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We are interested in a class of stochastic fuzzy recurrent neural networks with multiproportional delays and distributed delays. By
constructing suitable Lyapunov-Krasovskii functionals and applying stochastic analysis theory, It𝑜’s formula and Dynkin’s formula,
we derive novel sufficient conditions for mean-square exponential input-to-state stability of the suggested system. Some remarks
and discussions are given to show that our results extend and improve some previous results in the literature. Finally, two examples
and their simulations are provided to illustrate the effectiveness of the theoretical results.

1. Introduction

Since the theory and application of cellular neural networks
was proposed by L.O. Chua and L. Yang in 1998, neural
networks have become a hot topic.They can be applied to the
analysis of static images and signal processing, optimization,
pattern recognition, and image processing. Usually, a neural
network is an information processing system. Its characteris-
tic is local connections between cells, and its output functions
are piecewise linear. Clearly, it is easy to realize large-scale
nonlinear analog signals in real time and parallel processing,
which improves the running speed. As is well-known, the
stability is an important theoretical problem in the field of
dynamics systems (e.g., see [1–24]). Thus, it is interesting to
investigate the stability of nonlinear neural networks.

On one hand, the switching speed of amplifier is limited
and the errors occur in electronic components. As a con-
sequence, delays happen to dynamics systems, and the delays
often destroy the stability of dynamics systems, even cause
the heavy oscillation (e.g., see [25–35]). So it is significant to
study the stability of delayed neural networks. For example,

[36] discussed the global stability analysis for a class of
Cohen-Grossberg neural network models. A new compar-
ison principle is firstly introduced to study the stability of
stochastic delayed neural networks in [37]. Global asymptotic
stability analysis for integrodifferential systems modeling
neural networks with delays was investigated in [38]. In [39],
Zhu et al. considered the robust stability of Markovian jump
stochastic neural networks with delays in the leakage terms.
For more related results we refer the authors to [25, 40–43]
and references therein. It is worthy to point out that all of
the works aforementioned were focused on the traditional
types of delays such as constant delays, time-varying bounded
delays, and bounded distribute delays. However, delays in real
lives may be unbounded. In this case, a class of so-called
proportional delays can be used to describe the model of
human brain, where delays give information of history and
the entire history affects the present. Thus, it is interesting
to study the stability of neural networks with proportional
delays.

On the other hand, all of the works mentioned above
were focused on the traditional neural networks models,
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which did not consider fuzzy logic. But in the factual opera-
tions, we always encounter some inconveniences such as
the complicity and the uncertainty or vagueness. In fact,
vagueness always opposite to exactness. Therefore, vagueness
can not be avoided in the human way of regarding the world.
So fuzzy theory is regarded as the best suitable setting to
take vagueness into consideration. It is reported that there
have appeared many results on the stability analysis of fuzzy
neural networks in the literatures. For example, Li and Zhu
introduced a new way to study the stability of stochastic
fuzzy delayed Cohen-Grossberg neural networks [44]. They
used Lyapunov functional, stochastic analysis technique and
nonnegative semimartingale convergence theorem to solve
the problem. In [45], Balasubramaniam and Ali studied the
robust exponential stability of uncertain fuzzy Cohen-Gross-
berg neural networks with time-varying delays. However, to
the best of our knowledge, until now, there have been no
works on the stability of fuzzy neural networks with propor-
tional delays.

Motivated by the above discussion, in this paper we
investigate the problem of the input-to-state stability analysis
for a class of the stochastic fuzzy delayed recurrent neu-
ral networks with multiproportional delays and distributed
delays. Some novel sufficient conditions are derived to ensure
the mean-square exponential input-to-state stability of the
suggested system based on constructing suitable Lyapunov-
Krasovskii functionals and stochastic analysis theory, It𝑜’s
formula and Dynkin’s formula. Several remarks and discus-
sions are presented to show that our results extend and im-
prove some previous results in the literature. Finally, two
examples and their simulations are given to show the effec-
tiveness of the obtained results.

The rest of the paper is as follows. In Section 2, we intro-
duce the model, some necessary assumptions, and prelimi-
naries. In Section 3, we investigate the mean-square expo-
nential stability of the consideredmodel. In Section 4, we pro-
vide two examples to illustrate the effectiveness of the ob-
tained results. Finally, we conclude the paper in Section 5.

2. Model Formulation and Preliminaries

Let 𝐶([𝑝, 1];R𝑛) denote the family of continuous func-
tions 𝜙 from [𝑝, 1] to R𝑛 with the uniform norm ‖𝜙‖ =
sup𝑝≤𝜃≤1|𝜙(𝜃)|. Denote by L2F0([𝑝, 1];R𝑛) the family of all
F0 measurable, 𝐶([𝑝, 1];R𝑛) valued stochastic variables 𝜙 =𝜙(𝑠) : 𝑝 ≤ 𝑠 ≤ 1 satisfying ∫1

𝑝
E|𝜙(𝑠)|2𝑑𝑠 < ∞, and 𝐶([−𝜏, 1];

R𝑛) valued stochastic variables 𝜙 = 𝜙(𝑠) : −𝜏 ≤ 𝑠 ≤ 0
satisfying ∫0

−𝜏
E|𝜙(𝑠)|2𝑑𝑠 < ∞, in which E stands for the

correspondent expectation operator with respect to the given
probability measure 𝑃. 𝑙∞ denotes the class of essentially
bounded functions 𝑢 from [1,∞) to R with ‖𝑢‖∞ =
ess sup𝑡≥1|𝑢(𝑡)| < ∞, R denotes real number. R𝑛 denotes 𝑛
dimensions Euclidean space.

In this section, we consider the following class of stochas-
tic fuzzy delayed recurrent neural networks with multipro-
portional delays and distributed delays:

𝑑𝑥𝑖 (𝑡) = [[−𝑑𝑖𝑥𝑖 (𝑡) +
𝑛⋀
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡))
+ 𝑛⋀
𝑗=1

𝑏𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑝𝑗𝑡)) + 𝑛⋀
𝑗=1

𝑐𝑖𝑗 ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑥𝑗 (𝑠)) 𝑑𝑠
+ 𝑛⋁
𝑗=1

𝑑𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡)) + 𝑛⋁
𝑗=1

𝑒𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑝𝑗𝑡))
+ 𝑛⋁
𝑗=1

𝑓𝑖𝑗 ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑥𝑗 (𝑠)) 𝑑𝑠 + 𝑢𝑖 (𝑡)]]𝑑𝑡
+ 𝑛∑
𝑗=1

𝜎𝑖𝑗 (𝑥𝑗 (𝑡) , 𝑥𝑗 (𝑝𝑗𝑡)) 𝑑𝑤𝑗 (𝑡) ,

(1)

