Fast Kronecker product kernel methods via sampled vec trick
Antti Airola, Tapio Pahikkala

Abstract
Kronecker product kernel provides the standard approach in the kernel methods literature for learning from pair-input data, where both data points and prediction tasks have their own feature representations. The methods allow simultaneous generalization to both new tasks and data unobserved in the training sample, a setting known as zero-shot or zero-data learning. Such a setting occurs in numerous applications, including drug-target interaction prediction, collaborative filtering and information retrieval. Efficient training algorithms based on the so-called vec trick, that makes use of the special structure of the Kronecker product, are known for the case where the output matrix for the training sample is fully observed, i.e. the correct output for each data point-task combination is available. In this work we generalize these results, proposing an efficient algorithm for sampled Kronecker product multiplication, where only a subset of the full Kronecker product, that corresponds to the training sample, is computed. This allows us to derive a general framework for training Kronecker kernel methods, as specific examples we implement Kronecker ridge regression and support vector machine algorithms. Experimental results demonstrate that the proposed approach leads to accurate models, while allowing order of magnitude improvements in training and prediction time.

Index Terms
kernel methods, Kronecker product kernel, pair-input data, ridge regression, support vector machine, transfer learning, zero-shot learning

1 INTRODUCTION
This work concerns the problem of how to efficiently learn supervised machine learning models from pair-input data. Given a training sample \((d_i, t_j, y_{ih})_{n=1}^N\) of triplets each consisting of a pair-input \((d_i, t_j)\) and an output \(y_{ih}\), the goal is to learn to predict outputs for new pair-inputs. We assume that both parts of the pair-input have their own feature representations, and that the data tends to appear in sets where same parts belong to several different pair-inputs (for example, \((d_i, t_v), (d_u, t_w), (d_i, t_w)\) and \((d_u, t_v)\) might all appear as pair-inputs in the same training sample). This latter property is what differentiates pair-input learning from the standard supervised learning setting, as the data violates the very basic i.i.d. assumption. As we will see, this overlapping nature of the data has major implications both on the correct way to estimate the generalization performance of learned predictors, and on how efficient algorithms can be designed for learning from such data.

The pair-input learning setting appears in a large variety of different areas of machine learning. The term was used in [1] to unify prominent machine learning application areas in biology and chemistry dealing with pair-input prediction, such as protein-protein, drug-target [2], and protein-RNA interaction prediction. In collaborative filtering, where the central task is to predict ratings or rankings for (customer, product) -pairs (see e.g. [3], [4], [5]) the setting has sometimes been called dyadic prediction [5]. In learning to rank for information retrieval the reranking of search engine results has been popularly cast as a pair-input prediction problem over (query, document) -pairs [6]. The setting also appears in link prediction [7] and relational learning [8], as for example predicting whether two persons are friends in a social network can be naturally represented as a pair-input prediction task.

Further, much of the work done in multi-task learning can be considered to fall under this framework [9], [10], [11], [12], [13], [14], [15]. For example, in multi-label data one might have as training data images and labels describing the properties of the images (e.g. food, person, outside). In a traditional multi-label learning setting only the images have features describing them, and we assume that the set of possible labels is fixed in advance, and that examples of each label must appear in the training sample. However, if the labels have also features describing then, we may relax these assumptions by casting the task as a pair-input prediction problem over (data point, label) -pairs (e.g. predict 1 if label \(t_i\) should be assigned to data point \(d_i\), and -1 if not, or rank a set of candidate labels from best matching to worst). This allows predictions even for new data points and labels both not part of the training sample. Considering possible feature descriptions for labels, as an example for similar application assigned

A. Airola and T. Pahikkala are with the Department of Information Technology, University of Turku, Finland (e-mail: firstname.lastname@utu.fi).
boolean vectors of semantic properties as features for labels (e.g. “is animal”, “is man made”). More generally any of the pair-input problems considered previously can be considered as multi-task problems, for example by considering drugs as data points, targets as tasks and the binary interactions (+1 interacts, -1 does not interact) as descriptor of the correct classification of the drug given the target (or vice versa).

Next, we describe three types of pair-input prediction problems, a division similar to that presented in [1]. The overall learning setting is described in Figure 1. Let us assume, that our inputs can be naturally split into two parts. Borrowing from the multi-task learning literature, we refer to these as the data point and task parts, both of which have their own feature representations. Let D denote the in-sample data points (corresponding to the rows of the in-sample output matrix in Figure 1). Further, let T denote the in-sample tasks (corresponding to the columns of the in-sample output matrix in Figure 1). By in-sample, we mean that the data point or task is encountered in the training sample at least once.

Now let $x = (d, t)$ denote a new input, for which the correct output (typically class or real number) is unknown and needs to be predicted. In this work we focus on the most challenging setting, where it is assumed that $d \not\in D$ and $t \not\in T$, that is, neither the data or the task part has been previously observed in the training sample. Following works such as [16], [14], we use the term zero-shot learning to describe this setting, as it requires generalization to new data points and tasks both of which we have zero examples in the training sample. In related literature this setting has also been called zero-data learning [10], and in the context of recommender systems the cold-start problem [17]. In Figure 1 the zero-shot learning setting corresponds to predicting the unknown target output at the bottom right.

There exist two related yet distinct learning problems, that have been studied in-depth in the machine learning literature. First, if $d \in D$ and $t \in T$, the problem becomes that of matrix completion (predicting the the unknown outputs within the center rectangle in Figure 1). Recently this setting has been considered especially in the recommender systems literature, where matrix factorization methods have become the de-facto standard approach for solving these problems (see e.g. [4]). The second setting corresponds to the situation where $d \in D$ and $t \not\in T$, or alternatively $d \not\in D$ and $t \in T$ (predicting the block on the right or below in Figure 1). Here predictions are needed only for new rows or columns of the output matrix, but not both simultaneously. The problem may be solved by training a standard supervised learning method for each row or column separately, or by using multi-target learning methods that also aim to utilize correlations between similar rows or columns [18].

While simultaneous use of both datum and task features can and has been integrated to learning also in these two related settings, they are not essential for generalization, and can even be harmful (so called negative transfer, see e.g. [13], [2]). The learning algorithms considered in this work are applicable in these related settings, provided...
that both task and data specific features are available. However, simpler methods that do not need both of these information sources often provide a competitive alternative. Thus we do not consider further these two settings in this work, as these have been already quite thoroughly explored in previous literature.

In this work we assume that both the tasks and data points have feature representations defined implicitly via a kernel function [19]. Further, following works such as [3], [29], [7], [17], [21], [22], [11], [8], we assume that their joint feature representation is defined by the Kronecker product kernel, which is the product of the data and task kernels. An important theoretical advantage of several kernel based learning algorithms, such as support vector machines and ridge regression, is that a kernel function having the so-called universality property (e.g. Gaussian kernel) they are universally consistent, being able to asymptotically learn arbitrarily complex non-linear functions [24]. Recently, it has been established that the Kronecker kernel is universal if both the data point and task kernels are universal [8].

