatio
In strongly anisotropic domains, achieving an adequate s
tial resolution is important to prevent distortion of the wav
fronts during propagation. Such distortions can alter the ra
of longitudinal to transverse conduction velocity and chan
the shapes of the trajectories of individual points in t
V–]V/]t phase space.

Figure 2 shows some of the effects that can result w
Dx and Dt are not fully resolved. In this example,
2 cm32 cm domain was stimulated in a small square reg
in the center of the tissue to initiate propagating waves.
rameters for the LR1 model are as given in Sec. II and
anisotropy ratio is 10:1. Panels~a! and~b! illustrate the shape
of the propagating wave after 15 ms using different reso
tions. Both use 125mm and 0.02 ms as the coarsest spa
and temporal resolutions, but panel~b! uses the AMRA to
add two additional levels of mesh as needed, down to fin
resolutions of 31.25mm and 0.00125 ms~factors of 4 and 16
smaller, respectively!. As seen in the figure, not only are th
conduction velocities along and across fibers faster at hig
resolutions, leading to a larger elliptical front, but the ratio
longitudinal to transverse velocity changes as well, alter
the overall shape of the front. When the coarser resoluti
are used, the front is longer relative to its width than wh
the finer resolution is used. Figure 2~c! illustrates the
AMRA’s grid hierarchy corresponding to panel~b! @panel~a!
uses a uniform mesh#, with intermediate-resolution grid
patches shown in yellow and overlaid by high-resoluti
patches shown in green. It should be noted that the pro
by which grids are formed does not preserve symmetries
the grid structure can develop asymmetries even when
underlying dynamics is symmetric.

Figures 2~d! and 2~e! show the time rate of change in th
potential]V/]t as a function of the potentialV for two lo-
cations in space, one to the left of the stimulus site a
affected mostly by longitudinal propagation~circles!, and the
other below the stimulation site and affected mostly by tra
verse propagation~squares!. At adequate resolution, bot
plots should be qualitatively similar. At the coarser reso
tion, shown in panel~d!, the trace showing transverse prop
gation has a pronounced hump during the early part of
upstroke and an overshoot at the end of the upstroke c
pared to the longitudinal trace. At finer resolution, these
fects disappear and better agreement is obtained, as sho
Fig. 2~e!.

One way to reduce the numerical artifacts associa
with coarser spatial resolutions on Cartesian grids in
presence of a strong anisotropy would be to set the r
Dx/Dy not to 1, but instead to the ratio of longitudinal t
transverse conduction velocity. This could be done using
AMRA as easily as with a uniform grid. However, this stra
egy would be useful only for 2D or 3D domains with fibe
oriented along thex- or y-axes.

When fibers in strongly anisotropic media are oriented
a nonzero angle relative to thex-axis, discretization errors
distort the propagating waves on Cartesian grids unless
ficiently high spatial resolution is used. This effect is simil
to what has been shown for fibers aligned to the compu
tional grid, except that the distortions depend on the fi
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FIG. 2. ~Color! Anisotropic propagation using the LR1 model in a 2 cm32 cm domain, with conductivitiesDparallel52 mS/cm andDperp50.2 mS/cm.~a!
Voltage profile after 15 ms using a uniform mesh withDx5125 mm and Dt50.02 ms. Values for the voltageV are color coded with dark blue for
V>25 mV, red for25<V<265 mV, and yellow forV<265 mV. ~b! Voltage profile after 15 ms using three levels of mesh with the same coarseDx and
Dt as in~a! and with fineDx531.25mm andDt50.00125 ms. Note that with a finerDx, the profile is more rounded and the propagation velocity is sligh
faster than can be seen in~a!. ~c! Instantaneous grid structures corresponding to the voltage profile in~b!. The coarsest resolution is shown in white, th
intermediate resolution in yellow, and the finest resolution in green.~d! and ~e! Plots of the potential time derivative]V/]t vs potentialV corresponding to
fixed sites in the domains shown in~a! and~b!, respectively, over one action potential. The circles show voltage traces gathered from the point~0.3, 1.0!, to
the left of the stimulus site and thus affected mainly by longitudinal propagation, and the squares show traces from~1.0, 0.8!, below the stimulus site and
affected mainly by transverse propagation.
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angle. Both the shape of the front and the conduction vel
ties along and across fibers are affected. Using the AMRA
is straightforward to add additional levels of resolution
order to determine the resolution needed to achieve a de
small variation in the conduction velocities along and acr
fibers for various fiber angles.