𝑥𝑖 (𝑡) = 𝜑𝑖 (𝑡) , 𝑝 ≤ 𝑡 ≤ 0, (2)

for all 𝑡 ≥ 0, 𝑖 = 1, 2, . . . , 𝑛, where 𝑥𝑖(𝑡) represents the state
variable of the 𝑖th neuron at time 𝑡; 𝑑𝑖 is the self-feedback
connection weight strength. The constants 𝑎𝑖𝑗, 𝑏𝑖𝑗, 𝑐𝑖𝑗,𝑑𝑖𝑗,𝑒𝑖𝑗,
and𝑓𝑖𝑗 are the connection weights of the 𝑗th neuron to the 𝑖th
neuron at time 𝑡 or 𝑝𝑗𝑡. 𝑓𝑗(𝑥𝑗(𝑡)), 𝑔𝑗(𝑥𝑗(𝑝𝑗𝑡)), and ℎ𝑗(𝑥𝑗(𝑡))
are the 𝑗th neuron activation functions at time 𝑡 or 𝑝𝑗𝑡. 𝑢𝑖(𝑡)
is the control input of the ith neuron at time 𝑡, and 𝑢 =(𝑢1(𝑡), 𝑢2(𝑡), . . . , 𝑢𝑛(𝑡)) ∈ 𝑙∞.⋀ and⋁ denote the fuzzy AND
and fuzzy OR operation, respectively. The noise perturbation𝜎𝑖𝑗 : R×R is a Borelmeasurable function, and𝑤𝑗(𝑡), 𝑗 ≥ 0, 𝑗 =1, 2, . . . , 𝑛 are scalar standard Brownian motions defined on a
complete probability space (Ω,F,P) with a natural filtration{F𝑡}𝑡≥1. The constants 𝑝𝑗, 𝑗 = 1, 2, . . . , 𝑛 are proportional
delay factors and satisfy 0 < 𝑝𝑗𝑡 = 𝑡 − (1 − 𝑝𝑗)𝑡, where(1 − 𝑝𝑗)𝑡 are time-varying continuous functions that satisfy(1 − 𝑝𝑗)𝑡 󳨀→ +∞ as 𝑡 󳨀→ +∞ and 𝑝𝑗 ̸= 1. 𝜏(𝑡) is the time-
varying delay, which satisfies 0 ≤ 𝜏(𝑡) ≤ 𝜏 and 𝜏̇(𝑡) ≤ 𝛿 < 1.

Throughout this paper, we assume that the following
conditions are satisfied.

Assumption 1. There exist positive constants 𝐿 𝑖 and 𝑀𝑖 such
that 󵄨󵄨󵄨󵄨𝑓𝑖 (𝑢) − 𝑓𝑖 (V)󵄨󵄨󵄨󵄨 ≤ 𝐿 𝑖 |𝑢 − V| ,󵄨󵄨󵄨󵄨𝑔𝑖 (𝑢) − 𝑔𝑖 (V)󵄨󵄨󵄨󵄨 ≤ 𝑀𝑖 |𝑢 − V| , (3)

for all 𝑢, V ∈ R and 𝑖 = 1, 2, . . . , 𝑛.
Assumption 2. There exist nonnegative constants 𝜇𝑖𝑗, ]𝑖𝑗, and𝛿𝑖𝑗 such that

[𝜎𝑖𝑗 (𝑥, 𝑦, 𝑧) − 𝜎𝑖𝑗 (𝑥󸀠, 𝑦󸀠, 𝑧󸀠)]2≤ 𝜇𝑖𝑗 (𝑥 − 𝑥󸀠)2 + ]𝑖𝑗 (𝑦 − 𝑦󸀠)2 + 𝛿𝑖𝑗 (𝑧 − 𝑧󸀠)2 (4)

for all 𝑥, 𝑥󸀠, 𝑦, 𝑦󸀠, 𝑧, 𝑧󸀠 ∈ R and 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
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Assumption 3.

𝑓𝑗 (0) = 𝑔𝑗 (0) = ℎ𝑗 (0) = 𝑢𝑗 (0) = 0,𝜎𝑖𝑗 (0, 0) = 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. (5)

Obviously, underAssumptions 1–3we see that there exists
a unique solution of system (1)-(2). Let 𝑥(𝑡, 𝜑) denote the
solution from the initial data 𝑥(𝑠) = 𝜑(𝑠) on 𝑠 ∈ [𝑝, 1] in
L2F0([𝑝, 1];R𝑛). It is clear that system (1)-(2) has a trivial
solution or zero solution 𝑥(𝑡; 0) ≡ 0 corresponding to the
initial data 𝜑(𝑠) = 0. By applying the following variable
transformations 𝑦𝑖(𝑡) = 𝑥𝑖(𝑒𝑡), V𝑖(𝑡) = 𝑢𝑖(𝑒𝑡), 𝑤𝑗(𝑡) =𝑤𝑗(𝑒𝑡), 𝜙𝑖(𝑡) = 𝜑𝑖(𝑒𝑡), then system (1)-(2) is equivalently
transformed into the following stochastic recurrent neural
networks with constant delays and time-varying coefficients

𝑑𝑦𝑖 (𝑡) = 𝑒𝑡 [[−𝑑𝑖𝑦𝑖 (𝑡) +
𝑛⋀
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡))
+ 𝑛⋀
𝑗=1

𝑏𝑖𝑗𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑗)) + 𝑛⋀
𝑗=1

𝑐𝑖𝑗 ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠
+ 𝑛⋁
𝑗=1

𝑑𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝑛⋁
𝑗=1

𝑒𝑖𝑗𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑗))
+ 𝑛⋁
𝑗=1

𝑓𝑖𝑗 ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + ]𝑖 (𝑡)]]𝑑𝑡 + 𝑛∑
𝑗=1

𝜎𝑖𝑗
⋅ (𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏𝑗)) 𝑑𝑤𝑗 (𝑡) , 𝑡 ≥ 0,

(6)

𝑦𝑖 (𝑡) = 𝜙𝑖 (𝑡) , − 𝜏 ≤ 𝑡 ≤ 0, (7)

where

𝜏𝑗 = − log𝑝𝑗,
𝑗 = 1, 2, . . . , 𝑛, 𝜏 = max{𝜏,max

1≤𝑗≤𝑛
𝜏𝑗} ,

𝜙𝑖 (𝑡) ∈ 𝐶 ([−𝜏, 0] ;R) ,𝜙 (𝑡) = (𝜙1 (𝑡) , 𝜙2 (𝑡) , . . . , 𝜙𝑛 (𝑡))𝑇 ∈ 𝐶 ([−𝜏, 0] ;R𝑛) .
(8)

3. Main Results

In this section, we will discuss the mean-square exponential
input-to-state stability of the trivial solution for system (1)-(2)
under Assumptions 1–3.