In practice, Kronecker kernel methods have proven to be a highly competitive approach for a large variety of pair-input applications. The kernel was originally proposed at the same time in several independent works for collaborative filtering [3] protein-protein interaction prediction [20] and entity resolution [25]. Since then the approach has become especially popular in predicting biological interactions (see e.g. [26], [27], [2]), as well as a standard building block in more theoretical work concerning the development of multi-task learning methods (see e.g. [9], [12], [28]). Concerning specifically the zero-shot learning setting, Kronecker kernel methods have been shown to outperform a variety of baseline methods in areas such as recommender systems [17], drug-target prediction [2] and image categorization [14].

Kronecker kernel methods can be trained by plugging the kernel to any existing kernel machine solver. However, for problems where the number of pair-inputs is large this is not feasible in practice, as typically the runtime and in many cases also the memory use of kernel solvers grows at least quadratically with respect to input size. Recently, it has been shown that the property that the same data points and tasks appear many times in the training data can be exploited in order to develop much faster training algorithms. Several efficient machine learning algorithms have been proposed for the special case, where the training sample contains the outputs for each possible datum-task pair in the training sample exactly once (i.e. all the values in the center output matrix in Figure 1 are known), and a ridge regression loss is minimized. Specifically [22], [11], [23], [13], [14] derive closed form solutions based on Kronecker algebraic optimization (see also [29] for the basic mathematical results underlying these studies). Further, iterative methods based on Kronecker kernel matrix - vector multiplications, have been proposed (see e.g. [7], [11], [23]).

However, the requirement that the outputs are known for each datum-task pair in \(D \times T \) can be considered a major limitation on the applicability of these methods. As far as we are aware, similar efficient training algorithms for regularized kernel methods have not been previously proposed for the case, where the training data is sparse in the sense that only a subset of the datum-task pairs in \(D \times T \) has a known output in the training sample. In this work we solve this remaining problem, showing how to substantially increase the computational efficiency of Kronecker kernel methods, assuming that same data points and tasks appear several times in the training sample.

We generalize the computational short-cut implied by Roth’s column lemma [30] (often known as vec-trick) to the sampled Kronecker product, where only a subset of the rows and columns of the full Kronecker product matrix is needed. Based on this result we derive efficient training algorithms for Kronecker kernel based regularized kernel methods. As case studies, we show how to apply this framework for training ridge regression and support vector machine methods; extending the results to other types of loss functions or optimization methods can be done in a similar manner. In addition to the computational complexity analysis we also experimentally demonstrate, that the proposed methods are the current state-of-the-art in learning with Kronecker kernels. This work extends our previous work [31, that specifically considered the case of efficient ridge regression with Kronecker product kernel.

2 Computation with Sampled Kronecker products

In this section we formally introduce the concept of sampled Kronecker product, where a vector is multiplied with a submatrix of a Kronecker product matrix \((M \otimes N) \). We derive a novel, and to the best of our knowledge the fastest existing algorithm for computing the sampled Kronecker product (Algorithm 1). The algorithm forms the basic building block for developing computationally efficient training methods for Kronecker kernel methods in the following sections. Note that the use of the term “sampling” in our work is analogous to traditional supervised learning, where the sample of training data is randomly drawn from the whole population. In pair-input learning with Kronecker product kernels, this has to be encoded into the sampling matrix determining which rows and columns of the Kronecker product matrix correspond to the inputs included in the training sample. To formalize the encoding, we use constructs called sampling matrices. While these are technically similar to the sampling matrices used in randomized matrix algorithms (see e.g. [32]), conceptually better analogy are the sampling operators defined by
Algorithm 1 Compute \(u \leftarrow R(M \otimes N)C^Tv \)

Require: \(M \in \mathbb{R}^{ab}, N \in \mathbb{R}^{cd}, v \in \mathbb{R}^e, p \in [a]^f, q \in [c]^f, r \in [b]^c, t \in [d]^c \)

1. if \(ae + df < ce + bf \) then
2. \(T \leftarrow 0 \in \mathbb{R}^{d \times a} \)
3. for \(h = 1, \ldots, e \) do
4. \(i, j \leftarrow r_h, t_h \)
5. for \(k = 1, \ldots, a \) do
6. \(T_{j,k} \leftarrow T_{j,k} + v_h M_{k,i} \)
7. \(u \leftarrow 0 \in \mathbb{R}^f \)
8. for \(h = 1, \ldots, f \) do
9. \(i, j \leftarrow p_h, q_h \)
10. for \(k = 1, \ldots, d \) do
11. \(u_h \leftarrow u_h + N_{j,k} T_{k,i} \)
12. else
13. \(S \leftarrow 0 \in \mathbb{R}^{c \times b} \)
14. for \(h = 1, \ldots, e \) do
15. \(i, j \leftarrow r_h, t_h \)
16. for \(k = 1, \ldots, c \) do
17. \(S_{k,i} \leftarrow S_{k,i} + v_h N_{k,j} \)
18. \(u \leftarrow 0 \in \mathbb{R}^f \)
19. for \(h = 1, \ldots, f \) do
20. \(i, j \leftarrow p_h, q_h \)
21. for \(k = 1, \ldots, b \) do
22. \(u_h \leftarrow u_h + S_{j,k} M_{i,k} \)
23. return \(u \)

that map the training sample to a sequence of values associated with them, and that here correspond the rows or columns of a Kronecker product matrix.

First, let us introduce some notations. By \([n]\), where \(n \in \mathbb{N} \), we denote the set \(\{1, \ldots, n\} \). By \(A \in \mathbb{R}^{a \times b} \) we denote an \(a \times b \) matrix, and by \(A_{i,j} \) the \(i,j \)-th element of this matrix. By \(\text{vec}(A) \) we denote the vectorization of \(A \), which is the \(ab \times 1 \) column vector obtained by stacking all the columns of \(A \) in order starting from the first column. \(A \otimes C \) denotes the Kronecker product of \(A \) and \(C \). By \(a \in \mathbb{R}^c \) we denote a column vector of size \(c \times 1 \), and by \(a_i \) the \(i \)-th element of this vector.

There exist several studies in the machine learning literature in which the systems of linear equations involving Kronecker products have been accelerated with the so-called “vec-trick”. This is characterized by the following result known as the Roth’s column lemma in the Kronecker product algebra:

Lemma 1 (30). Let \(M \in \mathbb{R}^{ab}, Q \in \mathbb{R}^{bc}, \) and \(N \in \mathbb{R}^{cd} \) be matrices. Then,

\[
(N^T \otimes M)\text{vec}(Q) = \text{vec}(MQN). \tag{1}
\]

It is obvious that the right hand side of (1) is considerably faster to compute than the left hand side, because it avoids the direct computation of the large Kronecker product.

