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Abstract

We propose several techniques as alternatives to partial pivoting to stabilize sparse
Gaussian elimination. From numerical experiments we demonstrate that for a wide
range of problems the new method is as stable as partial pivoting. The main advantage
of the new method over partial pivoting is that it permits a priori determination of data
structures and communication pattern, which makes it more scalable. We demonstrate
the scalability of our algorithms on large-scale distributed memory computers.

1 Introduction

Traditionally, partial pivoting is used as an effective mechanism to control the element
growth during Gaussian elimination on general matrices, thereby stabilizing the underlying
algorithm. In our earlier work we developed efficient algorithms and software to perform
Gaussian elimination with partial pivoting (GEPP) [3, 4, 5, 9]. Since the computational
graph does not unfold until runtime due to partial pivoting, our shared memory parallel
GEPP algorithm uses a centralized task queue for dynamic scheduling and load balancing.
However, this is too expensive on distributed memory machines. Instead, for distributed
memory machines, we propose to not pivot dynamically, and so enable static data structure
optimization, graph manipulation and load balancing (as with Cholesky) and yet remain
numerically stable.

2 GESP algorithm and stability

We considered a variety of techniques as alternatives to partial pivoting to maintain
stability, such as pre-pivoting large elements to the diagonal, iterative refinement, using
extra precision when needed, and allowing low rank modifications with corrections at the
end. In this paper we show by experiments that even a subset of them can effectively
stabilize the algorithm, and the costs associated with them are usually small. Figure 1
sketches our GESP algorithm (Gaussian elimination with static pivoting) that incorporates
some of these techniques. In step (1), the diagonal scale matrices D, and D, are chosen
independently, to make each row and each column of D.AD. have largest entries equal
to 1 in magnitude. Finding a permutation P, that puts large entries on the diagonal can
be transformed into a weighted bipartite matching problem. There is a large body of
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(1) Row/column equilibration and row permutation: 4 — P.- D, - A-D.,
where D, and D, are diagonal matrices and P, is a row permutation
chosen to make the diagonal large compared to the off-diagonal

(2) Find a column permutation P. to preserve sparsity: A «— P.- A - PT

(3) Factorize A = L - U with control of diagonal magnitude

if ( |as| < Z-|[A]| ) then
set a; to (/e - || A

endif
(4) Solve A -z = b using the L and U factors, with the following iterative refinement
iterate:
r=b—A-zx ... sparse matrix-vector multiply
Solve A-dx =r ... triangular solve
berr = max; w ... componentwise backward error
if ( berr > ¢ and berr < L -lastberr ) then
r=z+dz

lastberr = berr
goto iterate

endif

Fia. 1. The outline of the new GESP algorithm.

literature on efficient algorithms to solve this problem. We experimented the algorithms
by Duff and Koster [6] that choose P, to maximize different properties of the diagonal of
P, D.AD,, such as the smallest magnitude of any diagonal entry, or the sum or product of
magnitudes. But the best algorithm in practice seems to be the one that picks P., D, and
D, simultaneously so that each diagonal entry of P, D,AD. is £1, each off-diagonal entry
is bounded by 1 in magnitude, and the product of the diagonal entries is maximized. The
column permutation P. in step (2) can be obtained from any fill-reducing heuristic, such as
minimum degree or nested dissection. In step (3), we simply set any tiny pivots encountered
during elimination to /e - ||A||, where ¢ is machine precision. This is equivalent to a small
(half precision) perturbation to the original problem, and trades off some numerical stability
for the ability to keep pivots from getting too small. In step (4), we perform a few steps
of iterative refinement if the solution is not accurate enough, which also corrects for the
Ve ||Al| perturbations in step (3). The termination criterion is based on the componentwise
backward error berr [1].