Theorem 4. Let Assumptions 1–3 hold. The trivial solution
of system (1)-(2) is mean-square exponentially input-to-state
stable, if there exist positive scalars 𝜂𝑖, 𝛼𝑖, 𝛽𝑖, (𝑖 = 1, 2, ..., 𝑛),𝜆 > 1 such that

2𝜂𝑖𝑑𝑖 ≥ (1 + 𝜆) 𝜂𝑖 + 𝛼𝑖 + 𝜏𝛽𝑖 + 𝑛∑
𝑗=1

𝜂𝑗𝜇𝑗𝑖 + 𝑛∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑎𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿 𝑖
+ 𝜂𝑖 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 + 𝜂𝑖 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗
+ 𝜂𝑖 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗 + 𝑛∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝐿 𝑖
+ 𝜂𝑖 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 + 𝜂𝑖 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗
+ 𝜂𝑖 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑓𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗,

(9)

𝛼𝑖 ≥ 𝑛∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗]𝑗𝑖 + 𝑛∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑖󵄨󵄨󵄨󵄨󵄨𝑀𝑖
+ 𝑛∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗𝑖󵄨󵄨󵄨󵄨󵄨𝑀𝑖, (10)

𝛽𝑖 ≥ 𝜏(1 − 𝛿) ( 𝑛∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝑁𝑖 + 𝑛∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗𝑖󵄨󵄨󵄨󵄨󵄨 𝑁𝑖) , (11)

Proof. Since system (6)-(7) is equivalent to system (1)-(2), we
only need to prove that the trivial solution of system (6)-(7) is
mean-square exponentially input-to-state stable. To this end,
we let 𝜎(𝑡) = (𝜎𝑖𝑗(𝑡))𝑛×𝑛, 𝜎𝑖𝑗 = 𝜎𝑖𝑗(𝑦𝑗(𝑡), 𝑦𝑗(𝑡−𝜏𝑗)), for the sake
of simplicity.

𝑉 (𝑡, 𝑦 (𝑡)) = 𝑒(𝜆−1)𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑦2𝑖 (𝑡) + ∫𝑡
𝑡−𝜏𝑖

𝑒𝜆𝑠 𝑛∑
𝑖=1

𝛼𝑖𝑦2𝑖 (𝑠) 𝑑𝑠
+ ∫0
−𝜏(𝑡)

∫𝑡
𝑡+𝜃

𝑒𝜆𝑠 𝑛∑
𝑖=1

𝛽𝑖𝑦2𝑖 (𝑠) 𝑑𝑠. (12)

Then by Itô’s formula, we have the following stochastic
differential equation:

𝑑𝑉 (𝑡, 𝑦 (𝑡)) = L𝑉(𝑡, 𝑦 (𝑡)) 𝑑𝑡+ 𝑉𝑦 (𝑡, 𝑦 (𝑡)) 𝜎 (𝑡) 𝑑𝑤 (𝑡) , (13)

where𝑉𝑦(𝑡, 𝑦(𝑡)) = (𝜕𝑉(𝑡, 𝑦(𝑡))/𝜕𝑦1, . . . , 𝜕𝑉(𝑡, 𝑦(𝑡))/𝜕𝑦𝑛) and
L is the weak infinitesimal operator such that

L𝑉(𝑡, 𝑦 (𝑡)) = (𝜆 − 1) 𝑒(𝜆−1)𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑦2𝑖 (𝑡)
+ 2𝑒(𝜆−1)𝑡 𝑛∑

𝑖=1

𝜂𝑖𝑦𝑖 (𝑡) 𝑒𝜆𝑡 [[−𝑑𝑖𝑦𝑖 (𝑡)
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+ 𝑛⋀
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡)) + 𝑛⋀
𝑗=1

𝑏𝑖𝑗𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑗)) + 𝑛⋀
𝑗=1

𝑐𝑖𝑗
⋅ ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 𝑛⋁
𝑗=1

𝑑𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡))
+ 𝑛⋁
𝑗=1

𝑒𝑖𝑗𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑗)) + 𝑛⋁
𝑗=1

𝑓𝑖𝑗 ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠
+ ]𝑖 (𝑡)]] + 𝑒(𝜆−1)𝑡 𝑛∑

𝑖=1

𝜂𝑖 𝑛∑
𝑗=1

𝜎2𝑖𝑗 (𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡 − 𝜏𝑗))
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝛼𝑖𝑦2𝑖 (𝑡) − 𝑒𝜆(𝑡−𝜏) 𝑛∑
𝑖=1

𝛼𝑖𝑦2𝑖 (𝑡 − 𝜏𝑖) + 𝜏 (𝑡)
⋅ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝛽𝑖𝑦2𝑖 (𝑡) − (1 − 𝜏̇ (𝑡)) 𝑒𝜆𝑡 ∫𝑡
𝑡−𝜏(𝑡)

𝑛∑
𝑖=1

𝛽𝑖𝑦2𝑖 (𝑠) 𝑑𝑠
≤ 𝜆𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖𝑦2𝑖 (𝑡) − 2𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑑𝑖𝑦2𝑖 (𝑡) + 2𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑦𝑖 (𝑡)
⋅ 𝑛⋀
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡)) + 2𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑦𝑖 (𝑡)
⋅ 𝑛⋀
𝑗=1

𝑏𝑖𝑗𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑗)) + 2𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑦𝑖 (𝑡) 𝑛⋀
𝑗=1

𝑐𝑖𝑗
⋅ ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 2𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑦𝑖 (𝑡)
⋅ 𝑛⋁
𝑗=1

𝑑𝑖𝑗𝑓𝑗 (𝑦𝑗 (𝑡)) + 2𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑦𝑖 (𝑡)
⋅ 𝑛⋁
𝑗=1

𝑒𝑖𝑗𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑗)) + 2𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑦𝑖 (𝑡) 𝑛⋁
𝑗=1

𝑓𝑖𝑗
⋅ ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 + 2𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖𝑦𝑖 (𝑡) ]𝑖 (𝑡)
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖 𝑛∑
𝑗=1

𝜇𝑖𝑗𝑦2𝑗 + 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖 𝑛∑
𝑗=1

]𝑖𝑗𝑦2𝑗 (𝑡 − 𝜏𝑗)
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝛼𝑖𝑦2𝑖 (𝑡) − 𝑒𝜆(𝑡−𝜏) 𝑛∑
𝑖=1

𝛼𝑖𝑦2𝑖 (𝑡 − 𝜏𝑖)
+ 𝜏𝑒𝜆𝑡 𝑛∑

𝑖=1

𝛽𝑖𝑦2𝑖 (𝑡) − (1 − 𝛿) 𝑒𝜆𝑡 ∫𝑡
𝑡−𝜏(𝑡)

𝑛∑
𝑖=1

𝛽𝑖𝑦2𝑖 (𝑠) 𝑑𝑠
≤ 𝑒𝜆𝑡 𝑛∑
𝑖=1

(−2𝜂𝑖𝑑𝑖 + 𝜆𝜂𝑖 + 𝑛∑
𝑗=1

𝜂𝑗𝜇𝑗𝑖 + 𝛼𝑖 + 𝜏𝛽𝑖)𝑦2𝑖 (𝑡)
+ 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛⋀
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑦𝑗 (𝑡)) − 𝑓𝑗 (0)󵄨󵄨󵄨󵄨󵄨