We next shift our consideration to matrices that cannot be directly expressed as Kronecker products but whose rows and columns are sampled from such a product matrix. First, we introduce some further notation. To sample a sequence of rows or columns from a matrix with replacement, the following construction is widely used (see e.g. 32):

Definition 1 (Sampling matrix). Let \(M \in \mathbb{R}^{ab} \) and let \(s = (s_1, \ldots, s_f)^T \in [a]^f \) be a sequence of \(f \) row indices of \(M \) sampled with replacement. We say that

\[
S = \begin{pmatrix} e_{s_1}^T \\ \vdots \\ e_{s_f}^T \end{pmatrix},
\]

where \(e_i \) is the \(i \)-th standard basis vector of \(\mathbb{R}^a \), is a row sampling matrix for \(M \) determined by \(s \). The column sampling matrices are defined analogously.
The above type of ordinary sampling matrices can of course be used to sample the Kronecker product matrices as well. However, the forthcoming computational complexity considerations require a more detailed construction in which we refer to the indices of the factor matrices rather than to those of the product matrix. This is characterized by the following lemma which follows directly from the properties of the Kronecker product:

Lemma 2 (Kronecker product sampling matrix). Let \(M \in \mathbb{R}^{a \times b}, N \in \mathbb{R}^{c \times d} \) and let \(S \) be a sampling matrix for the Kronecker product \(M \otimes N \). Then, \(S \) can be expressed as

\[
S = \left(\begin{array}{c} e_T^T (p_1 - 1)c + q_1 \\ \vdots \\ e_T^T (p_f - 1)c + q_f \end{array} \right),
\]

where \(p = (p_1, \ldots, p_f)^T \in [a]^f \) and \(q = (q_1, \ldots, q_f)^T \in [c]^f \) are sequences of row indices of \(M \) and \(N \), respectively, which are sampled with replacement. The entries of \(p \) and \(q \) are given as

\[
p = \lfloor (i - 1)/c \rfloor + 1,
\]

\[
q = (i - 1) \mod c + 1,
\]

where \(i \in [ac] \) denotes a row index of \(M \otimes N \), and \(p \in [a] \) and \(q \in [c] \) map to the corresponding rows in \(M \) and \(N \), respectively.

Proof: The claim is an immediate consequence of the definition of the Kronecker product, where the relationship between the row indices of \(M \) and \(N \) with those of their Kronecker product is exactly the one given in (2) and (3).

Definition 2 (Sampled Kronecker product). Let \(M \in \mathbb{R}^{a \times b}, N \in \mathbb{R}^{c \times d} \), and let \(R \in \{0,1\}^{f \times ae} \) and \(C \in \{0,1\}^{e \times bd} \) to be, respectively, a row sampling matrix and a column sampling matrix of \(M \otimes N \), such that \(R \) is determined by the sequences \(p = (p_1, \ldots, p_f)^T \in [a]^f \) and \(q = (q_1, \ldots, q_f)^T \in [c]^f \), and \(C \) by \(r = (r_1, \ldots, r_e)^T \in [b]^e \) and \(t = (t_1, \ldots, t_e)^T \in [d]^e \). Further, we assume that the sequences \(p, q, r \) and \(t \) when considered as mappings, are all surjective. We call

\[
R(M \otimes N)C^T \varepsilon
\]

the sampled Kronecker product matrix. The surjectivity requirement ensures that all entries of \(M \) and \(N \) are factors of the sampled Kronecker product matrix entries. While, this in principle restricts the concept of sampled Kronecker product matrix, it can still be done without losing generality, because the matrices \(M \) and \(N \) can be replaced with their appropriate submatrices omitting the unnecessary rows and columns.

Proposition 1. Let \(R, M, N \) and \(C \) be as in Definition 2 and \(\varepsilon \in \mathbb{R}^e \). The product

\[
R(M \otimes N)C^T \varepsilon
\]

(4)

can be computed in \(O(\min(ae + df, ce + bf)) \) time.

Proof: Since the sequences \(p, q, r \) and \(t \), determining \(R \) and \(C \) are all surjective on their co-domains, we imply that \(\max(a, c) \leq f \) and \(\max(b, d) \leq e \).

Let \(\varepsilon \in \mathbb{R}^e \) be a matrix such that \(\text{vec}(\varepsilon) = C^T \varepsilon \). Then, according to Lemma 1, (4) can be rewritten as

\[
R\text{vec}(NVM^T) \varepsilon
\]

which does not involve a Kronecker product. Calculating the right hand side can be started by first computing either \(S = NV \) or \(T = VM^T \) requiring \(O(ce) \) and \(O(ae) \) time, respectively, due to \(V \) having only at most \(e \) nonzero entries. Then, each of the \(f \) elements of the product can be computed either by calculating the inner product between a row of \(S \) and a row of \(M \) or between a row of \(N \) and a column of \(T \), depending whether \(S \) or \(T \) was computed. The former inner products require \(b \) and the latter \(d \) flops, and hence the overall complexity is \(O(\min(ae + df, ce + bf)) \). The pseudocode for the algorithm following the ideas of the proof is presented in Algorithm 1.

Remark 1 (Sampling with replacement). If either the rows or columns of the sampled Kronecker product contain duplicates, the above complexity can be improved even further. Namely, the variables \(e \) and \(f \) then correspond to the numbers of distinct rows and columns. This can be achieved by replacing the original sampled Kronecker product with a one that is done by sampling without replacement so that the vector \(\varepsilon \) contains only a single entry per row of the Kronecker product matrix such that consists of the sum of all entries of the original \(\varepsilon \) associated with the same row. After running Algorithm 1, entries of \(u \) can be duplicated as many times as indicated by the original setting.