We examined the effect of spatial resolution and fib
angle on the longitudinal and transverse conduction vel
ties for the LR1 model using parameters as described ab
in Sec. II with the same anisotropy ratio of 10:1. Figure
shows isochrones spaced every 5 ms for 20 ms using an
of 0° and 45° for finest spatial resolutions of 125mm,
62.5 mm, and 31.25mm. To allow easier comparison be
tween the 0° and 45° results, the isochrones obtained u
fiber angles of 45° were rotated245° in the figure. The
isochrones illustrate the decreasing angle dependence o
shape and speed of the front as the resolution decrease
obtain less than 10% variation in both the longitudinal a
the transverse conduction velocities at fiber angles of 0°
45°, a spatial resolution of roughly 25mm must be used, o
50 mm for ,25% variation. While reducing the angle depe
i-
it

ed
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ng

the
To
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dence may not be necessary for all calculations, there ma
some cases where it can affect results. For instance, in
calculations with rotational anisotropy, where the fiber an
rotates slowly with depth, it may be important to reduce t
angle dependence by using fine spatial resolution when
lyzing interactions among several fronts. The angle dep
dence decreases for smaller anisotropy ratios. In addit
models with upstrokes that are not as sharp as the LR1
stroke do not require as high resolution to avoid the an
dependence. For example, the Fenton–Karma model9 with
modified LR1 kinetics can achieve,10% variation with
angle in both longitudinal and transverse conduction velo
ties at a spatial resolution of roughly 55mm, or ,25% at
100 mm, about twice as coarse as needed for compara
agreement using the LR1 model.

B. Inhomogeneities in a 2D medium

In Ref. 12, only homogeneous domains were conside
However, cardiac tissue contains inhomogeneities inheren
its structure, such as varying fiber directions and cell-to-c
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variations in electrophysiological properties. Diseased tis
may contain additional inhomogeneities due to conditio
like ischemia or infarction. It is important for the AMRA to
treat inhomogeneous regions appropriately. In the prese
of anisotropy, regions of high error cause refinement o
along the wavefront and sometimes along the wave ba
depending on the model used and the accuracy requ
When the domain no longer is homogeneous, the refinem
may last longer in the inhomogeneous tissue if a front ling
there longer due to prolonged APD or to slower conductiv
However, inhomogeneities may cause conduction block,
in that case refinement should be triggered even in the
sence of a wavefront or back due to the spatial gradient
voltage.

We tested how the AMRA refined a domain with a
inhomogeneity in membrane parameters that led to prop
tion block. The domain was 3 cm33 cm with a
1 cm30.1 cm inhomogeneity located in the center. Ins
and outside the inhomogeneous region, the calcium con
tanceḡCa was set to 0.075 mS/mF and 0.045 mS/mF, respec-
tively, causing prolongation of the APD in the inhomog
neous region. The conductivities in thex- and y-directions
were set to 2 mS/cm and 0.5 mS/cm, giving an anisotr
ratio of 4:1. The medium was paced every 120 ms from
0.05 cm square site in front of the inhomogeneous reg
Stimuli were unable to propagate through the inhomo
neous tissue when it was still refractory and thus an obst
to conduction could be created.

Figure 4 shows a series of representative snapshot
the membrane potential and the corresponding grid struc
for the inhomogeneous domain. At timet5966 ms, a new
stimulus had been introduced just 6 ms earlier, while