+ 2𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛⋀
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑗)) − 𝑔𝑗 (0)󵄨󵄨󵄨󵄨󵄨
+ 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛⋀
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡𝑡−𝜏(𝑡) ℎ𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠
− ℎ𝑗 (0)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛⋁
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑓𝑗 (𝑦𝑗 (𝑡))
− 𝑓𝑗 (0)󵄨󵄨󵄨󵄨󵄨 + 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛⋁
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨𝑔𝑗 (𝑦𝑗 (𝑡 − 𝜏𝑗))
− 𝑔𝑗 (0)󵄨󵄨󵄨󵄨󵄨 + 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛⋁
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑓𝑖𝑗󵄨󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡𝑡−𝜏(𝑡) ℎ𝑗 (𝑦𝑗 (𝑠)) 𝑑𝑠 − ℎ𝑗 (0)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 + 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨
⋅ 󵄨󵄨󵄨󵄨]𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑒𝜆𝑡 𝑛∑

𝑖=1

(−𝑒−𝜆𝜏𝛼𝑖 + 𝑛∑
𝑗=1

𝜂𝑗]𝑗𝑖)𝑦2𝑖 (𝑡 − 𝜏𝑖)
+ 𝑒𝜆𝑡 (𝛿 − 1) ∫𝑡

𝑡−𝜏(𝑡)

𝑛∑
𝑖=1

𝛽𝑖𝑦2𝑖 (𝑠) 𝑑𝑠
≤ 𝑒𝜆𝑡 𝑛∑
𝑖=1

(−2𝜂𝑖𝑑𝑖 + 𝜆𝜂𝑖 + 𝑛∑
𝑗=1

𝜂𝑗𝜇𝑗𝑖 + 𝛼𝑖 + 𝜏𝛽𝑖)𝑦2𝑖 (𝑡)
+ 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨
+ 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡 − 𝜏𝑗)󵄨󵄨󵄨󵄨󵄨
+ 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡𝑡−𝜏(𝑡) (𝑦𝑗 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨
+ 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 󵄨󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡 − 𝜏𝑗)󵄨󵄨󵄨󵄨󵄨
+ 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 𝑛∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑓𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑁𝑗 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡𝑡−𝜏(𝑡) (𝑦𝑗 (𝑠)) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
+ 2𝑒𝜆𝑡 𝑛∑

𝑖=1

𝜂𝑖 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨]𝑖 (𝑡)󵄨󵄨󵄨󵄨 + 𝑒𝜆𝑡 𝑛∑
𝑖=1

(−𝑒−𝜆𝜏𝛼𝑖
+ 𝑛∑
𝑗=1

𝜂𝑗]𝑗𝑖)𝑦2𝑖 (𝑡 − 𝜏𝑖) + 𝑒𝜆𝑡 (𝛿 − 1) ∫𝑡
𝑡−𝜏(𝑡)

𝑛∑
𝑖=1

𝛽𝑖𝑦2𝑖
⋅ (𝑠) 𝑑𝑠
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≤ 𝑒𝜆𝑡 𝑛∑
𝑖=1

(−2𝜂𝑖𝑑𝑖 + 𝜆𝜂𝑖 + 𝑛∑
𝑗=1

𝜂𝑗𝜇𝑗𝑖 + 𝛼𝑖 + 𝜏𝛽𝑖)𝑦2𝑖 (𝑡)
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜂𝑖 󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 (󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2)
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜂𝑖 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 (󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜏𝑗)󵄨󵄨󵄨󵄨󵄨2)
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜂𝑖 󵄨󵄨󵄨󵄨󵄨𝑐𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑁𝑗 (󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡𝑡−𝜏(𝑡) 𝑦𝑗 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2)
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜂𝑖 󵄨󵄨󵄨󵄨󵄨𝑑𝑖𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 (󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡)󵄨󵄨󵄨󵄨󵄨2)
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜂𝑖 󵄨󵄨󵄨󵄨󵄨𝑒𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 (󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑡 − 𝜏𝑗)󵄨󵄨󵄨󵄨󵄨2)
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜂𝑖 󵄨󵄨󵄨󵄨󵄨𝑓𝑖𝑗󵄨󵄨󵄨󵄨󵄨𝑁𝑗 (󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑡𝑡−𝜏(𝑡) 𝑦𝑗 (𝑠) 𝑑𝑠󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2)
+ 𝑒𝜆𝑡 𝑛∑
𝑖=1

𝜂𝑖( 󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨]𝑖 (𝑡)󵄨󵄨󵄨󵄨2 + 𝑒𝜆𝑡 𝑛∑
𝑖=1

(−𝑒−𝜆𝜏𝛼𝑖
+ 𝑛∑
𝑗=1

𝜂𝑗]𝑗𝑖)𝑦2𝑖 (𝑡 − 𝜏𝑖) + 𝑒𝜆𝑡 (𝛿 − 1)
⋅ ∫𝑡
𝑡−𝜏(𝑡)

𝑛∑
𝑖=1

𝛽𝑖𝑦2𝑖 (𝑠) 𝑑𝑠
≤ −𝑒𝜆𝑡min

1≤𝑗≤𝑛
[2𝜂𝑗𝑑𝑗 − 𝜆𝜂𝑗 − 𝑛∑

𝑘=1

𝜂𝑘𝜇𝑘𝑗 − 𝛼𝑗 − 𝜏𝛽𝑗
− 𝜂𝑗 𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝐿𝑘 − 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 − 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑘󵄨󵄨󵄨󵄨󵄨𝑀𝑘
− 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑘󵄨󵄨󵄨󵄨󵄨𝑁𝑘 − 𝜂𝑗 𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝐿𝑘 − 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑑𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
− 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗𝑘󵄨󵄨󵄨󵄨󵄨𝑀𝑘 − 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝑁𝑘 − 𝜂𝑗] 𝑛∑
𝑖=1

𝑦2𝑖 (𝑡)
− 𝑒𝜆𝑡min
1≤𝑗≤𝑛

[𝑒−𝜆𝜏𝛼𝑗 − 𝑛∑
𝑘=1

𝜂𝑘]𝑘𝑗 − 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑏𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗
− 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑒𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗] 𝑛∑
𝑖=1

𝑦2𝑖 (𝑡 − 𝜏𝑖) − 𝑒𝜆𝑡min
1≤𝑗≤𝑛

(1 − 𝛿)
⋅ ∫𝑡
𝑡−𝜏(𝑡)

𝑛∑
𝑘=1

𝛽𝑘𝑦2𝑘 (𝑠) 𝑑𝑠 + 𝑒𝜆𝑡min
1≤𝑗≤𝑛

( 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑐𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗

+ 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑓𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗) 𝑛∑
𝑘=1