Remark 2 (Roth’s column lemma as a special case). If \(R = C = I \), the sampled Kronecker product reduces to the standard Kronecker product with no sampling, and the complexity of Algorithm 1 is \(O(\min(abd + acd, bcd + abc)) \), which is the same as the complexity of computing the product directly based on Roth’s column lemma.
3 General framework for sampled Kronecker product kernel methods

In this section, we connect the above abstract considerations with practical learning problems with pair-input data. We start by defining some notation which will be used through the forthcoming considerations. As observed from Figure 1, the relevant data dimensions are the sizes of the two data matrices and the number of inputs with known outputs. The notations are summarized in the following table:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td># of pair-inputs and outputs in training sample.</td>
</tr>
<tr>
<td>m</td>
<td># of data points encountered in training sample.</td>
</tr>
<tr>
<td>q</td>
<td># of tasks encountered in training sample.</td>
</tr>
<tr>
<td>d</td>
<td># of data features.</td>
</tr>
<tr>
<td>r</td>
<td># of task features.</td>
</tr>
</tbody>
</table>

The training sample consists of a sequence of examples $(d_{r_h}, t_{s_h}, y_h)_{h=1}^n \in (D \times T \times \mathcal{Y})^n$ each consisting of a pair-input and an associated output, where D and T are the data point and task spaces, and \mathcal{Y} is the output space ($\mathcal{Y} = \mathbb{R}$ for regression and $\mathcal{Y} = \{-1, 1\}$ for binary classification). Moreover, let $D = (d_i)_{i=1}^m \subset D^m$ and $T = (t_i)_{i=1}^q \subset T^q$ denote the in-sample data points and in-sample tasks, that is, the sets of data points and tasks encountered in the training sequence. Then, $r = (r_1, \ldots, r_n)^T \in [q]^n$ and $s = (s_1, \ldots, s_n)^T \in [m]^n$ are index sequences that map elements of the training sample to the corresponding data points and tasks in D and T, respectively. Looking at Figure 1, one may think of r_i and s_i as row and column indices for the known entries in the matrix titled: “Outputs of in-sample datum-task pairs”, that correspond to the training examples.

Let $k : D \times D \to [0, \infty)$ and $g : T \times T \to [0, \infty)$ denote positive semi-definite kernel functions \[19\] defined for the data points and tasks, respectively. Further, the Kronecker product kernel $k^\otimes(d, t, d', t') = k(d, d')g(t, t')$ is defined as the product of these two base kernels. Let $K_{ij} = k(d_i, d_j)$ and $G_{ij} = g(t_i, t_j)$ denote the data- and task kernel matrices for the training data, respectively. Further, let $R \in \{0, 1\}^{n \times mq}$ be the Kronecker product sampling matrix determined by the data point and task index sequences r and s, as defined in Lemma 2. Then $R(G \otimes K)R^T$ is the Kronecker kernel matrix containing the kernel evaluations corresponding to the training inputs. Note that the methods to be introduced will never explicitly form this prohibitively large Kronecker product matrix, rather kernel matrix multiplications are implemented with Algorithm 1, that requires as input G and K, as well as the index sequences r and s that implicitly define R.

We consider the regularized risk minimization problem

\[
 f^* = \underset{f \in \mathcal{H}}{\text{argmin}} \ J(f)
\]

with

\[
 J(f) = \mathcal{L}(p, y) + \frac{\lambda}{2} \|f\|^2_{\mathcal{H}},
\]

where $p \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ are the predicted and correct outputs for the training sample, \mathcal{L} a convex nonnegative loss function and $\lambda > 0$ a regularization parameter. Choosing as \mathcal{H} the reproducing kernel Hilbert space defined by k^\otimes, the generalized representer theorem \[34\] guarantees that the optimal solutions are of the form

\[
 f^*(d, t) = \sum_{i=1}^n a_i k(d_{r_i}, d)g(t_{s_i}, t),
\]

where we call $a \in \mathbb{R}^n$ the vector of dual coefficients.

Now let us consider the special case, where the data point space and the task space are real vector spaces, that is, $D = \mathbb{R}^d$ and $T = \mathbb{R}^r$, and hence both the data points and tasks have a finite dimensional feature representation. Further, if the data- and task kernels are linear, the Kronecker kernel can be written open as the inner product $k^\otimes(d, t, d', t') = \langle d \otimes t, d' \otimes t' \rangle$, that is the (datum, task) -pairs have an explicit feature representation with respect to this kernel as the Kronecker product of the two feature vectors. Let $D \in \mathbb{R}^{m \times d}$ and $T \in \mathbb{R}^{q \times r}$, respectively, contain the feature representations of the in-sample data points and tasks. Now the joint Kronecker feature representation for the training data can be expressed as $X = R(T \otimes D)$. In this case we can equivalently define the regularized risk minimizer as

\[
 f^*(d, t) = \langle d \otimes t, \sum_{i=1}^n a_i d_{r_i} \otimes t_{s_i} \rangle = \langle d \otimes t, w \rangle,
\]

where we call $w \in \mathbb{R}^{dr}$ the vector of primal coefficients.
3.1 Efficient prediction

Next, we consider how predictions can be efficiently computed for pair-input data both with dual and primal predictors. This operation is necessary both during training when training sample predictions are needed to evaluate the quality of the current predictor, as well as when applying the final trained predictor on new inputs. Let us assume a new sequence of pair-inputs (the quality of the current predictor, as well as when applying the final trained predictor on new inputs). Let us consider how predictions can be efficiently computed for pair-input data both with dual and primal predictors. This operation is necessary both during training when training sample predictions are needed to evaluate the quality of the current predictor, as well as when applying the final trained predictor on new inputs. Let us assume a new sequence of pair-inputs (the quality of the current predictor, as well as when applying the final trained predictor on new inputs).

First, let us consider making predictions on training data in the dual case. Based on previous considerations, we assume a new sequence of pair-inputs (the quality of the current predictor, as well as when applying the final trained predictor on new inputs).

Next, we consider how predictions can be efficiently computed for pair-input data both with dual and primal predictors. This operation is necessary both during training when training sample predictions are needed to evaluate the quality of the current predictor, as well as when applying the final trained predictor on new inputs. Let us assume a new sequence of pair-inputs (the quality of the current predictor, as well as when applying the final trained predictor on new inputs).

For the dual model, the predictions can be computed as

$$\hat{R}(\hat{G} \otimes \hat{K})R^Ta$$

resulting in a computational complexity of $O(\min(vn + ms, un + qs))$. Further, we note that for sparse models where a large portion of the a_i coefficients have value 0 (most notably, support vector machine predictors), we can further substantially speed up prediction by removing these entries from a and R and correspondingly replace the term n in the complexity with the number of non-zero coefficients. In this case, the prediction complexity will be

$$O(\min(v\|a\|_0 + ms, u\|a\|_0 + qs)),$$ \hspace{1cm} (6)

where $\|a\|_0$ is the zero-norm measuring the number of non-zero elements in a. This is in contrast to the explicit computation by forming the full test kernel matrix, which would result in

$$O(s\|a\|_0)$$ \hspace{1cm} (7)

complexity.

In the primal case the predictions can be computed as

$$\hat{R}(T \otimes \hat{D})w$$

resulting in a computational complexity of $O(\min(vdr + ds, udr + rs))$. For high-dimensional data ($dr >> n$) one will save substantial computation by using the dual model instead of the primal.

3.2 Efficient learning

The regularized risk minimization problem provides a convex minimization problem, whose optimum can be located with (sub)gradient information. Next, we show how to efficiently compute the gradient of the objective function, and for twice differentiable loss functions Hessian-vector products, when using the Kronecker kernel. For non-smooth losses or losses with non-smooth derivatives, we may instead consider subgradients and the generalized Hessian matrix (see e.g. [34], [37], [38]). In this section, we will make use of the denominator-layout notation.

