
A Scalable Sparse Direct Solver Using Static PivotingXiaoye S. Li � James W. Demmel yAbstractWe propose several techniques as alternatives to partial pivoting to stabilize sparseGaussian elimination. From numerical experiments we demonstrate that for a widerange of problems the new method is as stable as partial pivoting. The main advantageof the new method over partial pivoting is that it permits a priori determination of datastructures and communication pattern, which makes it more scalable. We demonstratethe scalability of our algorithms on large-scale distributed memory computers.1 IntroductionTraditionally, partial pivoting is used as an e�ective mechanism to control the elementgrowth during Gaussian elimination on general matrices, thereby stabilizing the underlyingalgorithm. In our earlier work we developed e�cient algorithms and software to performGaussian elimination with partial pivoting (GEPP) [3, 4, 5, 9]. Since the computationalgraph does not unfold until runtime due to partial pivoting, our shared memory parallelGEPP algorithm uses a centralized task queue for dynamic scheduling and load balancing.However, this is too expensive on distributed memory machines. Instead, for distributedmemory machines, we propose to not pivot dynamically, and so enable static data structureoptimization, graph manipulation and load balancing (as with Cholesky) and yet remainnumerically stable.2 GESP algorithm and stabilityWe considered a variety of techniques as alternatives to partial pivoting to maintainstability, such as pre-pivoting large elements to the diagonal, iterative re�nement, usingextra precision when needed, and allowing low rank modi�cations with corrections at theend. In this paper we show by experiments that even a subset of them can e�ectivelystabilize the algorithm, and the costs associated with them are usually small. Figure 1sketches our GESP algorithm (Gaussian elimination with static pivoting) that incorporatessome of these techniques. In step (1), the diagonal scale matrices Dr and Dr are chosenindependently, to make each row and each column of DrADc have largest entries equalto 1 in magnitude. Finding a permutation Pr that puts large entries on the diagonal canbe transformed into a weighted bipartite matching problem. There is a large body of�NERSC, Lawrence Berkeley National Lab 1 Cyclotron Rd, MS 50F, Berkeley, CA 94720 (xi-aoye@nersc.gov). This research used resources of the National Energy Research Scienti�c Computing Center,which is supported by the O�ce of Energy Research of the U.S. Department of Energy under Contract No.DE-AC03-76SF00098.yComputer Science Division, University of California, Berkeley, CA 94720 (demmel@cs.berkeley.edu).This research was supported in part by NSF grant ASC-9313958, DOE grant DE-FG03-94ER25219, UTSubcontract No. ORA4466 from ARPA Contract No. DAAL03-91-C0047, DOE grant DE-FG03-94ER25206,NSF Infrastructure grants CDA-8722788 and CDA-9401156 and DOE grant DE-FC03-98ER25351.1