FIG. 3. Isochrones from a propagating wave in an anisotropic medium u
the LR1 model with fibers at 0°~top row! and 45° relative to thex-axis
~bottom row!. The isochrones from the 45° cases have been rotated245°
and spatially truncated at the boundaries to facilitate comparison with
corresponding 0° cases. The larger the value ofDx, the slower the propa-
gation velocity and the more different the shapes become for the two
angles. Conductivities are 2 mS/cm and 0.2 mS/cm in the longitudinal
transverse directions, respectively. The domain is 2 cm32 cm. Isochrones
are shown at 5 ms intervals for 20 ms.
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center of the medium was still recovering from a block
stimulus initiated at timet5840 ms. Because of the larg
spatial gradient, much of the inhomogeneous region was
refined although no wave front or back was present in t
area. At time 986 ms, the new stimulus was propagat
around but not through the refractory area, which caused
front to split into the two parts shown. In the correspondi
grid structure, the refined regions from the refractory a
and from the propagating front had merged into a he
shaped area. Since the refractory region was small and
medium highly excitable, the front reformed on the oth
side of the inhomogeneity, as illustrated att5998 ms. At
time t51030 ms, the front had completely passed the in
mogeneous region and had left behind an area that was
excited by the most recent stimulus, because the refrac
region had not recovered enough to be re-excited. At
time and later att51056 ms, an area in the middle of th
domain remained refined due to the spatial gradients the

Another stimulus was applied att51080 ms, and be-
cause the domain was quiescent near the stimulus
propagation began, as shown at timet51094 ms. However,
the wave was blocked because the rest of the medium
refractory. While the exterior portion of the domain reco
ered, as shown at timet51146 ms, the central region re
mained excited from the blocked stimulus, and the cor
sponding grid structure reflects the spatial gradients
were still present in the center of the domain even after
wave back had passed through nearly all the rest of the
dium. At time t51197 ms, just 3 ms before the next stim
lus was applied, the medium remained refractory in
middle of the domain, with refinement persisting in the are
with spatial gradients, similar to the plot shown
t5966 ms.

To summarize, the AMRA does not treat inhomogeneo
domains in an intrinsically different manner than it treats t
homogeneous domains. Wavefronts and backs still trig
refinement. However, in an inhomogeneous region, propa
tion may be blocked while most of the medium recove
from a wave that propagated successfully. This type of
namics gives rise to sharp spatial gradients that trigger
finement in areas that may be distant from the wavefro
and backs.

C. Accuracy

Having shown that the AMRA is capable of handlin
anisotropy and inhomogeneities, we next analyze its ac
racy. In Ref. 12, we established that the action poten
shape, APD, and conduction velocity found using the AMR
agreed with comparable uniform mesh values to within 1
except at the peak of the action potential, where the rela
error was roughly 6%. Here, we use measures of accu
applicable to 2D and 3D domains to establish that no in
curacies are incurred when using the AMRA in higher spa
dimensions. To quantify the accuracy of the AMRA code
2D and 3D media, spiral tip and filament trajectories we
analyzed. We used the FHN model rather than the L
model, since spirals generally are unstable in LR1 and
dependence of their trajectories on the LR1 model para
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FIG. 4. ~Color! Front profiles in a medium with an inhomogeneity inḡCa. The calculation used three levels of resolution, fromDx5500 mm and
Dt50.32 ms toDx5125 mm andDt50.02 ms. Field value colors are as described in Fig. 2~a! for the voltage profiles and in Fig. 2~c! for the grid structures.
The first stimulus shown does not affect a small region of refractoriness in the center of the domain, which causes the next stimulus to be blockedof
the domain. Additional details are given in the text.
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eters has not been studied as thoroughly.31 Model parameters
were set as discussed in Sec. II, producing a spiral tip wh
in an isotropic domain traced out a three-petal flower patt
that rotated slowly over time. The petals were stretch
somewhat in the presence of anisotropy of strength com
rable to what is seen in cardiac tissue~we used a ratio of 5:1!
compared to the isotropic pattern.
h
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In 2D, the tip trajectory traced by the AMRA code wit
three levels, fromDx50.25 to Dx50.0625 in space and
from Dt50.01 toDt50.000625 in time, was compared wit
that traced by a uniform mesh code using the finest spa
and temporal resolution,Dx50.0625, Dt50.000625 in a
square domain with a side length of 30 spatial units. T
location of each tip was identified by finding the intersecti
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of the u50.5 and] tu50 contours every 0.4 time units t
identify points with zero normal velocity.9 Specifically, the
coarse grid was swept to find squares where the cont
intersected, and the location of the spiral tip was calcula
using linear interpolation. By comparing the tip locatio
found with images of the solution, it was determined that
false tips were identified.