For the dual model, the predictions can be computed as

$$\hat{R}(\hat{G} \otimes \hat{K})R^Ta.$$

The regularizer can be computed as

$$\frac{1}{2}\|f\|_F^2 = \frac{1}{2}a^T\hat{R}(\hat{G} \otimes \hat{K})R^Ta.$$

We use the following notation to denote the gradient and the Hessian (or a subgradient and/or generalized Hessian) of the loss function, with respect to p:

$$g = \frac{\partial \mathcal{L}}{\partial p} \text{ and } H = \frac{\partial^2 \mathcal{L}}{\partial p^2}.$$
The exact form of g and H depends on the loss function, Table 1 contains some common choices in machine learning. While maintaining the full $n \times n$ Hessian would typically not be computationally feasible, for univariate losses the matrix is diagonal. Further, for many multivariate losses efficient algorithms for computing Hessian-vector products are known (see e.g. [39] for examples of efficiently decomposable ranking losses).

The gradient of the empirical loss can be decomposed via chain rule as

$$\frac{\partial L}{\partial a} = \frac{\partial p}{\partial a} \frac{\partial L}{\partial p} = R(G \otimes K)R^T g$$

The gradient of the regularizer can be computed as $\lambda R(G \otimes K)R^T a$. Thus, the gradient of the objective function becomes

$$\frac{\partial J}{\partial a} = R(G \otimes K)R^T (g + \lambda a) \quad \text{(9)}$$

The Hessian of L with respect to a can be defined as

$$\frac{\partial^2 L}{\partial a^2} = \frac{\partial p}{\partial a} \frac{\partial}{\partial p} \left(\frac{\partial L}{\partial p} \right) = R(G \otimes K)R^T H R(G \otimes K)R^T$$

Hessian for the regularizer is defined as $\lambda R(G \otimes K)R^T$. Thus the Hessian for the objective function becomes

$$\frac{\partial^2 J}{\partial a^2} = R(G \otimes K)R^T (HR(G \otimes K)R^T + \lambda I)$$

For commonly used univariate losses, assuming p has been computed for the current solution, g, and H can be computed in $O(n)$ time. The overall cost of the loss, gradient and Hessian-vector product computations will then be dominated by the efficiency of the Kronecker-kernel vector product algorithm, resulting in $O(qn + mn)$ time.

Conversely, in the primal case we can compute the predictions as $p = R(T \otimes D)w$, loss gradient as $(T^T \otimes D^T)R^T g$ and Hessian for the loss as $(T^T \otimes D^T)R^T HR(T \otimes D)$, (both w.r.t. w). For the regularizer the corresponding values are $\frac{\partial}{\partial w} w = \frac{\lambda}{2} w$, λw and λI. The overall complexity of the loss, gradient and Hessian-vector product computations is $O(\min(qdr + dn, mdr + rn))$.

3.3 Optimization framework

As a simple approach that can be used for training regularized risk minimization methods with access to gradient and (generalized) Hessian-vector product operations, we consider a Truncated Newton optimization scheme (Algorithms 2 and 3). These implement approaches similar to [37], [42]). This is a second order optimization method that on each iteration computes the Newton step direction $\frac{\partial^2 J(f)}{\partial a^2} x = \frac{\partial J(f)}{\partial a}$ approximately up to a pre-defined number of steps for the linear system solver. The approach is well suited for Kronecker kernel method optimization.
since while computing the Hessians explicitly is often not computationally feasible, computing Hessian-vector products can be done efficiently using the sampled Kronecker product algorithm.

Alternative optimization schemes can certainly be used, such as the Limited-memory BFGS algorithm \[43\], trust-region Newton optimization \[40\], and methods tailored for non-smooth optimization such as the bundle method \[41\]. Such work is orthogonal to our work, as the proposed algorithm can be used to speed up computations for any optimization method that is based on (sub)gradient, and possibly (generalized) Hessian-vector product computations. Optimization methods that process either the samples or the model coefficients individually or in small batches (e.g. stochastic gradient descent \[44\], coordinate descent \[45\], SVM decomposition methods \[46\]) may however not be a good match for the proposed algorithm, as the largest speed-up is gained when doing the computations for all of the training data in one single batch.

Each iteration of the Truncated Newton algorithm starts by computing the vector of training sample predictions \(\mathbf{p} \) for the current solution, after which the gradient \(\mathbf{g} \) and Hessian \(\mathbf{H} \) can be computed (see Table \[1\] for examples on how to compute these for several widely used loss functions). After this, the algorithm solves approximately \(\mathbf{p} \) for the current solution, after which the gradient computations for all of the training data in one single batch.

The operations that dominate the computational cost for Algorithms \[2\] and \[3\] are matrix-vector products of the form \(\mathbf{R(} (\mathbf{G} \otimes \mathbf{K})\mathbf{R}^T + \lambda \mathbf{I}) \mathbf{v} = \mathbf{g} + \lambda \mathbf{a} \). A natural question to ask is, how much does the proposed fast sampled Kronecker product algorithm (Algorithm \[1\]) speed these operations up, compared to explicitly forming the sampled Kronecker product matrices (here denoted the ‘Baseline’ method).

We consider three different settings:

- Independent: each data point and task appears only as part of a single input in the training sample. That is \(n = m = q \).
- Dependent: data points and tasks can appear as parts of multiple training inputs, and \(\max(m, q) < n < mq \)
- Complete: all possible combinations of the training data points and tasks appear as training inputs. That is \(n = mq \).

‘Dependent’ is the default setting assumed in this paper, while ‘Independent’ and ‘Complete’ are extreme cases of the setting.

In Table \[2\] we provide the comparison for the dual case. In the ‘Independent’-case the complexity of the proposed algorithm reduces to that of the baseline method, since there are no data or tasks shared between the pair-inputs, that the algorithm could make use of. However, beyond that the complexity of the baseline approach grows quadratically with respect to the number of pair-inputs, while the complexity of the proposed method grows linearly with respect to the numbers of data, tasks and pair-inputs. In Table \[3\] we provide the comparison for the primal case. Again, the complexity is the same for the ‘Independent’ case, but the proposed method is much more efficient for the other settings assuming \(m << n \) and \(q << n \).

Finally, we note that for both the primal and the dual settings, for the ‘Complete’ case where \(\mathbf{R} = \mathbf{I} \), the multiplication could as efficiently be computed using the ‘VecTrick’-method implied by Roth’s column lemma \[1\].

To conclude, we observe that the proposed algorithm considerably outperforms previously known methods, if \(\max(m, q) << n < mq \).