(∫𝑡
𝑡−𝜏(𝑡)

𝑦𝑘 (𝑠) 𝑑𝑠)2
+ 𝑒𝜆𝑡max
1≤𝑗≤𝑛

𝜂𝑗 ‖]‖2∞ .
(14)

Letting 𝛽 = min𝛽𝑘, then we obtain

L𝑉(𝑡, 𝑦 (𝑡)) ≤ −𝑒𝜆𝑡min
1≤𝑗≤𝑛

[2𝜂𝑗𝑑𝑗 − 𝜆𝜂𝑗 − 𝑛∑
𝑘=1

𝜂𝑘𝜇𝑘𝑗
− 𝛼𝑗 − 𝜏𝛽𝑗 − 𝜂𝑗 𝑛∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝐿𝑘 − 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
− 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑘󵄨󵄨󵄨󵄨󵄨𝑀𝑘 − 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝑁𝑘 − 𝜂𝑗 𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝐿𝑘
− 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑑𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 − 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗𝑘󵄨󵄨󵄨󵄨󵄨𝑀𝑘 − 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝑁𝑘
− 𝜂𝑗] 𝑛∑

𝑖=1

𝑦2𝑖 (𝑡) − 𝑒𝜆𝑡min
1≤𝑗≤𝑛

[𝑒−𝜆𝜏𝛼𝑗 − 𝑛∑
𝑘=1

𝜂𝑘]𝑘𝑗
− 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑏𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 − 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑒𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗] 𝑛∑
𝑖=1

𝑦2𝑖 (𝑡 − 𝜏𝑖)
− 𝑒𝜆𝑡min
1≤𝑗≤𝑛

(1 − 𝛿) 𝛽∫𝑡
𝑡−𝜏(𝑡)

𝑛∑
𝑘=1

𝑦2𝑘 (𝑠) 𝑑𝑠
+ 𝑒𝜆𝑡min
1≤𝑗≤𝑛

( 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑐𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗 + 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑓𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗)
⋅ 𝑛∑
𝑘=1

(∫𝑡
𝑡−𝜏(𝑡)

1𝑑𝑠 ⋅ ∫𝑡
𝑡−𝜏(𝑡)

𝑦2𝑘 (𝑠) 𝑑𝑠)
+ 𝑒𝜆𝑡max
1≤𝑗≤𝑛

𝜂𝑗 ‖]‖2∞
≤ −𝑒𝜆𝑡min

1≤𝑗≤𝑛
[2𝜂𝑗𝑑𝑗 − 𝜆𝜂𝑗 − 𝑛∑

𝑘=1

𝜂𝑘𝜇𝑘𝑗 − 𝛼𝑗 − 𝜏𝛽𝑗
− 𝜂𝑗 𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑎𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝐿𝑘 − 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑎𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗 − 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑗𝑘󵄨󵄨󵄨󵄨󵄨𝑀𝑘
− 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑐𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝑁𝑘 − 𝜂𝑗 𝑛∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨𝑑𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝐿𝑘 − 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑑𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
− 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗𝑘󵄨󵄨󵄨󵄨󵄨𝑀𝑘 − 𝑛∑
𝑘=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗𝑘󵄨󵄨󵄨󵄨󵄨 𝑁𝑘 − 𝜂𝑗] 𝑛∑
𝑖=1

𝑦2𝑖 (𝑡)
− 𝑒𝜆𝑡min
1≤𝑗≤𝑛

[𝑒−𝜆𝜏𝛼𝑗 − 𝑛∑
𝑘=1

𝜂𝑘]𝑘𝑗 − 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑏𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗
− 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑒𝑘𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗] 𝑛∑
𝑖=1

𝑦2𝑖 (𝑡 − 𝜏𝑖) − 𝑒𝜆𝑡min
1≤𝑗≤𝑛

[(1 − 𝛿) 𝛽
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− ( 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑐𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗 + 𝑛∑
𝑘=1

𝜂𝑘 󵄨󵄨󵄨󵄨󵄨𝑓𝑘𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗)𝜏]
⋅ ∫𝑡
𝑡−𝜏(𝑡)

𝑛∑
𝑘=1

𝑦2𝑘 (𝑠) 𝑑𝑠 + 𝑒𝜆𝑡max
1≤𝑗≤𝑛

𝜂𝑗 ‖]‖2∞ .
(15)

Now we define a Markov time as follows:

𝜌 fl inf {𝑠 ≥ 0 : |𝑥 (𝑠)| ≥ 𝑘} . (16)

By using the Dynkin formula, we have

E𝑉 (𝑡 ∧ 𝜌𝑘, 𝑦 (𝑡 ∧ 𝜌𝑘)) − E𝑉 (0, 𝑦 (0))
= E [∫𝑡∧𝜌𝑘

0
L𝑉(𝑠, 𝑦 (𝑠)) 𝑑𝑠] , (17)

which implies

E𝑉 (𝑡 ∧ 𝜌𝑘, 𝑦 (𝑡 ∧ 𝜌𝑘))
= E𝑉 (0, 𝑦 (0)) + E [∫𝑡∧𝜌𝑘

0
L𝑉(𝑠, 𝑦 (𝑠)) 𝑑𝑠] . (18)

Letting 𝑘 󳨀→ ∞ on both sides (18), it follows from themono-
tone convergence theorem, (9), (10), and (12) that

E𝑉(𝑡, 𝑦 (𝑡)) ≤ E𝑉 (0, 𝑥 (0)) + ‖𝜐‖2∞ max
1≤𝑗≤𝑛

𝜂𝑗 ∫𝑡
0
𝑒𝜆𝑠 𝑑𝑠

≤ E𝑉(0, 𝑥 (0)) + 1𝜆 ‖]‖2∞ max
1≤𝑗≤𝑛

𝜂𝑗 (𝑒𝜆𝑡 − 1)
= 𝑛∑
𝑖=1

𝜂𝑖E𝑦2𝑖 (0) + ∫0
−𝜏𝑖

E𝑒𝜆𝑠 𝑛∑
𝑖=1

𝛼𝑖𝑦2𝑖 (𝑠) 𝑑𝑠
+ ∫0
−𝜏(𝑡)

∫𝑡
𝑡+𝜃

E𝑒𝜆𝑠 𝑛∑
𝑖=1

𝛽𝑖𝑦2𝑖 (𝑠) 𝑑𝑠
+ 1𝜆 ‖]‖2∞ max

1≤𝑗≤𝑛
𝜂𝑗 (𝑒𝜆𝑡 − 1)

≤ (max
1≤𝑗≤𝑛

𝜂𝑗 + 𝜏max
1≤𝑗≤𝑛

𝛼𝑗 + 𝜏max
1≤𝑗≤𝑛

𝛽𝑗)E 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩2
+ 1𝜆 ‖]‖2∞ max

1≤𝑗≤𝑛
𝜂𝑗 (𝑒𝜆𝑡 − 1) .