Figure 5~a! illustrates the trajectories produced by bo
the uniform mesh~filled circles! and the AMRA~line! codes
after about ten rotations. The two trajectories are nearly id
tical. Figure 5~b! shows the corresponding difference of t
AMRA tip position compared to the uniform mesh tip pos
tion over the entire time integrated. After the first few rot
tions, the difference appears to grow linearly over tim
which is consistent with the error being caused by a sli
phase difference. Over ten rotations, the average differe
in tip location is approximately 0.002 spatial units, with t
maximum value less than 0.01 spatial units, or roug
0.03% of the length of one side of the square domain
still much less than the fine spatial resolutionDx. These data
indicate that the AMRA is not a significant source of error
the tracing of spiral tips in our 2D anisotropic FHN medium

In 3D, we combined rotational anisotropy with the p
rameters already used in 2D. This produced a stack of sp
waves whose tips formed a filament stretching between
z50 andz5Lz planes. As the spirals meandered within t

FIG. 5. ~a! Very good agreement is obtained for the spiral tip trajector
produced for the FHN model using the AMRA~filled circles! and a uniform
mesh at the finest space–time resolution of the AMRA~line!. This is the
final flower produced after about ten rotations. Parameter values are giv
the text. Thex-axis has been scaled differently than they-axis to clarify the
shape of the flower.~b! Difference in the spiral tip trajectory produced fo
the FHN model by the AMRA compared to the trajectory produced b
uniform mesh at the finest space–time resolution of the AMRA. About
rotations have occurred during the time plotted. The error grows quickl
the spiral initially forms and then grows more slowly over the remainde
the time, but after ten rotations the maximum difference is less than
spatial units, which is less than the fine spatial resolutionDx. Parameter
values are given in the text.
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planes, the filaments bent and twisted. The system was
spatial units in thex- and y-directions and 6 spatial unit
thick, which was not enough to give rise to transmural fi
ment breakup. The uniform grid used resolutions
Dx50.25 andDt50.01, while the adaptive calculation use
these same values at the third and highest level of resolu
and values ofDx51 andDx50.16 at the coarsest level. T
avoid large jumps in the fiber orientation from onex–y
plane to the next, we used a rotation rate of 3° per fineDx,
for a total of 72° from the top to the bottom surface. Fil
ments were found by the same method used for identify
spiral tips in 2D, by looking at the intersection of th
u50.5 and] tu50 contours, in this case at every fine tim
step. The same code was used as for the 2D tip identifica
with sweeps over thex–y, x–z, andy–z planes.

Figure 6 illustrates the filament projections in thex–z,
y–z, andx–y planes after 140 time units, or approximate
12 rotations of the scroll wave. Data from the uniform me
and AMRA calculations are shown as circles and lines,
spectively. In all planes, the filaments are nearly identic
and the difference in the filament projections in all cases
less than the fine spatial resolutionDx. We conclude that the
use of the AMRA does not contribute a significant error
the tracking of filaments in this parameter regime for t
FHN model.

D. Efficiency in a 3D medium

Having demonstrated the accuracy and utility of t
AMRA in 2D and 3D, we next quantify its efficiency in 3D
using the LR1 model. To test the efficiency of the AMRA fo
a 3D tissue slab at the same spatial and temporal resolu
required to achieve,25% variation in longitudinal and