4 CASE STUDIES: RIDGE REGRESSION AND SUPPORT VECTOR MACHINES

Next, as an example on how our framework may be applied we consider two commonly used losses, deriving fast ridge regression and support vector machine training algorithms for the Kronecker kernel.
observed that the full gradient for the ridge regression is resulting algorithm is simpler than the general optimization framework of Algorithms 2 and 3, as the linear system ridge regression method (aka regularized least-squares, aka least-squares SVM) [35], [51]. For this specific case, the As our first example learning algorithm that uses the above defined concepts, let us consider the well-known 4.1 Kronecker ridge regression

the sampling matrix corresponding to this index set. Now we can re-write the loss in a least-squares form as

S denote the subset of training sample that have non-zero loss for given prediction function. Further, let

again (8) and setting the gradient to zero, we recover a linear system

Writing p open 8 and setting the gradient to zero, we recover a linear system

A solution to this system can be recovered by canceling out R(G ⊗ K)R^T from both sides, resulting in the linear system

This system can be solved directly via standard iterative solvers for systems of linear equations. Combined with the sampled Kronecker product algorithm, this results in O(mn + qn) cost for each iteration of the method.

For the primal case, the gradient can be expressed as

Again, writing p open and setting the gradient to zero, we recover a linear system

Solving this system with a linear system solver together with the sampled Kroneker product algorithm, each iteration will require O(min(mdr + nm, ddr + mn)) cost.

The naive approach of training ridge regression with the full sampled Kronecker kernel or data matrix using standard solvers of systems of linear equations would result in O(n^2) and O(ndr) cost per iteration for the dual and primal cases, respectively.

4.2 Kronecker support vector machine

Support vector machine is one of the most popular classification methods in machine learning. Two of the most widely used variants of the method are the so-called L1-SVM and L2-SVM (see Table 1). Following works such as [37], [42], [40] we consider the L2-SVM variant, since unlike L1-SVM it has an objective function that is differentiable and yields a non-zero generalized Hessian matrix, making it compatible with the presented Truncated Newton optimization framework.

The loss can be defined as

The sampling matrix corresponding to this index set. Now we can re-write the loss in a least-squares form as

TABLE 2
Dual case: complexity comparison of the proposed method and the baseline approach that constructs the Kronecker kernel matrix explicitly.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>O(n^2)</td>
<td>O(n^2)</td>
</tr>
<tr>
<td>Dependent</td>
<td>O(n^2)</td>
<td>O(qn + mn)</td>
</tr>
<tr>
<td>Complete</td>
<td>O(mn^2q^2)</td>
<td>O(m^2q + mq^2)</td>
</tr>
</tbody>
</table>

TABLE 3
Primal case: complexity comparison of the proposed method and the baseline approach that constructs the Kronecker data matrix explicitly.

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independent</td>
<td>O(ndr)</td>
<td>O(ndr)</td>
</tr>
<tr>
<td>Dependent</td>
<td>O(ndr)</td>
<td>O(min(qdr + dn, mdr + rn))</td>
</tr>
<tr>
<td>Complete</td>
<td>O(mqdr)</td>
<td>O(min(mdr + mqr, ddr + dmq))</td>
</tr>
</tbody>
</table>
\[L = \frac{1}{2}(S_S p - S_S y)^T(S_S p - S_S y), \] its gradient as \(g = S_S^T(S_S p - S_S y), \) and the Hessian as \(H = S_S^T S_S, \) which is a diagonal matrix with entry 1 for all members of \(S \), and 0 otherwise.

By inserting \(g \) to (9) and writing \(p \) open (8) we recover the gradient of the L2-SVM objective function, with respect to \(a \), as

\[R(G \otimes K)R^T(S_S^T(S_S R(G \otimes K)R^T a - S_S y) + \lambda a) \] (11)

And inserting \(g \) and \(H \) to (10), we see that \(\frac{\partial J}{\partial a} x = \frac{\partial J}{\partial a} \) can be solved from:

\[(S_S^T S_S R(G \otimes K)R^T + \lambda I)x = (S_S^T(S_S R(G \otimes K)R^T a - S_S y) + \lambda a) \] (12)

The gradient and Hessian-vector products can be computed again at \(O(qn + mn) \) time. However, it should be noted that the support vector machine algorithm encourages sparsity, meaning that as the optimization progresses a may come to contain many zero coefficients, and the set \(S \) may shrink (at the optimal solution these two sets coincide, denoting the so-called support vectors). Thus given a new solution \(a \), we may compute \(p = R(G \otimes K)R^T a \) and thus also the right-hand size of (12) in \(O(\min(q\|a\|_0 + mn,m\|a\|_0 + qn) \) time, by removing the zero-coefficients from \(a \) and the corresponding columns from \(R^T \). Further, when solving (12) with Truncated Newton optimization, we can in each inner iteration of the method compute matrix-vector multiplication \(S_S R(G \otimes K)R^T v \) in \(O(\min(q\|v\|_0 + m\|S\|,m\|v\|_0 + q\|S\|) \) time.

In the primal case the gradient can be written as

\[(T^T \otimes D^T)R^T S_S^T(S_S p - S_S y) + \lambda w \]

And, a generalized Hessian matrix can be defined as

\[H = (T^T \otimes D^T)R^T S_S^T S_S R(T \otimes D) + \lambda I \]

The most efficient existing SVM solvers can be expected at best to scale quadratically with respect to sample size when solving the dual problem, and linearly with respect to sample size and number of features when solving the primal case [52, 53]. Thus using the full Kronecker kernel or data matrices, such solvers would have \(O(n^2) \) and \(O(ndr) \) scaling for the dual and primal cases, respectively.

5 Experiments

Computational costs for iterative Kronecker product kernel method training depend on two factors: the cost of a single iteration, and the number of iterations needed to reach a good solution. In a single iteration operations such as gradient computation or Hessian-vector product dominate. These can be efficiently performed with Algorithm 1. Further, as discussed at the end of Section 3.3, the number of iterations needed can be limited via early stopping once a predictor that works well on independent validation data has been reached. For prediction times, the dominating costs are the data matrix or kernel matrix multiplications with the primal or (possibly sparse) dual coefficient vectors, both operations that can be speeded up with Algorithm 1.

In the experiments, we aim to demonstrate the following:

1) Utility of early stopping: often only a small number of iterations is needed to learn an accurate predictor.
2) Fast training: the combination of the proposed short-cuts and early stopping allows orders of magnitude faster training than with regular kernel method solvers.
3) Fast prediction: proposed short-cuts allow orders of magnitude faster prediction for new data, than with regular kernel predictors.

We implement the Kronecker SVM and ridge regression methods in Python, the methods are made freely available under open source license as part of the RLScore machine learning library 1. For comparison, we consider the LibSVM software [54], which implements a highly efficient support vector machine training algorithm [46].