(19)

On the other hand, from the definition of 𝑉(𝑡, 𝑥(𝑡), we have
E𝑉 (𝑡, 𝑦 (𝑡)) ≥ E𝑒(𝜆−1)𝑡 𝑛∑

𝑖=1

𝜂𝑖𝑦2𝑖 (𝑡)
≥ 𝑒(𝜆−1)𝑡min

1≤𝑖≤𝑛
𝜂𝑖E 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨2 . (20)

Combining (19) and (20), the following inequation holds:

E 󵄨󵄨󵄨󵄨𝑦 (𝑡)󵄨󵄨󵄨󵄨2
≤ max1≤𝑖≤𝑛 𝜂𝑖 + 𝜏max1≤𝑖≤𝑛 𝛼𝑖 + 𝜏max1≤𝑖≤𝑛 𝛽𝑖

min1≤𝑖≤𝑛 𝜂𝑖⋅ 𝑒−(𝜆−1)𝑡E 󵄩󵄩󵄩󵄩𝜙󵄩󵄩󵄩󵄩2 + max1≤𝑖≤𝑛 𝜂𝑖𝜆max1≤𝑖≤𝑛 𝜂𝑖 ‖𝜐‖2∞ .
(21)

From (21) we see that the trivial solution of system (6)-(7)
is mean-square exponentially input-to-state stable. The proof
of Theorem 4 is completed.

Corollary 5. Assume that all the conditions ofTheorem 4 hold.
Then the trivial solution of system (1)-(2)with𝑢(𝑡) ≡ 0 ismean-
square exponentially stable.

Remark 6. If we ignore the effects of delays, then system (1)-
(2) becomes a stochastic recurrent neural network without
delays. The results obtained in this paper are also applicable
to the case of stochastic recurrent neural networks without
delays.

Remark 7. Compared with the result in [44], our model is
more general than that in [44]. In fact, multiproportional
delays and distributed delays are considered in this paper and
they yield much difficulty in the proof of our result, whereas
only a simple constant delay was discussed in [44].

Remark 8. Compared with the result in [46], our model is
also more general than that in [46] since distributed delays
and fuzzy factor in this paper were ignored in [46].

4. Illustrative Examples

In this section, wewill use two examples to show the effective-
ness of the obtained result.

Example 1 (2-dimension case). Consider the case of 2-dimen-
sion stochastic recurrent neural networks with multipropor-
tional delays

𝑑𝑥𝑖 (𝑡) = [[−𝑑𝑖𝑥𝑖 (𝑡) +
2⋀
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡))
+ 2⋀
𝑗=1

𝑏𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑝𝑗𝑡)) + 2⋀
𝑗=1

𝑐𝑖𝑗 ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑥𝑗 (𝑠)) 𝑑𝑠
+ 2⋁
𝑗=1

𝑑𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡)) + 2⋁
𝑗=1

𝑒𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑝𝑗𝑡))
+ 2⋁
𝑗=1

𝑓𝑖𝑗 ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑥𝑗 (𝑠)) 𝑑𝑠 + 𝑢𝑖 (𝑡)]]𝑑𝑡 + 2∑
𝑗=1

𝜎𝑖𝑗
⋅ (𝑥𝑗 (𝑡) , 𝑥𝑗 (𝑝𝑗𝑡)) 𝑑𝑤𝑗 (𝑡) ,

(22)

𝑥𝑖 (𝑡) = 𝜑𝑖 (𝑡) , 𝑝 ≤ 𝑡 ≤ 1, 𝑖 = 1, 2, (23)
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where

𝑓 (𝑥) = 𝑔 (𝑥) = ℎ (𝑥) = {{{
0.1𝑥, if 𝑥 ≤ 0,0.1 tan (𝑥) , if 𝑥 > 0,𝑢 (𝑡) = 0.08 sin (𝑡) , (24)

and (𝜎𝑖𝑗 (𝑥𝑗 (𝑡)) , (𝑝𝑗𝑡))2×2
= ( 0.4𝑥1 (𝑡) 0.2 (𝑥2 (𝑡) + 𝑥2 (𝑝2𝑡))0.2𝑥1 (𝑝1𝑡) 0.1 (𝑥2 (𝑡) + 𝑥2 (𝑝2𝑡))) . (25)

Other parameters of system (22)-(23) are given as follows:

(𝑎𝑖𝑗)2×2 = (0.5 0.30.4 0.8) ,
(𝑏𝑖𝑗)2×2 = (0.6 0.30.8 0.2) , (26)

(𝑐𝑖𝑗)2×2 = (0.4 0.30.2 0.5) ,
(𝑑𝑖𝑗)2×2 = (0.5 0.70.3 0.8) , (27)

(𝑒𝑖𝑗)2×2 = (0.4 0.60.5 0.3) ,
(𝑓𝑖𝑗)2×2 = (0.3 0.20.5 0.4) , (28)

𝑑1 = 9, 𝑑2 = 8. Take 𝑝1 = 𝑝2 = 0.5, 𝜆 = 1.1, 𝜂1 = 0.5, 𝜂2 =0.5, 𝛼1 = 2.6, 𝛼2 = 1.6, 𝛽1 = 1.3, 𝛽2 = 1.7, and from the defini-
tion of 𝜏, we obtain 𝜏 = 0.6931. It is easy to check that
Assumptions 1–3 are satisfied. Moreover, a simple computa-
tion yields2𝜂1𝑑1 = 9

> (1 + 𝜆) 𝜂1 + 𝛼1 + 𝜏𝛽1 + 2∑
𝑗=1

𝜂𝑗𝜇𝑗1
+ 2∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑎𝑗1󵄨󵄨󵄨󵄨󵄨 𝐿1 + 𝜂1 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎1𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂1 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏1𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂1 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐1𝑗󵄨󵄨󵄨󵄨󵄨𝑁𝑗
+ 2∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗1󵄨󵄨󵄨󵄨󵄨 𝐿1 + 𝜂1 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑1𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂1 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒1𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂1 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑓1𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗 = 5.14103,

(29)

2𝜂2𝑑2 = 8
> (1 + 𝜆) 𝜂2 + 𝛼2 + 𝜏𝛽2 + 2∑

𝑗=1

𝜂𝑗𝜇𝑗2
+ 2∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑎𝑗2󵄨󵄨󵄨󵄨󵄨 𝐿2 + 𝜂2 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎2𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂2 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏2𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂2 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐2𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗
+ 2∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗2󵄨󵄨󵄨󵄨󵄨 𝐿2 + 𝜂2 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑2𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂2 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒2𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂2 2∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑓2𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗 = 4.39327,

(30)

𝛼1 = 2.6
≥ 2∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗]𝑗1 + 2∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑗1󵄨󵄨󵄨󵄨󵄨𝑀1
+ 2∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗1󵄨󵄨󵄨󵄨󵄨𝑀1 = 0.889511,
(31)

𝛼2 = 1.6
≥ 2∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗]𝑗2 + 2∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑗2󵄨󵄨󵄨󵄨󵄨𝑀2
+ 2∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗2󵄨󵄨󵄨󵄨󵄨𝑀2 = 0.471548,
(32)

𝛽1 = 1.3
≥ 𝜏(1 − 𝛿) ( 2∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑐𝑗1󵄨󵄨󵄨󵄨󵄨𝑁1 + 2∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗1󵄨󵄨󵄨󵄨󵄨𝑁1)= 0.1581,

(33)

𝛽2 = 1.7
≥ 𝜏(1 − 𝛿) ( 2∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑐𝑗2󵄨󵄨󵄨󵄨󵄨𝑁2 + 2∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗2󵄨󵄨󵄨󵄨󵄨𝑁2)= 0.1581.