s

in

a
n
s
f
1

FIG. 6. Comparison of a filament in the FHN model using the AMR
~lines! and a uniform grid at the finest space–time resolution of the AMR
~circles! after 140 time units, or about 12 rotations of the scroll wave. T
filaments are compared by depicting their projections in thex–z, y–z, and
x–y planes. The difference in all three projections never exceeds the
spatial resolution. Parameter values are given in the text.
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FIG. 7. ~Color! Instantaneous voltage and grid structures during propagation in the LR1 model with rotational anisotropy. To facilitate visualization o
data, four 2D slices spaced evenly from the epicardium to the endocardium and parallel to both surfaces are shown, with the slices stacked and therdium
on top. The activation propagates from the epicardium down through the tissue and is affected by the rotational anisotropy, as can be seen from terent
orientations of the propagating fronts in the slices shown. The color scale is the same as in Fig. 2 for both the voltage and the grid structures. Theotropy
ratio is 10:1. Additional parameter values are given in the text.
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transverse conduction velocities for the 2D case alre
described~using three levels of refinement:Dx5400 mm,
Dt50.2 ms; Dx5100 mm, Dt50.0125 ms; and
Dx550 mm, Dt50.003125 ms), a single front was initiate
in a cube centered in the epicardium of a domain measu
1.6 cm31.6 cm30.64 cm. Figure 7 shows four 2D slices
the 3D tissue from epicardium to endocardium to illustr
the dynamics within the thickness, along with the cor
sponding grid hierarchies used on each slice. The fr
spread throughout the domain and the simulation lasted u
the entire medium was again quiescent, 260 ms in all.
AMRA used the finest level of resolution only when the fro
was present in the domain, which allowed coarser spatial
temporal resolution to be used during the much longer
fractory period. This local and dynamic adaptivity led to
substantial computational savings: while 84% of the to
number of function evaluations were performed for the fin
resolution, on average the finest resolution covered,2% of
the physical domain. Overall, the AMRA required a factor
50 less computational time and a factor of 30 less mem
on average than a comparable calculation on a unifo
space–time mesh using the finest AMRA resolution. T
simulation was performed in about 12.8 h on a 750-M
Alpha 264 processor with 2 GB of memory.

Although the AMRA substantially reduces the resourc
required, a simulation of more complex dynamics using
LR1 model at this spatial and temporal resolution is s
beyond our group’s current computational resources. H
ever, we can extrapolate the algorithm’s performance to
mains with more complex dynamics. In a 2D domain with
single propagating pulse, we found a speedup of abo
factor of 20 and an average savings in memory of a facto
10. With multiple spiral waves, we found a speedup o
factor of 5 with a comparable reduction in memory.12 In
moving to a domain with more complex dynamics in 2
then, the speedup was reduced by a factor of 4 and
y

g

e
-
nt
til
e

nd
-

l
t

f
ry
m
e
z

s
e
l
-

o-

a
f

,
he

memory savings by a factor of 2. If the same scaling ho
for regimes with more complex dynamics in 3D, we c
expect a speedup of about a factor of 12 and a reductio
required memory of about a factor of 15 for the LR1 mod

V. DISCUSSION AND CONCLUSIONS

In this paper, we have discussed new features, new
plications, and new capabilities of a space–time adap
method recently introduced for simulations of cardiac tiss
and other excitable media.12 We have shown the AMRA’s
ability to simulate inhomogeneous and strongly anisotro
domains using the LR1 model. Using the AMRA has
significant effect on solution accuracy, as quantified by co
paring spiral wave tips and filament locations in the FH
model found using the AMRA with those found using a un
form space–time mesh at the finest resolution of the AM
calculations. For a single propagating pulse in a 3D slab
cardiac tissue using the LR1 model and incorporating ro
tional anisotropy with high spatial resolution to minimiz
angle dependence, we have demonstrated that our AM
reduces the computational time and memory requireme
necessary for a comparable calculation on a uniform spa
time mesh by factors of 50 and 30, respectively. We emp
size that the AMRA does not require the use of simpler m
els or special integration schemes. Moreover, the algori
can be parallelized straightforwardly,43,44 which will facili-
tate calculations on larger domains for longer times, parti
larly for 3D calculations.

Using the AMRA can provide a variety of advances
addition to reductions in time and memory requirements.
instance, it can allow more complex ionic models to be us
in place of simpler ones, either to perform a series of sim
lations or to compare results across models, without alte
the runtime significantly. Similarly, it can allow the use
higher spatial and temporal resolution to reduce the an
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dependence of propagation patterns in domains with r
tional anisotropy or to verify that a calculation is sufficient
resolved so that an increase in resolution does not affec
results.

Furthermore, using the AMRA can allow simulation
larger domains, including published anatomical models, s
as rabbit ventricles7 and canine ventricles.6 Based on the
known efficiencies of the AMRA in 2D and 3D domains wi
a single propagating pulse and in 2D with more comp
dynamics, we have estimated that using the AMRA in a
domain with complex dynamics will result in a savings
memory of a factor of 15 on average and a speedup o
factor of 12 compared to a uniform space–time grid. Assu
ing that the effective spatial and temporal resolutions for
models are 50mm and 0.003125 ms, respectively, and anti
pating a modest factor of 2 speedup from using more mod
processors~such as the 1-GHz Alpha chip!, we can estimate
that simulating 1 s of complex dynamics in the rabbit ven
tricles will require approximately 25 days on a single proc
sor, and parallelization would be necessary to reduce this
more tractable problem. If we gain a speedup of a facto
28 using 32 processors, as Allard and Trangenste44