We tested the GESP algorithm on 53 unsymmetric matrices from a wide range of
applications. Among them, 22 matrices contain zeros on the diagonal to begin with which
remain zero during elimination, and 5 more create zeros on the diagonal during elimination.
Therefore, not pivoting at all would fail completely on these 27 matrices. Most of the other
26 matrices would get unacceptably large errors due to pivot growth. For most matrices,
the iterative refinement terminates with no more than 3 steps; 5 matrices require 1 step,
31 matrices require 2 steps, 9 matrices require 3 steps, and 8 matrices require more than 3
steps. In Figure 2, for each matrix, we plot the error of the computed solution from GESP
versus the error from GEPP (as implemented in SuperLU, also with iterative refinement).
The error of GESP is at most a little larger, and can be smaller (21 out of 53) than the
error from GEPP. Figure 3 shows that the componentwise backward errors are also small,
usually near machine epsilon (~ 107! in IEEE double precision), and never larger than
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We now evaluate the cost of each step in GESP. This is done with respect to the serial
implementation, since we have only parallelized the numerical phases of the algorithm
(steps (3) and (4)), which are the most time-consuming. In particular, for large enough
matrices, the LU factorization in step (3) dominates all the other steps, so we will measure
the times of each step with respect to step (3). Simple equilibration in step (1) (computing
D, and D, using the algorithm in DGEEQU from LAPACK) is usually negligible and is
easy to parallelize. Both row and column permutation algorithms in steps (1) and (2)
(computing P, and P.) are not easy to parallelize (their parallelization is future work).
Fortunately, their memory requirement is just O(nnz(A)) [2, 6], whereas the memory
requirement for L and U factors grows superlinearly in nnz(A), so in the meantime we
can run them on a single processor. Figure 4 shows the fraction of time spent finding P,
in step (1) using the algorithm in [6], as a fraction of the factorization time. The time
is significant for small problems, but drops to 1% to 10% for large matrices requiring a
long time to factor, the problems of most interest on parallel machines. The time to find
a sparsity-preserving ordering P. in step (2) is very much matrix dependent. It is usually
cheaper than factorization, although there exist matrices for which the ordering is more
expensive. Nevertheless, in applications where we repeatedly solve a system of equations
with the same nonzero pattern but different values, the ordering algorithm needs to be
run only once, and its cost can be amortized over all the factorizations. Computing the
residual (sparse matrix-vector multiplication » = b— A-x) is cheaper than a triangular solve
(A-dz = r), and both take a small fraction of the factorization time. For large matrices
the solve time is often less than 5% of the factorization time. Both algorithms have been
parallelized Finally, our code has the ability to estimate a forward error bound for the true
error W This is by far the most expensive step after factorization. (For small
matrices, it can be more expensive than factorization, since it requires multiple triangular
solves.) Therefore, we will do this only when the user asks for it.
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nnz(L + U = 1) Flops

Order | nnz(A) | NumSym | StrSym (x10%) | (x10?)

AF23560 23560 | 460598 0512 9465 12.8 4.9
BBMAT 38744 | 1771722 .0224 .5398 49.1 4.3
ECL32 51993 | 380415 6572 9325 73.5 120.4
EX11 16614 | 1096948 29999 | 1.0000 14.1 8.4
FIDAPM11 22294 | 623554 .5476 9965 23.0 17.9
RMA10 46835 | 2374001 .2443 9809 14.7 1.8
TWOTONE | 120750 | 1224224 1418 2738 22.6 8.7
WANG4 26068 | 177196 1868 | 1.0000 27.7 35.3

TABLE 1

Characteristics of the test matrices. NumSym s the fraction of nonzeros matched by equal
values in symmetric locations. StrSym is the fraction of nonzeros matched by nonzeros in symmetric
locations.

3 A scalable and portable implementation using MPI

In this section, we describe our design, implementation and the performance of the
distributed algorithms for two main steps of the GESP method, sparse LU factorization
and sparse triangular solve. Qur implementation uses MPI [11] to communicate data, and
so is highly portable. We have tested the code on a number of platforms, such as Cray
T3E, IBM SP2, and Berkeley NOW. Here, we only report the results from a 512 node Cray
T3E-900 at NERSC. To illustrate scalability of the algorithms, we restrict our attention
to eight relatively large matrices selected from our testbed. They are representative of
different application domains. The characteristics of these matrices are given in Table 1.



3.1 Matrix distribution and distributed data structure

We distribute the matrix in a two-dimensional block-cyclic fashion. In this distribution,
the P processes (not restricted to be a power of 2) are arranged as a 2-D process grid of
shape P, X P.. The matrix is decomposed into blocks of submatrices. Then, these blocks
are cyclically mapped onto the process grid, in both row and column dimensions. Such
a 2-D layout strikes a good balance among locality (by blocking), load balance (by cyclic
mapping), and lower communication volume (by 2-D mapping). 2-D layouts were used in
scalable implementations of sparse Cholesky factorization [8, 10].

