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Abstract: The industrial data has the characteristic of clustering and migrating with the operating point. The 
accuracy and generalization ability of the single-model prediction are poor because of the large amount of in-
formation lost in single-model modeling. In order to overcome these problems, a modeling method of multi-
model soft sensor was proposed based on adaptive affinity propagation clustering (ADAP) and Bayesian filter-
ing. ADAP algorithm was utilized in this method to realize the clustering and tracking of multiple operating 
points. The sub-models of various types of samples were established utilizing Bayesian filtering method, and the 
joint output and estimation were carried out based on the model of the subclass of current working point. The 
soft sensor models of CO and CO2 in PX oxidation side reaction were utilized in the method. The simulation 
results show that the estimation and generalization ability of soft sensing model is significantly improved by the 
method. Copyright © 2013 IFSA. 
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1. Introduction 
 

In practical production process, the manipulated 
variables of each device are controlled around the 
given values. These given values of the operating 
point often need to be changed to meet the production 
requirement, which leads to a problem that the pro-
duction data cluster and migrate with the working 
point. Single model has problems like long studying 
time, low accuracy, poor process characteristic match 
and poor generalization ability. Therefore, the multi-
model modeling method was proposed [1-3]. The 
basic idea of this modeling method is to cluster the 
training samples by clustering algorithm and estab-
lish the soft sensor sub-model for different types of 

samples. When the process operating point changes 
in a wide range, the model can identify this change, 
and the prediction and output could be conducted in 
accordance with the model of the corresponding op-
erating point.  

The common clustering algorithms are K-means 
clustering and fuzzy clustering, etc. The initial cluster 
centers and the number of clusters are determined 
based on prior knowledge. However, prior knowl-
edge is generally unknown for the operation data of 
actual production. Affinity propagation clustering 
algorithm, a new clustering algorithm [4] proposed in 
recent years, could determine the centers and the 
number of clusters according to the characteristics of 
the data. This method has been widely applied so far 
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[5-7]. A multi-model modeling algorithm of support 
vector machine based on affinity propagation cluster-
ing algorithm (ADAP) was proposed for the model-
ing of arachidonic acid fermentation process in litera-
ture [5]. A multi-model soft-sensing modeling 
method based on online clustering and association 
vector machine was proposed in literature [8] which 
has achieved good results in the final-boiling-point 
prediction system of light naphtha in hydrocracking 
unit fractionator. A multi-model algorithm of affinity 
propagation clustering with supervision was proposed 
in literature [6] to circularly adjust the clustering 
based on the output errors, and this method was bet-
ter than traditional multi-modeling methods in term 
of modeling effect. 

Affinity propagation clustering algorithm, how-
ever, is difficult in determining the values of key pa-
rameters for the optimal clustering results, and the 
concussion of the cluster number generated in the 
iterative process does not automatically disappear to 
make algorithm converged [9-13]. In allusion to these 
problems, a soft-sensing modeling method based on 
Bayesian filtering and adaptive affinity propagation 
clustering was proposed in the study. The ADAP 
algorithm was utilized for the classification of train-
ing samples in this method; Bayesian estimation 
method was utilized to create the sub-models of the 
small classified sample and carry out global output in 
accordance with the model of the belonging subclass 
of current operating point. The effectiveness of this 
method was proved by the CO and CO2 soft-sensing 
model in PX oxidation side reaction. 

 
 

2. Algorithm of Adaptive Affinity  
Propagation Clustering 
 

2.1. Affinity Propagation Clustering  
Algorithm 

 
Affinity propagation clustering is a new fast and 

effective clustering method proposed in literature [4]. 
First, all sample points are regarded as potential clus-
ter centers, and each sample point competes for the 
cluster center in the iteration loop. So there is no need 
to determine the number of clusters in advance. 

A given sample set  , , 1,2,..., , m
i i ix y i N x R   is 

the input of m-dimension sample; m
iy R  is the 

output of the sample. Negative Euclidean distance is 

utilized to measure the similarity of ix  and jx , 

which is  , i jS i j x x   ., Samples are standard-

ized before solving the similarity to eliminate the 
effect of dimension.  ,R i k  is defined as the attrac-

tion degree that kx  is suit for the cluster center of ix ; 

 ,A i k  is defined as the membership degree that kx is 

chosen as the cluster center of ix . AP algorithm con-

tinuously collects the evidences (  ,R i k and  ,A i k ) 

from data samples. The iteration formula 

of  ,R i k is shown in formula 1: 

 

   , ,oldR i k R i k , 

       , , max , ,newR i k S i k A i j S i j     ,

     , (1 ) , ,new oldR i k R i k R i k     

(1)

 

The iteration formula of  ,A i k is shown in  

formula 2: 
 

   , ,oldA i k A i k , 

   , max 0 ,newA k k R j k    , 

     , min(0, , max 0 ,newA i k R k k R j k    
     , (1 ) , ,new oldA i k A i k A i k     

(2) 

 
If

        , , max , , , 1, 2,...,R i k A i k R i j A i j j n    , 

data point kx is the cluster center of ix . The update 

speed of the iteration could be changed by the ad-
justment of damping factor λ, λ=0~1. The element on 
the diagonal of similarity matrix is a bias parameter 
P which meets. 