2(1) Row/column equilibration and row permutation: A Pr �Dr �A �Dc,where Dr and Dc are diagonal matrices and Pr is a row permutationchosen to make the diagonal large compared to the o�-diagonal(2) Find a column permutation Pc to preserve sparsity: A Pc �A � PTc(3) Factorize A = L �U with control of diagonal magnitudeif (jaiij < p" � jjAjj) thenset aii to p" � jjAjjendif(4) Solve A � x = b using the L and U factors, with the following iterative re�nementiterate:r = b� A � x : : : sparse matrix-vector multiplySolve A � dx = r : : : triangular solveberr = maxi jrji(jAj�jxj+jbj)i : : : componentwise backward errorif (berr > " and berr � 12 � lastberr) thenx = x+ dxlastberr = berrgoto iterateendif Fig. 1. The outline of the new GESP algorithm.literature on e�cient algorithms to solve this problem. We experimented the algorithmsby Du� and Koster [6] that choose Pr to maximize di�erent properties of the diagonal ofPrDrADc, such as the smallest magnitude of any diagonal entry, or the sum or product ofmagnitudes. But the best algorithm in practice seems to be the one that picks Pr, Dr andDc simultaneously so that each diagonal entry of PrDrADc is �1, each o�-diagonal entryis bounded by 1 in magnitude, and the product of the diagonal entries is maximized. Thecolumn permutation Pc in step (2) can be obtained from any �ll-reducing heuristic, such asminimum degree or nested dissection. In step (3), we simply set any tiny pivots encounteredduring elimination to p" � kAk, where " is machine precision. This is equivalent to a small(half precision) perturbation to the original problem, and trades o� some numerical stabilityfor the ability to keep pivots from getting too small. In step (4), we perform a few stepsof iterative re�nement if the solution is not accurate enough, which also corrects for thep"�kAk perturbations in step (3). The termination criterion is based on the componentwisebackward error berr [1].We tested the GESP algorithm on 53 unsymmetric matrices from a wide range ofapplications. Among them, 22 matrices contain zeros on the diagonal to begin with whichremain zero during elimination, and 5 more create zeros on the diagonal during elimination.Therefore, not pivoting at all would fail completely on these 27 matrices. Most of the other26 matrices would get unacceptably large errors due to pivot growth. For most matrices,the iterative re�nement terminates with no more than 3 steps; 5 matrices require 1 step,31 matrices require 2 steps, 9 matrices require 3 steps, and 8 matrices require more than 3steps. In Figure 2, for each matrix, we plot the error of the computed solution from GESPversus the error from GEPP (as implemented in SuperLU, also with iterative re�nement).The error of GESP is at most a little larger, and can be smaller (21 out of 53) than theerror from GEPP. Figure 3 shows that the componentwise backward errors are also small,usually near machine epsilon (� 10�16 in IEEE double precision), and never larger than

3
10

−15
10

−10
10

−5
10

0
10

−15

10
−10

10
−5

10
0

Error from partial pivoting with Refine

E
rr

o
r

fr
o

m
 G

E
S

P

RIM

ORSIRR_1

Fig. 2. The error jjxtrue�xjj1jjxjj1 . 10
0

10
5

10
10

10
15

10
20

10
−16

10
−15

10
−14

10
−13

10
−12

10
−11

Condition number

B
a

ck
w

a
rd

 e
rr

o
r

fr
o

m
 G

E
S

P

ORSREG_1

RIM

ORSIRR_1Fig. 3. The backward error maxi jA�x�bji(jAj�jxj+jbj)i .10�12.We now evaluate the cost of each step in GESP. This is done with respect to the serialimplementation, since we have only parallelized the numerical phases of the algorithm(steps (3) and (4)), which are the most time-consuming. In particular, for large enoughmatrices, the LU factorization in step (3) dominates all the other steps, so we will measurethe times of each step with respect to step (3). Simple equilibration in step (1) (computingDr and Dc using the algorithm in DGEEQU from LAPACK) is usually negligible and iseasy to parallelize. Both row and column permutation algorithms in steps (1) and (2)(computing Pr and Pc) are not easy to parallelize (their parallelization is future work).Fortunately, their memory requirement is just O(nnz(A)) [2, 6], whereas the memoryrequirement for L and U factors grows superlinearly in nnz(A), so in the meantime wecan run them on a single processor. Figure 4 shows the fraction of time spent �nding Prin step (1) using the algorithm in [6], as a fraction of the factorization time. The timeis signi�cant for small problems, but drops to 1% to 10% for large matrices requiring along time to factor, the problems of most interest on parallel machines. The time to �nda sparsity-preserving ordering Pc in step (2) is very much matrix dependent. It is usuallycheaper than factorization, although there exist matrices for which the ordering is moreexpensive. Nevertheless, in applications where we repeatedly solve a system of equationswith the same nonzero pattern but di�erent values, the ordering algorithm needs to berun only once, and its cost can be amortized over all the factorizations. Computing theresidual (sparse matrix-vector multiplication r = b�A �x) is cheaper than a triangular solve(A � dx = r), and both take a small fraction of the factorization time. For large matricesthe solve time is often less than 5% of the factorization time. Both algorithms have beenparallelized Finally, our code has the ability to estimate a forward error bound for the trueerror jjxtrue�xjj1jjxjj1 . This is by far the most expensive step after factorization. (For smallmatrices, it can be more expensive than factorization, since it requires multiple triangularsolves.) Therefore, we will do this only when the user asks for it.