(34)

Hence, all the conditions of Theorem 4 are satisfied. System
(22)-(23) is mean-square exponentially input-to-state stable.
Obviously, system (22)-(23) is mean-square exponentially
stable when 𝑢(𝑡) ≡ 0.
Example 2 (3-dimension case). Consider the case of 3-
dimension stochastic recurrent neural networks with multi-
proportional delays
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𝑑𝑥𝑖 (𝑡) = [[−𝑑𝑖𝑥𝑖 (𝑡) +
3⋀
𝑗=1

𝑎𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡))
+ 3⋀
𝑗=1

𝑏𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑝𝑗𝑡)) + 3⋀
𝑗=1

𝑐𝑖𝑗 ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑥𝑗 (𝑠)) 𝑑𝑠
+ 3⋁
𝑗=1

𝑑𝑖𝑗𝑓𝑗 (𝑥𝑗 (𝑡)) + 3⋁
𝑗=1

𝑒𝑖𝑗𝑔𝑗 (𝑥𝑗 (𝑝𝑗𝑡))

+ 3⋁
𝑗=1

𝑓𝑖𝑗 ∫𝑡
𝑡−𝜏(𝑡)

ℎ𝑗 (𝑥𝑗 (𝑠)) 𝑑𝑠 + 𝑢𝑖 (𝑡)]]𝑑𝑡
+ 3∑
𝑗=1

𝜎𝑖𝑗 (𝑥𝑗 (𝑡) , 𝑥𝑗 (𝑝𝑗𝑡)) 𝑑𝑤𝑗 (𝑡) ,
(35)𝑥𝑖 (𝑡) = 𝜑𝑖 (𝑡) , 𝑡 ∈ [𝑝, 1] , 𝑖 = 1, 2, 3, (36)

where

𝑓 (𝑥) = 𝑔 (𝑥) = ℎ (𝑥) = 0.2 tanh (𝑥) ,𝑢 (𝑡) = 0.1 sin (𝑡) , (37)

(𝜎𝑖𝑗)3×3 = ( 0.2𝑥1 (𝑡) 0.2 (𝑥2 (𝑝2𝑡)) 0.3𝑥3 (𝑡)0.4𝑥1 (𝑝1𝑡) 0.4 (𝑥2 (𝑡) + 𝑥2 (𝑝2𝑡)) 0.2𝑥3 (𝑝3 (𝑡))0.2𝑥1 (𝑡) 0.1𝑥2 (𝑡) 0.4 (𝑥3 (𝑡) + 𝑥3 (𝑝3 (𝑡)))) , (38)

Other parameters of system (22)-(23) are given as follows:

(𝑎𝑖𝑗)3×3 = (−0.8 0.5 0.50.9 0.3 0.50.2 0.6 −0.3) ,
(𝑏𝑖𝑗)3×3 = (0.4 0.3 −0.20.5 0.8 0.40.9 −0.3 0.6 ) ,

(39)

(𝑐𝑖𝑗)3×3 = ( 0.6 −0.4 0.50.3 0.2 0.3−0.6 0.2 0.5) ,
(𝑑𝑖𝑗)3×3 = (0.7 0.4 0.50.6 0.2 0.30.3 0.2 0.4) ,

(40)

(𝑒𝑖𝑗)3×3 = (0.5 0.2 0.20.4 0.3 0.50.7 0.1 0.3) ,
(𝑓𝑖𝑗)3×3 = (0.5 0.3 0.20.4 0.1 0.20.3 0.4 0.3) ,

(41)

𝑑1 = 8, 𝑑2 = 9, 𝑑3 = 10. Take 𝑝1 = 𝑝2 = 𝑝3 =0.5, 𝜆 = 1.3, 𝜂1 = 0.4, 𝜂2 = 0.4, 𝜂3 = 0.4, 𝛼1 = 1.4, 𝛼2 =1.3, 𝛼3 = 1.4, 𝛽1 = 1.3, 𝛽2 = 1.2, 𝛽3 = 1.1, and it follows from

the definition of 𝜏 that 𝜏 = 0.6931. It is easy to check that
Assumptions 1–3 are satisfied. A direct computation gives2𝜂1𝑑1 = 6.4

> (1 + 𝜆) 𝜂1 + 𝛼1 + 𝜏𝛽1 + 3∑
𝑗=1

𝜂𝑗𝜇𝑗1
+ 3∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑎𝑗1󵄨󵄨󵄨󵄨󵄨 𝐿1 + 𝜂1 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎1𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂1 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏1𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂1 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐1𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗
+ 3∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗1󵄨󵄨󵄨󵄨󵄨 𝐿1 + 𝜂1 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑1𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂1 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒1𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂1 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑓1𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗 = 5.60903,

(42)

2𝜂2𝑑2 = 7.2
> (1 + 𝜆) 𝜂2 + 𝛼2 + 𝜏𝛽2 + 3∑

𝑗=1

𝜂𝑗𝜇𝑗2
+ 3∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑎𝑗2󵄨󵄨󵄨󵄨󵄨 𝐿2 + 𝜂2 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎2𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂2 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏2𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂2 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐2𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗



Mathematical Problems in Engineering 9

+ 3∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗2󵄨󵄨󵄨󵄨󵄨 𝐿2 + 𝜂2 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑2𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂2 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒2𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂2 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑓2𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗 = 5.46372,
(43)2𝜂3𝑑3 = 8

> (1 + 𝜆) 𝜂3 + 𝛼3 + 𝜏𝛽3 + 3∑
𝑗=1

𝜂𝑗𝜇𝑗3
+ 3∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑎𝑗3󵄨󵄨󵄨󵄨󵄨 𝐿3 + 𝜂3 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑎3𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂3 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑏3𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂3 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑐3𝑗󵄨󵄨󵄨󵄨󵄨𝑁𝑗
+ 3∑
𝑗=1

𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑑𝑗3󵄨󵄨󵄨󵄨󵄨 𝐿3 + 𝜂3 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑑3𝑗󵄨󵄨󵄨󵄨󵄨 𝐿𝑗
+ 𝜂3 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑒3𝑗󵄨󵄨󵄨󵄨󵄨𝑀𝑗 + 𝜂3 3∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨𝑓3𝑗󵄨󵄨󵄨󵄨󵄨 𝑁𝑗 = 5.59841,