 
     , ( ) max , ,

j k
R k k p k A k j S k j


      

 
The bigger ( )p k  is, the bigger  ,R k k  and 

 ,A k j are. So cluster head kx  has the biggest 

chance of becoming the cluster center. The more and 
bigger ( )p k  means that the more cluster heads 

could finally become the cluster center. Thus the 
change of P could affect the cluster number of AP. 
When prior knowledge is unknown, the value of 

( )p k  is the median of S, which is 

 

, 1

2

( , )

( ) , 1,...,

n

i j
m

S i j

p k p k n
n

  


 
(3) 

 
An indicator Silhouette, introduced to achieve the 

effect of evaluation cluster, indicates the inner-cluster 
tightness and inter-cluster separability of cluster 
structure. Assume that the data set is divided into k 
cluster subset ( 1, 2,..., )iC i k , the indicator Silhou-

ette of a sample t is 
 

 
  

min ( , ) ( )
( )

max ( ),min ( , )

j

j

d t C a t
Sil t

a t d t C




,

 
(4) 
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where in ( , )jd t C is the average Euclidean distance 

from t to another cluster jC ; a(t) is the average 

Euclidean distance from t to the cluster iC . The av-

erage value of the indicator Silhouette of all the sam-
ples in a sample set is  ( ( ))il avS mean sum Sil t  . 

il avS 
 can reflect the quality of all the data and clus-

ters. A bigger il avS   means better cluster effect, and 

the corresponding cluster number of the maximum is 

the optimal cluster number. If il avS   is bigger than 

0.5, each cluster could be apparently separated; if 

il avS  is smaller than 0.2, then, a relevant cluster 

structure is needed.  
 
 
2.2. Clustering Algorithm of Adaptive  

Affinity Propagation 
 

AP algorithm can determine the clustering results 
based on the characteristics of the data with a fast 
arithmetic rate. But the algorithm has the following 
problems: the increase or decrease of the bias pa-
rameter p can increase or decrease the cluster number 
of AP algorithm, so it is difficult to determine the 
value of P to generate the optimal clustering results 
of algorithm; algorithm cannot automatically elimi-
nate the concussion and converge. In order to solve 
the above problems, the clustering algorithm of adap-
tive affine propagation was proposed in literature [9]. 

The iteration steps of the clustering algorithm of 
adaptive affine propagation are: 

Step 1: initialize S and P and start the algorithm 
with a relative big P. The initial value of P in this 
paper is p=0.5pm (the element in S is negative, so pm 
is negative); 

Step 2: execute AP algorithm once, then K cluster 
heads and the types of each sample are generated, 
wherein λ=0.5; 

Step 3: examine whether the K cluster heads are 
converged (the convergence condition is to meet the 
preset continuous constant frequency ω=0.5); if they 
are converged, evaluate the clustering results with 

effectiveness indicator Sil-av and reduce P with a step 
of  

0.01

0.1 50
m

step

p
p

K


 , 
 
if they are not converged, increase λ with a step of  
step = 0.05; if they are not converged when   max 
(max is 0.85), the concussion of P is obstinate, and a 
relatively big λ could not restrain the concussion. 
This P needs to be abandoned. Reduce P with a step 
of  

0.01

0.1 50
m

step

p
p

K


 . 
 

Step 4: determine whether the algorithm meets 
the termination condition, which is to meet that the 
maximum number of loop iteration or the number of 
clusters reaches 2. Terminate the iteration if the con-
dition is met; otherwise, go to step 2. ADAP algo-
rithm searches for the number of clusters space to 
find the optimal clustering results by adaptive scan-
ning bias parameter space. Adaptively adjust the 
damping factor to eliminate the concussion in the 
iterative process and reduce the value of P to get rid 
of the concussion when the damping factor adjust-
ment method fails. 
 