4
10

−2
10

0
10

2
10

4
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

LU factorization (GENP) time in seconds

F
ra

ct
io

n
 o

f
G

E
N

P
 t

im
e

 − Permute large diagonal

 − Triangular solve

 − Compute residualFig. 4. The times to factorize, solve, permute large diagonal, compute residual, on a 195 MHzMIPS R10000. nnz(L + U � I) FlopsOrder nnz(A) NumSym StrSym (�106) (�109)AF23560 23560 460598 .0512 .9465 12.8 4.9BBMAT 38744 1771722 .0224 .5398 49.1 4.3ECL32 51993 380415 .6572 .9325 73.5 120.4EX11 16614 1096948 .9999 1.0000 14.1 8.4FIDAPM11 22294 623554 .5476 .9965 23.0 17.9RMA10 46835 2374001 .2443 .9809 14.7 1.8TWOTONE 120750 1224224 .1418 .2738 22.6 8.7WANG4 26068 177196 .1868 1.0000 27.7 35.3Table 1Characteristics of the test matrices. NumSym is the fraction of nonzeros matched by equalvalues in symmetric locations. StrSym is the fraction of nonzeros matched by nonzeros in symmetriclocations.3 A scalable and portable implementation using MPIIn this section, we describe our design, implementation and the performance of thedistributed algorithms for two main steps of the GESP method, sparse LU factorizationand sparse triangular solve. Our implementation uses MPI [11] to communicate data, andso is highly portable. We have tested the code on a number of platforms, such as CrayT3E, IBM SP2, and Berkeley NOW. Here, we only report the results from a 512 node CrayT3E-900 at NERSC. To illustrate scalability of the algorithms, we restrict our attentionto eight relatively large matrices selected from our testbed. They are representative ofdi�erent application domains. The characteristics of these matrices are given in Table 1.

53.1 Matrix distribution and distributed data structureWe distribute the matrix in a two-dimensional block-cyclic fashion. In this distribution,the P processes (not restricted to be a power of 2) are arranged as a 2-D process grid ofshape Pr � Pc. The matrix is decomposed into blocks of submatrices. Then, these blocksare cyclically mapped onto the process grid, in both row and column dimensions. Sucha 2-D layout strikes a good balance among locality (by blocking), load balance (by cyclicmapping), and lower communication volume (by 2-D mapping). 2-D layouts were used inscalable implementations of sparse Cholesky factorization [8, 10].The matrix partitioning is based on the notion of unsymmetric supernode �rstintroduced in [3]. Let L be the lower triangular matrix in the LU factorization. A supernodeis a range (r : s) of columns of L with the triangular block just below the diagonal being full,and with the same row structure below this block. Because of the identical row structureof a supernode, it can be stored in a dense format in memory. This supernode partition isused as our block partition in both row and column dimensions. If there are N supernodesin an n-by-n matrix, the matrix will be partitioned into N2 blocks of nonuniform size.The size of each block is matrix dependent. It should be clear that all the diagonal blocksare square and full (we store zeros from U in the upper triangle of the diagonal block),whereas the o�-diagonal blocks may be rectangular and may not be full. The matrix inFigure 5 illustrates such a partitioning. By block-cyclic mapping we mean block (I; J)(0 � I; J � N � 1) is mapped onto the process at coordinate (I mod Pr, J mod Pc) of theprocess grid. Using this mapping, a block L(I; J) in the factorization is only needed by therow of processes that own blocks in row I . Similarly, a block U(I; J) is only needed by thecolumn of processes that own blocks in column J .In this 2-D mapping, each block column of L resides on more than one process, namely,a column of processes. For example in Figure 5, the k-th block column of L resides on thecolumn processes f0, 3g. Process 3 only owns two nonzero blocks, which are not contiguousin the global matrix. The schema on the right of Figure 5 depicts the data structure to storethe nonzero blocks on a process. Besides the numerical values stored in a Fortran-style arraynzval[] in column major order, we need the information to interpret the location and rowsubscript of each nonzero. This is stored in an integer array index[], which includes theinformation for the whole block column and for each individual block in it. A process ownsdN=Pce block columns of L, so it needs dN=Pce pairs of index/nzval arrays. Similarly,each process has dN=Pre pairs of index/nzval arrays to store block rows of matrix U .3.2 Sparse LU factorizationFigure 6 outlines the parallel sparse LU factorization algorithm. We use Matlab notationfor integer ranges and submatrices. There are three steps in the K-th iteration of theloop. In step (1), only a column of processes participate in factoring the block columnL(K : N;K). In step (2), only a row of processes participate in the triangular solvesto obtain the block row U(K;K + 1 : N). The rank-b update by L(K + 1 : N;K) andU(K;K+1 : N) in step (3) represents most of the work and also exhibits more parallelismthan the other two steps, where b is the block size of the K-th block column/row. For easeof understanding, the algorithm presented here is simpli�ed. The actual implementationuses a pipelined organization so that processes PROCC(K+1) will start step (1) of iterationK+1 as soon as the rank-b update (step (3)) of iteration K to block column K+1 �nishes,before completing the update to the trailing matrix A(K + 1 : N;K + 2 : N) owned byPROCC(K+1). The pipelining alleviates the lack of parallelism in both steps (1) and (2).