1. https://github.com/aatapa/RLScore
Fig. 2. Ninefold cross-validation. The matrix rows represent drugs (data points) and columns targets (tasks), our sample of pair-inputs with known outputs corresponds to a subset of the elements of this matrix. The row- and column indices are both divided into three sets. The Cartesian product sets of the row and column sets index nine blocks of possible pair-inputs. On each round, the test fold is formed from all the pair-inputs that belong to one of the blocks, and further have also known output. The training folds are formed from the four blocks, that share no common rows or columns with the test set. Four blocks are left unused, as their pairs simultaneously overlap with both training and test folds.

5.1 Data and general setup

<table>
<thead>
<tr>
<th>Data set</th>
<th>drugs</th>
<th>targets</th>
<th>pair-inputs</th>
<th>pos. interactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ki</td>
<td>1421</td>
<td>156</td>
<td>93356</td>
<td>3200</td>
</tr>
<tr>
<td>GPCR</td>
<td>223</td>
<td>95</td>
<td>21185</td>
<td>635</td>
</tr>
<tr>
<td>IC</td>
<td>210</td>
<td>204</td>
<td>42840</td>
<td>1476</td>
</tr>
<tr>
<td>E</td>
<td>445</td>
<td>664</td>
<td>295480</td>
<td>2926</td>
</tr>
</tbody>
</table>

As a typical pair-input learning problem, we consider the problem of predicting drug-target interactions. From a data base of known drugs, targets and their binary interactions, the goal is to learn a model that can for new previously unseen drugs and targets predict whether they interact. We consider four data sets, the GPCR, IC, E data sets [55], and the Ki data [56]. The Ki-data is a naturally sparse data set where the class information is available only for a subset of the pair-inputs. For the other four data sets the full drug-target interaction matrix is available, we simulate sparsity by randomly drawing 25% of the outputs for the training sample. We use exactly the same preprocessing of the data as [2]. The characteristics of the data sets are described in Table 4.

For each data set, we have a sample of \((d_i, t_j, y_{ih})\) triplets, consisting of a pair of vectors encoding the features of the drug and the target (see [2] for details of the features), and an output having value 1 if the drug and target interact, and \(-1\) if they do not. Mapping the problem to the terminology used in this paper, we may consider the drugs as data points and the targets as tasks. As discussed in the introduction, in the zero-shot learning setting the aim is to generalize to such \((d_i, t_j)\)-pairs, where neither the drug nor the target are part of the training sample. Therefore, cross-validation with pair-input data is more complicated than for standard i.i.d. data, since this aim must be reflected in the train-test split (see e.g. [1], [2]). The split is illustrated in Figure 2. First, both the drug-indices \([1, ..., m]\) and target-indices \([1, ..., q]\) are randomly divided into a training and test part. Then, an instance \((d_i, t_j, y_{ih})\) is assigned to training sample if \(i\) belongs to the training drug indices and \(j\) belongs to the training target indices. It is assigned to the test sample if \(i\) belongs to the test drug indices and \(j\) belongs to test target indices. Finally, the rest of the instances are discarded, that is, they belong neither to the training nor test part (the greyed out blocks in Figure 2). To tune the hyper-parameters without the risk of overfitting, one can split the data into training, validation and test parts in an analogous way to the above described train-test split. Combining this with cross-validation is in the literature known as nested cross-validation (for a detailed description of this approach for pair-input learning, see [2]).

Ridge regression is trained with the minimum residual iteration algorithm [57] implemented in the
scipy.sparse.linalg.minres package, while the inner optimization loop of the SVM training algorithm uses the scipy.sparse.linalg.qmr implementing of quasi-minimal residual iteration [47] (SciPy version 0.14.1), with $\delta = 1$. Regularization parameters from the grid $[2^{-20}, ..., 2^{20}]$ were tested. We restrict our plots to values $[2^{-10}, 2^{-5}, 2^0, 2^5, 2^{10}]$, as these allow representing all the main trends in the experiments. The classification performance on test data was measured with area under ROC curve (AUC). The experiments were run on a desktop computer with Intel Core i7-3770 CPU (3.40GHz) running Ubuntu Linux 15.04.

Early stopping experiments were run with the linear kernel, in order to allow comparing dual and primal optimization. The LibSVM comparison was done using the Gaussian kernel. LibSVM does not directly support the Kronecker product kernel, this issue was resolved as follows. If both task and datum kernels are Gaussian with width γ, then $k(d, d')k(t, t') = e^{-\gamma\|t - t'\|^2}e^{-\gamma\|d - d'\|^2} = e^{-\gamma\|[t, d]^T - [t', d']^T\|^2}$, that is, the Kronecker kernel is equal to using the Gaussian kernel with concatenated features of the datum and the task.

5.2 Early stopping experiments

In Algorithms 2 and 3, one needs to repeatedly solve a linear system with a huge number of variables with the sizes corresponding either to the number of training inputs, or to the product of data and task dimensions. However, as discussed in Section 3.3, early stopping can be used to speed up training by terminating optimization once predictor accuracy stops increasing on separate validation data. We test how well this approach works both for the SVM and ridge regression methods. We consider only the dual optimization, since the observed behavior was very similar also for the primal case.

We run the optimization up to 100 iterations measuring regularized risk $J(f)$, and AUC on the test set (in selected experiments with 500 iterations we found little improvements). Ridge regression results are presented in Figure 3, while SVM results with inner optimization loop terminated after 10 and 100 iterations are presented in Figures 4 and 5.

In all the experiments the optimal test sample AUC is obtained within tens of iterations. Beyond this point reduction in regularized risk no longer translates into better predictions. Further, for SVMs increasing the number of inner iterations from 10 to 100 allows achieving much faster decrease in regularized risk. However, this comes at the cost of having to perform ten times more computation each iteration, and does not lead into faster increase in test sample AUC. Thus it can be observed, that rather than having to solve exactly the large optimization problems corresponding to training Kronecker kernel methods, often only a handful of iterations need to be performed in order to obtain maximal predictive accuracy.