 
3. Establishment of Soft Sensing  

Multi-model 
 
In order to overcome the problems of single-

model modeling, the structure of soft sensing multi-
model based on Bayesian theory is shown in Fig. 1. 
Firstly, cluster the training samples and find the op-
timal clustering results utilizing ADAP algorithm. 
Secondly, establish the sub-models of each sample 
utilizing Bayesian theory. Lastly, predict the output 
based on the corresponding sub-model of current 
operating point in the process. Its structure is shown 
in Fig. 1. 

 
 

 

 
 

Fig. 1. Structure of multiple models soft-sensing method. 
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3.1. Bayesian Estimation 
 
In this research, the content of CO and CO2 was 

thought as a state estimation problem. The state-
space model was utilized to describe this problem. 
Assume that the position state of the target 

is
( | 1,..., )tx t N

, and the collection for each mo-

ment observation is
( | 1,..., )tx t N

. Then the state 
of the target can be described by the motion equation 
and observation equation in formula 5: 

 

1( )

( )
t t t

t t t

x F x

z H x




 
    

(5) 

 
where F is the impact parametric equation describing 
the model input; 

H is the observation model which describes the 
relationship between the observed quantity and 
model output; 

t is the noise, which is utilized to describe the 
uncertainty of movement; 

t is the observed noise, which is utilized to de-
scribe the uncertainty caused by outside interference 
and the noise of the detecting element. 

Bayesian estimation is a state estimation method 
utilizing state priori distribution and the observation 
of likelihood function to determine the posterior 
probability distribution. For a first-order Markov 
process, assume that the observation of each moment 
is mutually independent. If the posterior distribution 

at time t-1 is 1 1( | )t tp x z  , the prior distribution at 
time t can be expressed as shown in formula 6: 

 

1 1 1 1 1( | ) ( | ) ( | )t t t t t t tp x z p x z p x z dx       
(6) 

 

where 1( | )t tp x z  is the transition probability den-
sity function, which is determined by F and the prob-

ability distribution of the noise t (
( )tp 

) in mo-
tion equation 5. The definition is:  
 

1 1( | ) ( ) ( ( ))t t t t t tp x x p x F x d      
(7) 

 

where in () is the Dirac function. After the prior 

distribution 1( | )t tp x z  is obtained, the state poste-

rior distribution 
( | )t tp x z

could be expressed as: 
 

1

1

( | ) ( | )
( | )

( | ) ( | )
t t t t

t t

t t t t t

p z x p x z
p x z

p z x p x z dx





  

(8) 

 

where 
( | )t tp z x

is the observation likelihood func-
tion, which is determined by H and the probability 

distribution of the noise t (
( )tp 

). The definition 
is: 
 

( | ) ( ) ( ( ))t t t t t tp z x p z H x d     
(9) 

 
The above formula 6 and 7 constitute the predic-

tion process of Bayesian estimation; formula 8 and 9 
constitute the update process of Bayesian estimation. 
The two processes are determined by the equation 
and observation equation of state space model pa-
rameters in formula 5, respectively. The tracking of 

the posterior distribution of state tx
 could be 

achieved through the iterative and recursive solution 
of above prediction and update process. 

 
 

3.2. Simulation Study 
 

The source of our data was the PTA production 
process data in a chemical plant. The model of par-
axylene (PX) oxidation side reaction through soft 
sensor model provided the basis for production opti-
mization of operating parameters and the transforma-
tion of the production process. The main factors that 
will affect the combustion side reaction are: the reac-

tion temperature ( 1x , °C), solvent ratio ( 2x , Kg. 
HAc/Kg. PX), the concentration of cobalt catalyst 

( 3x , wt%), the concentration of manganese catalyst 

( 4x , wt%), the concentration of bromine accelerator 

( 5x , wt%) and the residence time ( 6x
, S). Regard 

these main factors after data preprocessing as the 
input data; the total content of CO and CO2 (ФCOX) 
of the reactor exhaust gas as the output data y. Gen-
erally 250 sets of data were obtained. 170 sets of data 
are the training data, and the remaining 80 sets of 
data are the current running data in the process, 
which were utilized to test the generalization capabil-
ity of the model. 

Fig. 2 is the cluster number of ADAP clustering 
algorithm and the corresponding indicator of effec-

tiveness il avS  . Fig. 2 shows the ADAP algorithm 
was started with a large value of P to obtain several 
clustering results. The optimal clustering results 

could be selected according to the indicator il avS  . 

The indicator il avS   was the largest when the train-
ing samples were divided into two clusters in terms 
of the data utilized in this study. Therefore, the train-
ing samples were divided into two clusters. 

Further simulation analysis on the training results 
and the linear regression analysis of the output and 
target output of network simulation are shown in  
Fig. 3. The figure shows that the correlation coeffi-
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cient is 0.99, which means that the performance of 
the network is satisfying. 
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0.58

0.6

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

The number of clustering  
 

Fig. 2. The effective index of clustering algorithm. 
 