6
index

Storage of block column of L

of blocks

nzval

block #

row subscripts

i1
i2

of full rows

LDA in nzval

block #

row subscripts

i1
i2

of full rows

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Global Matrix

Process Mesh
0 1 2

3 4 5

0 0

0

1 2 1 2

3

3

3

0

4 5 3 4 5

2 0 1 2

35 4 5

12 2

4

0

5 53

1

4

1

4

K

U

L

K

Fig. 5. The 2-D block-cyclic layout and the data structure to store a local block column of L.Let mycol (myrow) be my process column (row) number in the process gridLet PROCC(K) (PROCR(K)) be the column (row) processes that own block column (row) Kfor block K = 1 to N do(1) if (mycol = PROCC(K))Obtain the block column factor L(K : N;K)Send L(K : N;K) to the processes in my row who need itelseReceive L(K : N;K) from processes PROCC(K) if I need itendif(2) if (myrow = PROCR(K))Perform parallel triangular solves : U(K;K + 1 : N) = L(K;K)�1 �A(K;K + 1 : N)Send U(K;K + 1 : N) to processes in my column who need itelseReceive U(K;K + 1 : N) from processes PROCR(K) if I need itendif(3) for J = K + 1 to N dofor I = K + 1 to N doif (myrow = PROCR(I) & mycol = PROCC(J) & L(I;K) 6= 0 & U(K; J) 6= 0)A(I; J) = A(I; J)� L(I;K) � U(K; J)endifend for Fig. 6. Distributed sparse LU factorization algorithm.