To conclude, several observations can be made based on the experiments. The regularized risk decreases quite quickly even if the SOLVE operation in Algorithms 2 and 3 is terminated after a small number of iterations. Moreover, early termination of SOLVE provides us more fine-grained control of the degree of fitting (contrast Figures 4 and 5) where for 100 inner iterations test performance in some cases starts immediately decreasing. The results suggest that on large data sets a good strategy is to start by setting the number of iterations to a small constant (e.g. 10 inner and outer iterations), and increase these parameters only if the predictive accuracy keeps increasing beyond the first iterations on an independent sample. Furthermore, we note that one could sidestep the selection of regularization parameter λ by setting it to a small constant and regularizing only with early stopping, however tuning also λ on separate validation data can sometimes yield even better performance.
Fig. 3. Ridge regression regularized risk (left) and test sample AUC (right) as a function of optimization iterations.
Fig. 4. SVM with 10 inner iterations. Regularized risk (left) and test sample AUC (right) as a function of outer optimization iterations.
5.3 Training time

In order to demonstrate the improvements in training speed that can be realized using the sparse Kronecker product algorithm, we compare our Kronecker SVM algorithm to the LibSVM solver on the Ki-data set. Based on preliminary tests, we set $\gamma = 10^{-5}$, as this value produces informative (not too close to identity matrix, or to matrix full of ones) kernel matrices for both the datums and the tasks. For the Kronecker SVM, we perform 10 inner and 10 outer iterations with $\lambda = 2^{-5}$. For LibSVM, we present the values for the grid $[2^{-7}, 2^{-5}, 2^{-3}, 2^{-1}]$, as results for...
it vary more based on the choice of regularization parameter. We perform 9-fold cross-validation on the K_{t} data, subsampling the number of inputs in the training data. In Figure 6 (left) we present the running times for training the methods for different numbers of training inputs, as well as the corresponding cross-validated AUCs. The KronSVM results, while similar as before, are not directly comparable to those in the earlier experiments due to different kernel function being used.

As can be expected based on the computational complexity considerations, the KronSVM algorithm has superior scalability compared to the regular SVM implemented in the LibSVM package. In the experiment on 42000 pair inputs the difference is already 25 seconds versus 15 minutes. The LibSVM runtimes could certainly be improved for example by using earlier termination of the optimization. Still, this would not solve the basic issue that without using computational shortcuts such as the sampled Kronecker product algorithm (Algorithm 1) proposed in our work, one will need to construct a significant part of the kernel matrix for the inputs. For LibSVM, the scaling is roughly quadratic in the number of inputs, while for KronSVM it is linear. Considering the cross-validated AUCs (Figure E (middle)), it can be observed that the AUC of the KronSVM with early stopping is very much competitive with that of LibSVM. To conclude, the proposed Kronecker product algorithm allows substantially faster training for pairwise data than if one uses current state-of-the-art solvers, that are however not able to make use of the pairwise structure.

5.4 Prediction time

Next, we show how the sparse Kronecker product algorithm can be used to accelerate predictions made for new data. As in previous experiment, we train LibSVM on the Ki-data for varying sample sizes, with the training and test split done as in the 9-fold cross-validation experiment. We use $\lambda = -5$, and the same kernel and kernel parameters as before. We use the predictor learned by the SVM to make predictions for the 10000 drug-target pairs in the test set.

We compare the running times for two approaches for doing the predictions. 'Baseline' refers to the standard decision function implemented in LibSVM. 'Kronecker', refers to implementation that computes the predictions using the sparse Kronecker product algorithm. The 'Kronecker' method is implemented by combining the LibSVM code with additional code that after training LibSVM, reads in the dual coefficients of the resulting predictor and generates a new predictor that uses the shortcuts proposed in this paper. Both predictors are equivalent in the sense that they produce (within numerical accuracy) exactly the same predictions.

The results are plotted in Figure 6 (right). For both methods the prediction time increases linearly with the training sample size (see equations 6 and 7). However, the Kronecker method is more than 1000 times faster than Baseline, demonstrating that significant speedups can be realized by using the sparse Kronecker product algorithm for computing predictions.

5.5 Large scale experiments with simulated data

In order to demonstrate the scaling of the proposed Kronecker product kernel methods to larger problem sizes than those encountered in the drug-target data sets, we implemented scalability experiments on simulated data. We generated the data using a variant of the Checkerboard simulation, a standard non-linear problem for benchmarking large scale SVM solvers (see e.g. [58]). In our simulation both data points and tasks have a single feature describing them, drawn from continuous uniform distribution in range $(0, 100)$. The output assigned to a (data point, task) - pair (d, t) is +1 whenever both $\lfloor d \rfloor$ and $\lfloor t \rfloor$ are either odd or even, and -1 when one of them is odd and the other

Fig. 6. Drug-target experiment. Runtime comparison between KronSVM and LibSVM (left). Prediction times for regular LibSVM decision function, and one that uses sparse Kronecker product shortcuts (middle). Cross-validated AUCs (right).
Fig. 7. Checkerboard simulation. Runtime comparison between KronSVM and LIBSVM training (left) and prediction times (middle), and the corresponding test sample AUCs (right).

even. When plotting the output against d and t, this results in a highly non-linear checkerboard-type of pattern. Finally, random noise is introduced to the data by flipping with 0.2 probability the class of each pair.

In the experiments, the training sample is formed as follows. First, we generate the same number of data points m and tasks q, then generate outputs for 25% of all the possible (data point, task) -combinations (i.e. $m = q$ and $n = 0.25 m^2$). The independent test sample is generated in the same way. We use the Gaussian kernel, based on preliminary tests we set $\lambda = 2^{-7}$ and $\gamma = 1$, as parameters around this range allow learning the simulated function. As before, KronSVM uses 10 inner and 10 outer iterations. We train both KronSVM and LibSVM for varying data sample sizes, up until they reach the point where training takes more than 24 hours to complete. We also measure how long computing predictions takes for a test sample of the same size as the training sample. Finally, we also measure test sample AUC in order to show that the learners can really learn to solve the simulated problem (note that due to random flipping of classes, even the optimal predictor would have only 0.8 AUC). The results are presented in Figure 7.

Again, KronSVM outperforms LibSVM by several orders of magnitude. KronSVM can be trained in 24 hours on approximately 10 million pair-inputs (correspondingly, with 6400 data points and tasks). The LibSVM experiments were discontinued after training on 64000 pairs (correspondingly 1600 data points and tasks) took more than 27 hours. For the same training sample size, KronSVM can be trained in 23 minutes. Regarding prediction times, for LibSVM model trained with 64000 pairs it took 93 minutes to compute predictions for a test sample of same size, whereas with the sampled Kronecker product shortcuts the same computations can be done in 7 seconds. KronSVM can with a model trained on 10 million pair-inputs, make predictions for a test sample of also 10-million pairs in 7 minutes. When trained on 10 million pairs, the KronSVM implementation used roughly 1.5 Gigabytes of memory.

6 Conclusion

In this work, we have proposed a sampled Kronecker product algorithm. A simple optimization framework is described in order to show how the proposed algorithm can be used to develop efficient training algorithms for pairwise kernel methods. Both computational complexity analysis and experiments show that the resulting algorithms can provide order of magnitude improvements in computational efficiency both for training and making predictions, compared to existing kernel method solvers. Our work opens future avenues of research both for developing even better optimized training algorithms for individual kernel methods, as well as for improving the efficiency of any other such methods that can be expressed in terms of sampled Kronecker products. The implementations for the sampled Kronecker product algorithm, as well as for Kronecker ridge regression and Kronecker SVM are made freely available under open source license.

References