 

 
 

Fig. 3. The analysis result of network output. 
 
 

3.3. The Combustion Loss Model of Acetic 
Acid and Xylene 

 
Establish the combustion loss model of acetic ac-

id and PX based on the determined generation model 
of COx. The combustion loss model of acetic acid: 

 

CTA

CO
HAc

HAc
COgas

consume
HAc

m
m

x
xm

m
x

x






100
2

1000

60

100  

 

The combustion loss model of PX is: 
 

CTA

CO
PX

PX
COgas

consume
PX

m
m

x
xm

m
x

x






100
8

1000

106

100

 
 

XCOx
: the total content of generated CO and CO2 of 

the exhaust gas; 

HAcx  : the percentage of COx generated by acetic 
acid (%); 

xCO
HAcm

 : the percentage of COx accounting for the 
combustion product of acetic acid side reaction (%); 

gasm
 : the flow of exhaust gas from the reactor 

(ft3/hr); 

CTAm  : CTA product yield (tons / Hr); 
The molecular weight of acetic acid: 60 (g / mol); 

consume
HAcm  : the amount of acetic acid loss (Kg / 

ton. CTA); 

PXx  : the percentage of COx generated by PX 
(%); 

xCO
PXm  : the percentage of COx accounting for the 

combustion product of PX side reaction (%); 
The molecular weight of PX: 106 (g / mol); 

consume
PXm  : the amount of PX loss (Kg / ton CTA); 

From the above text, the value 

of HAcx ,
xCO

HAcm
, PXx and

xCO
PXm are known as 60 %,  

75 %, 40 % and 60 %, respectively; gasm
and 

CTAm were obtained through the actual production 
data. 

 
 

4. Analysis of the Effect on Process  
Operating Parameters on Combustion 
Loss 

 
Establish a model to reflect the effect of operating 

parameters on the HAC and PX combustion loss in 
PX oxidation reaction process. Then, analyze the 
effect of various operating parameters on HAC and 
PX combustion loss in the reaction process. Thereaf-
ter, analyze the effect of residence time, reaction 
temperature, solvent ratio, the concentration of cata-
lyst like cobalt, manganese, bromine and other oper-
ating parameters on the HAC and PX combustion 
loss through the model, respectively. The results are 
shown in Figs. 4-8. 
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Fig. 4. Effect of reaction time on oxidative side-reaction. 



Sensors & Transducers, Vol. 21, Special Issue, May 2013, pp. 211-217 

 216 

194.2 194.4 194.6 194.8 195 195.2 195.4 195.6 195.8

20

25

30

35

temperature(� )

co
ns

um
e 

of
 H

A
C

--
bl

ue
/P

X
--

re
d(

K
g)

HAC 

PX 

 
 

Fig. 5. Effect of reaction temperature on oxidative  
side-reaction. 
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Fig. 6. Effect of HAC/PX on oxidative side-reaction. 
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Fig. 7. Effect of Co concentration on oxidative  
side-reaction. 

 

0.037 0.038 0.039 0.04 0.041 0.042 0.043 0.044 0.045 0.046
15

20

25

30

35

40

Mn(%)

co
ns

um
e 

of
 H

A
C

--
bl

ue
/P

X
--

re
d(

K
g)

HAC 

PX 

 
 

Fig. 8. Effect of Mn concentration on oxidative  
side-reaction. 

Fig. 4-9: reaction residence time has a great effect 
on the combustion loss; the effects of reaction tem-
perature and the concentration of Co, Mn, Br are 
small, but the effect of reaction temperature is slight-
ly bigger. The effects of each operating parameter on 
the combustion loss can be quantitatively analyzed 
from these curves to provide guidance for the ad-
justment and optimization of operating parameters in 
practical production process. 

 
 

 
 

Fig. 9. Effect of Br concentration on oxidative  
side-reaction. 

 
 
5. Conclusions 
 

Utilize the algorithm of adaptive affine propaga-
tion clustering to divide the field data into two cate-
gories. The combustion loss model of HAC and PX 
was established based on Bayesian filtering. And this 
neural network model regarded the main adjustable 
process parameters (residence time, the concentration 
of Co, Mn, Br, reaction temperature and solvent ra-
tio) as the independent variables and the total content 
of CO and CO2 as the dependent variable. The simu-
lation results show that the network is well per-
formed. The effects of process operating parameters 
on HAC and PX combustion loss are analyzed based 
on the model. Wherein, the effects of residence time, 
reaction temperature on the combustion loss are big-
ger, while the effects of other factors are relatively 
small. 
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