7On 64 processors of Cray T3E, for instance, we observed speedups between 10% to 40%over the non-pipelined implementation.In each iteration, the major communication steps are send/receive L(K : N;K) acrossprocess rows and send/receive U(K;K+1 : N) down process columns. Our data structure(see Figure 5) ensures that all the blocks of L(K : N;K) and U(K;K+1 : N) on a processare contiguous in memory, thereby eliminating the need for packing and unpacking in asend-receive operation or sending many more smaller messages. In each send-receive pair,two messages are exchanged, one for index[] and another for nzval[]. To further reducethe amount of communication, we employ the notion of elimination dags (EDAGs) [7].That is, we send the K-th column of L rowwise to the process owning the J-th column of Lonly if there exists a path between (super)nodes K and J in the elimination dags. This isdone similarly for the columnwise communication of rows of U . Therefore, each block in Lmay be sent to fewer than Pc processes and each block in U may be sent to fewer than Prprocesses. In other words, our communication takes into account the sparsity of the factorsas opposed to \send-to-all" approach in a dense factorization. For example, for AF23560on 32 (4� 8) processes, the total number of messages is reduced from 351052 to 302570, or16% fewer messages. The reduction is even more with more processes or sparser problems.3.3 Sparse triangular solveThe sparse lower and upper triangular solves are also designed around the same distributeddata structure. The forward substitution proceeds from the bottom of the eliminationtree to the root, whereas the back substitution proceeds from the root to the bottom.Figure 7 outlines the algorithm for sparse lower triangular solve. The algorithm is basedon a sequential variant called \inner product" formulation. In this formulation, before theK-th subvector x(K) is solved, the update from the inner product of L(K; 1 : K � 1) andx(1 : K � 1) must be accumulated and subtracted from b(K). The diagonal process, at thecoordinate (K mod Pr, K mod Pc) of the process grid, is responsible for solving x(K). Twocounters, frecv and fmod, are used to facilitate the asynchronous execution of di�erentoperations. frecv[K] counts the number of process updates to x(K) to be received bythe diagonal process owning x(K). This is needed because L(K; 1 : K � 1) is distributedamong the row processes PROCR(K), and due to sparsity, not all processes in PROCR(K)contribute to the update. When frecv(K) becomes zero, all the necessary updates to x(K)are complete and x(K) is solved. fmod(K) counts the number of block modi�cations to besummed into the local inner product update (stored in lsum(K)) to x(K). When fmod(K)becomes zero, the partial sum lsum(K) is sent to the diagonal process that owns x(K).The execution of the program is message-driven. A process may receive two types ofmessages, one is the partial sum lsum(K), another is the solution subvector x(K). Appro-priate action is taken according to the message type. The asynchronous communicationenables large overlapping between communication and computation. This is very importantbecause the communication to computation ratio is much higher in triangular solve thanin factorization.3.4 Parallel performanceTable 2 shows the performance of the factorization on the Cray T3E-900. The symbolicanalysis is not yet parallel, so we start with a copy of the entire matrix on each processor,and run symbolic analysis independently on each processor. Thus the time is independentof the number of processors. The �rst column of Table 2 reports the time spent in the

8Let mycol (myrow) be my process column (row) number in the process gridLet PROCC(K) be the column processes that own block column Kx = blsum = 0for each block K that I own : : : Compute leaf nodesif (myrow = K mod Pr & mycol = K mod Pc & frecv[K] = 0)x(K) = L(K;K)�1 � x(K)Send x(K) to the column processes PROCC(K)endifend forwhile (I have more work) do : : : Compute internal nodesReceive a messageif (message is lsum(K))x(K) = x(K) + lsum(K);frecv(K) = frecv(K)� 1if (frecv(K) = 0)x(K) = L(K;K)�1 � x(K)Send x(K) to the column processes PROCC(K)endifelse if (message is x(K))for each I > K, L(I;K) 6= 0 that I ownlsum(I) = lsum(I)� L(I;K) � x(K)fmod(I) = fmod(I)� 1if (fmod(I) = 0)Send lsum(I) to the diagonal process who owns L(I; I)endifend forendifend while Fig. 7. Distributed lower triangular solve L � x = b.symbolic analysis. The memory requirement of the symbolic analysis is small, because weonly store and manipulate the supernodal graph of L and the skeleton graph of U , whichare much smaller than the graphs of L and U . The subsequent columns in the tableshow the factorization time with a varying number of processors. For four large matrices(BBMAT, ECL32, FIDAPM11 and WANG4), the factorization time continues decreasingup to 512 processors, demonstrating excellent scalability. The last column reports thenumeric factorization rate in M
ops. More than 8 G
ops is achieved for matrix ECL32.As a reference, we compare our distributed memory code to our shared memorySuperLU MT code using small numbers of processors. For example, using 4 processor DECAlphaServer 8400 (SMP) 1, the factorization times of SuperLU MT for matrices AF23560and EX11 are 19 and 23 seconds, respectively, comparable to the 4-processor T3E timings.This indicates that our distributed data structure and message passing algorithm do notincur much overhead.Table 3 shows the performance of the lower and upper triangular solves altogether.1Each processor is the same as one T3E processor, except there is a 4 MB tertiary cache.