(44)

𝛼1 = 1.4
≥ 3∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗]𝑗1 + 3∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑗1󵄨󵄨󵄨󵄨󵄨𝑀1
+ 3∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗1󵄨󵄨󵄨󵄨󵄨𝑀1 = 1.29802,
(45)

𝛼2 = 1.3
≥ 3∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗]𝑗2 + 3∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑗2󵄨󵄨󵄨󵄨󵄨𝑀2
+ 3∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗2󵄨󵄨󵄨󵄨󵄨𝑀2 = 1.08332,
(46)

𝛼3 = 1.4
≥ 3∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗]𝑗3 + 3∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑏𝑗3󵄨󵄨󵄨󵄨󵄨𝑀3
+ 3∑
𝑗=1

𝑒𝜆𝜏𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑒𝑗3󵄨󵄨󵄨󵄨󵄨𝑀3 = 1.31969,
(47)

𝛽1 = 1.3
≥ 𝜏(1 − 𝛿) ( 3∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑐𝑗1󵄨󵄨󵄨󵄨󵄨 𝑁1 + 3∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗1󵄨󵄨󵄨󵄨󵄨 𝑁1)= 0.48781,

(48)

𝛽2 = 1.2
≥ 𝜏(1 − 𝛿) ( 3∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑐𝑗2󵄨󵄨󵄨󵄨󵄨 𝑁2 + 3∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗2󵄨󵄨󵄨󵄨󵄨 𝑁2)
= 0.28908,

(49)

𝛽3 = 1.1
≥ 𝜏(1 − 𝛿) ( 3∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑐𝑗3󵄨󵄨󵄨󵄨󵄨 𝑁3 + 3∑𝑗=1𝜂𝑗 󵄨󵄨󵄨󵄨󵄨𝑓𝑗3󵄨󵄨󵄨󵄨󵄨 𝑁3)
= 0.36134.

(50)

Hence, all the conditions of Theorem 4 are satisfied.
System (35)-(36) is mean-square exponentially input-to-state
stable. Obviously, system (22)-(23) is mean-square exponen-
tially stable when 𝑢(𝑡) ≡ 0.
Remark 3. Obviously, the obtained results in [44, 46] do not
apply to Examples 1 and 2 since many factors such as fuzzy
logic, multiproportional delays, and distributed delays are
considered in Examples 1 and 2.

5. Concluding Remarks

In this paper, we have studied mean-square exponential
input-to-state stability of a class of stochastic fuzzy recur-
rent neural networks with multiproportional delays and
distributed delays. A key characteristics of this paper is that
the nonlinear transformation 𝑦(𝑡) = 𝑥(𝑒𝑡) is employed to
transform the considered system into stochastic recurrent
neural networks with constant delays and variable coeffi-
cient, which overcomes the difficulty frommultiproportional
delays. Moreover, we also consider the effects of distributed
delays and fuzzy. In our future works, we will apply the
method developed in this paper to study some other impor-
tant problems such as the stability of multiagent systems.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no conflicts of interest re-
garding the publication of this paper.

Acknowledgments

This work was jointly supported by the National Natural Sci-
ence Foundation of China (61773217 and 61374080), the Nat-
ural Science Foundation of Jiangsu Province (BK20161552),
and Qing Lan Project of Jiangsu Province.



10 Mathematical Problems in Engineering

References

[1] G. Wang, “Existence-stability theorems for strong vector set-
valued equilibrium problems in reflexive Banach spaces,” Jour-
nal of Inequalities and Applications, vol. 239, pp. 1–14, 2015.

[2] Y. Bai and X. Mu, “Global asymptotic stability of a generalized
SIRS epidemic model with transfer from infectious to suscepti-
ble,” Journal of Applied Analysis and Computation, vol. 8, no. 2,
pp. 402–412, 2018.

[3] L. Gao, D.Wang, and G. Wang, “Further results on exponential
stability for impulsive switched nonlinear time-delay systems
with delayed impulse effects,” Applied Mathematics and Com-
putation, vol. 268, pp. 186–200, 2015.

[4] Y. Li, Y. Sun, and F.Meng, “New criteria for exponential stability
of switched time-varying systems with delays and nonlinear
disturbances,” Nonlinear Analysis: Hybrid Systems, vol. 26, pp.
284–291, 2017.

[5] L. G.Wang, K. P. Xu, and Q.W. Liu, “On the stability of a mixed
functional equation deriving fromadditive, quadratic and cubic
mappings,” Acta Mathematica Sinica, vol. 30, no. 6, pp. 1033–
1049, 2014.

[6] L. G. Wang and B. Liu, “Fuzzy stability of a functional equation
deriving from additive, quadratic, cubic and quartic functions,”
Acta Mathematica Sinica, vol. 55, no. 5, pp. 841–854, 2012.

[7] F. Li andY.Bao, “Uniformstability of the solution for amemory-
type elasticity system with nonhomogeneous boundary control
condition,” Journal of Dynamical and Control Systems, vol. 23,
no. 2, pp. 301–315, 2017.

[8] Y.-H. Feng and C.-M. Liu, “Stability of steady-state solutions
to Navier-Stokes-Poisson systems,” Journal of Mathematical
Analysis and Applications, vol. 462, no. 2, pp. 1679–1694, 2018.

[9] J. Hu and A. Xu, “On stability of F-Gorenstein flat categories,”
Algebra Colloquium, vol. 23, no. 2, pp. 251–262, 2016.

[10] Q. X. Zhu and Q. Y. Zhang, “Pth moment exponential stabil-
isation of hybrid stochastic differential equations by feedback
controls based on discrete-time state observations with a time
delay,” IET Control Theory & Applications, vol. 11, no. 12, pp.
1992–2003, 2017.

[11] W. W. Sun, “Stabilization analysis of time-delay Hamiltonian
systems in the presence of saturation,”AppliedMathematics and
Computation, vol. 217, no. 23, pp. 9625–9634, 2011.

[12] X. Zheng, Y. Shang, and X. Peng, “Orbital stability of soli-
tary waves of the coupled Klein-Gordon-Zakharov equations,”
Mathematical Methods in the Applied Sciences, vol. 40, no. 7, pp.
2623–2633, 2017.

[13] C. Liu andY.-J. Peng, “Stability of periodic steady-state solutions
to a non-isentropic Euler-Maxwell system,” Zeitschrift für Ange-
wandteMathematik und Physik, vol. 68, no. 5, Art. 105, 17 pages,
2017.

[14] Q. Zhu andH.Wang, “Output feedback stabilization of stochas-
tic feedforward systems with unknown control coefficients and
unknown output function,” Automatica, vol. 87, pp. 166–175,
2018.

[15] Q. Zhu, “Razumikhin-type theorem for stochastic functional
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