achieved using a similar algorithm for a different class
problems, the computation time required to simulate 1 s of
fibrillation in the rabbit ventricles at this resolution would b
reduced to less than a day. Simulating 1 s ofactivity on the
much larger and thicker canine ventricles would require s
stantially more time, an estimated factor of 17 longer, a
likely would require the use of a coarser resolution to obt
results in a reasonable amount of time. For instance
125 mm and 0.02 ms were used, 1 s using the canine ven
tricular anatomy would require just over 9 h using 32 pro-
cessors that provide a speedup of 28.

Our estimate of the speedup anticipated for fibrillati
3D domains is based on the known efficiency of a pla
wave in 3D and the known reduction in efficiency of th
AMRA for 2D domains containing multiple waves compar
to a single plane wave. However, it is possible that wa
may pack more densely in 3D than in 2D, in which case
estimate will be too optimistic. Nevertheless, we believe t
in most cases beneficial speedup will be obtained. We
note that while implementing other models into the AMR
code is straightforward, more complex models may pose n
challenges. For instance, the Luo–Rudy dynamic~LRd!
model47,48 is known to be sensitive to calcium and requir
smaller time steps than the LR1 model. In addition, the L
and other models can exhibit calcium overload and the s
sequent release of intracellular calcium during any phas
the action potential, and these releases may occur more o
during fibrillation. To ensure that adequate resolution is u
for these events, it may be necessary to incorporate calc
variables into the error estimate that indicates where refi
ment is required. With finer resolution needed more often
resolve calcium processes and possibly more complex e
estimation, the savings from using the AMRA may be mo
modest for models more complex than LR1. However, it
important to note that the usefulness of the AMRA depe
on the question being studied. Investigations of the onse
fibrillation, which would involve fewer waves, likely would
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benefit more from use of the AMRA than studies of ful
developed fibrillation.

Along with parallelization, there are several other wa
to enhance the capabilities of codes using the AMRA. O
particularly important extension to develop and implemen
the capability to represent curved physical boundaries wit
the Cartesian meshes of the AMRA. Recently, Calhoun
LeVeque40 introduced a technique to represent irregu
boundaries for a 2D adaptive method~which should gener-
alize to 3D! based on Berger’s original algorithm. The
method uses a capacity function to identify what fraction
the area of a boundary cell is contained in the computatio
domain and from this information varies the treatment of
boundary cell. Another technique that has been used for
form grids is the phase field method, which originally w
developed to follow advancing fronts in solidification whe
boundaries are continually changing,49 and which has been
extended to model stationary curved boundaries such
those found on the surfaces of the heart.50,51 In this formula-
tion, an additional matrix describing the structure is set up
describe a given geometry, with values of 1 represent
points in the domain and values of 0 representing po
outside the domain. A phase field is generated by assign
intermediate values along the edge of the domain to smo
the transition from 1’s to 0’s. Neumann boundary conditio
are imposed correctly provided that algorithmic paramet
governing the width of the phase field and the values
intermediate points are set to appropriate values for the p
lem. We anticipate that the phase field method will wo
within the AMRA framework by generating phase field m
trices for all spatial resolutions before starting the calculat
and using the correct matrices on the corresponding
levels.

The algorithm also could be made more efficient by
corporating known information about the dynamics into t
regridding algorithm. Because regridding does not occur
ery step, fine patches currently are slightly enlarged in
directions to allow propagating fronts to remain refined un
regridding next occurs. However, the fronts represented
these fine patches can propagate only into neighboring
escent regions. Using this knowledge, a front-predict
scheme could be developed that would enlarge fine patc
only in the directions in which propagation can occu
thereby limiting the portion of the domain resolved to fin
levels. In addition, the use of refinement criteria specific
cardiac models and computationally less expensive than
chardson extrapolation, such as refining in portions of
grid where the sodium channel is opening, also could
beneficial.

With parallelization, curved boundaries, and fron
prediction added, AMRA-based codes will provide e
tremely powerful tools for understanding and eventua
treating cardiac arrhythmias.
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