9Symbolic NumericP=4 16 32 64 128 256 512 M
opsAF23560 1.7 32.2 11.0 7.3 5.9 5.8 7.0 7.1 856BBMAT 11.8 430.8 110.5 62.3 35.6 25.8 18.4 17.0 2493ECL32 14.0 325.0 92.3 52.2 30.8 21.5 15.7 14.3 8352EX11 1.8 20.6 6.7 4.3 3.3 3.2 3.4 3.4 2628FIDAPM11 4.1 115.1 31.9 19.0 11.7 8.5 7.6 7.1 2291RMA10 1.6 13.6 7.0 5.4 6.0 5.4 6.5 7.2 511TWOTONE 6.6 99.8 48.1 31.6 29.4 28.5 29.9 31.7 297WANG4 4.2 72.8 21.1 13.3 8.8 6.6 6.8 6.5 5542Table 2LU factorization time in seconds and Mega
op rate on the 512 node T3E-900.P=4 8 16 32 64 M
opsAF23560 0.94 0.90 0.69 0.67 0.64 42BBMAT 3.69 3.42 2.27 2.23 1.83 56ECL32 2.95 2.60 1.66 1.57 1.17 128EX11 0.50 0.46 0.32 0.31 0.26 112FIDAPM11 1.39 1.26 0.83 0.83 0.68 70RMA10 0.77 0.74 0.58 0.53 0.50 60TWOTONE 4.37 4.37 3.65 3.15 2.95 16WANG4 1.09 0.99 0.67 0.63 0.50 112Table 3Triangular solves time in seconds and Mega
op rate on the T3E-900.When the number of processors continues increasing beyond 64, the communication takesmore than 95% of the solve time, and the solve time remains roughly the same. Althoughtriangular solves do not achieve high Mega
op rates, the time is usually much less thanthat for factorization.4 ConclusionsWe propose a number of techniques in place of partial pivoting to stabilize sparseGaussian elimination. Their e�ectiveness is demonstrated by numerical experiments.These techniques enable static analysis of the nonzero structure of the factors and thecommunication pattern. As a result, a more scalable implementation becomes feasibleon large-scale distributed memory machines with hundreds of processors. Our prototypesoftware is being used in a quantum chemistry application at Lawrence Berkeley NationalLaboratory, where a complex unsymmetric system of order 736,164 has been solved within20 minutes.References[1] M. Arioli, J. W. Demmel, and I. S. Du�, Solving sparse linear systems with sparse backwarderror, SIAM J. Matrix Anal. Appl., 10 (1989), pp. 165{190.

10[2] T. A. Davis, J. R. Gilbert, E. Ng, and B. Peyton, Approximate minimum degree ordering forunsymmetric matrices. Talk presented at XIII Householder Symposium on Numerical Algebra,June 1996. Journal version in preparation.[3] J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W. Liu, A supernodal approachto sparse partial pivoting, Tech. Rep. UCB//CSD-95-883, Computer Science Division, U.C.Berkeley, 1995. To appear in SIAM J. Matrix Anal. Appl.[4] J. W. Demmel, J. R. Gilbert, and X. S. Li, An asynchronous parallel supernodal algorithm forsparse gaussian elimination, Tech. Rep. UCB//CSD-97-943, Computer Science Division, U.C.Berkeley, 1997. To appear in SIAM J. Matrix Anal. Appl.[5] , SuperLU and SuperLU MT, November 1997. http://www.netlib.org/scalapack/prototype/.[6] I. S. Du� and J. Koster, The design and use of algorithms for permuting large entries to thediagonal of sparse matrices, Tech. Rep. RAL-TR-97-059, Rutherford Appleton Laboratory,1997.[7] J. R. Gilbert and J. W. Liu, Elimination structures for unsymmetric sparse LU factors, SIAMJ. Matrix Anal. Appl., 14 (1993), pp. 334{352.[8] A. Gupta and V. Kumar, Optimally scalable parallel sparse cholesky factorization, in The 7thSIAM Conference on Parallel Processing for Scienti�c Computing, 1995, pp. 442{447.[9] X. S. Li, Sparse Gaussian elimination on high performance computers, Tech. Rep. UCB//CSD-96-919, Computer Science Division, U.C. Berkeley, September 1996. Ph.D dissertation.[10] E. E. Rothberg and A. Gupta, An e�cient block-oriented approach to parallel sparse choleskyfactorization, in Supercomputing, November 1993, pp. 503{512.[11] Message Passing Interface (MPI) forum. http://www.mpi-forum.org/.