The matrix partitioning is based on the notion of wunsymmetric supernode first
introduced in [3]. Let L be the lower triangular matrix in the LU factorization. A supernode
is a range (7 : s) of columns of L with the triangular block just below the diagonal being full,
and with the same row structure below this block. Because of the identical row structure
of a supernode, it can be stored in a dense format in memory. This supernode partition is
used as our block partition in both row and column dimensions. If there are IV supernodes
in an n-by-n matrix, the matrix will be partitioned into N? blocks of nonuniform size.
The size of each block is matrix dependent. It should be clear that all the diagonal blocks
are square and full (we store zeros from U in the upper triangle of the diagonal block),
whereas the off-diagonal blocks may be rectangular and may not be full. The matrix in
Figure 5 illustrates such a partitioning. By block-cyclic mapping we mean block (1,.J)
(0<1I,J <N —1)is mapped onto the process at coordinate (I mod P,, J mod P.) of the
process grid. Using this mapping, a block L([,.J) in the factorization is only needed by the
row of processes that own blocks in row I. Similarly, a block U(I,.J) is only needed by the
column of processes that own blocks in column J.

In this 2-D mapping, each block column of L resides on more than one process, namely,
a column of processes. For example in Figure 5, the k-th block column of L resides on the
column processes {0, 3}. Process 3 only owns two nonzero blocks, which are not contiguous
in the global matrix. The schema on the right of Figure 5 depicts the data structure to store
the nonzero blocks on a process. Besides the numerical values stored in a Fortran-style array
nzval[] in column major order, we need the information to interpret the location and row
subscript of each nonzero. This is stored in an integer array index[], which includes the
information for the whole block column and for each individual block in it. A process owns
[N/P.] block columns of L, so it needs [N/P.| pairs of index/nzval arrays. Similarly,
each process has [N/ P,] pairs of index/nzval arrays to store block rows of matrix U.

3.2 Sparse LU factorization

Figure 6 outlines the parallel sparse LU factorization algorithm. We use Matlab notation
for integer ranges and submatrices. There are three steps in the K-th iteration of the
loop. In step (1), only a column of processes participate in factoring the block column
L(K : N,K). In step (2), only a row of processes participate in the triangular solves
to obtain the block row U(K,K + 1 : N). The rank-b update by L(K + 1 : N,K) and
U(K,K+1:N)in step (3) represents most of the work and also exhibits more parallelism
than the other two steps, where b is the block size of the K-th block column/row. For ease
of understanding, the algorithm presented here is simplified. The actual implementation
uses a pipelined organization so that processes PROCo (K 4 1) will start step (1) of iteration
K +1 as soon as the rank-b update (step (3)) of iteration A to block column K +1 finishes,
before completing the update to the trailing matrix A(K +1: N, K 4+ 2 : N) owned by
PROCc(K +1). The pipelining alleviates the lack of parallelism in both steps (1) and (2).
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Fia. 5. The 2-D block-cyclic layout and the data structure to store a local block column of L.

Let mycol (myrow) be my process column (row) number in the process grid
Let PROCc(K) (PROCR(L)) be the column (row) processes that own block column (row) K
for block K =1 to N do
(1) if ( mycol = PROC(K) )
Obtain the block column factor L(K : N, K)
Send L(K : N, K) to the processes in my row who need it
else
Receive L(K : N, K') from processes PROC¢( ) if I need it
endif
(2) if ( myrow = PROCR(K) )
Perform parallel triangular solves : U(K, K +1: N)= L(K,K) - A(K,K+1: N)
Send U(K, K +1: N) to processes in my column who need it
else
Receive U(K, K +1: N) from processes PROCR(K) if I need it
endif
(3)for /=K +1to N do
for /=K +1to N do
if ( myrow = PROCR(I) & mycol = PROC¢(J) & L(I,K)#0& U(K,J)#0)
A(LJ) = A(I,J) - L(I,K)- U(K, J)
endif

end for

Fia. 6. Distributed sparse LU factorization algorithm.



On 64 processors of Cray T3E, for instance, we observed speedups between 10% to 40%
over the non-pipelined implementation.

In each iteration, the major communication steps are send/receive L(K : N, K) across
process rows and send/receive U(K, K 4+ 1 : N) down process columns. Our data structure
(see Figure 5) ensures that all the blocks of L(K : N, ') and U(K, K +1: N) on a process
are contiguous in memory, thereby eliminating the need for packing and unpacking in a
send-receive operation or sending many more smaller messages. In each send-receive pair,
two messages are exchanged, one for index[] and another for nzval[]. To further reduce
the amount of communication, we employ the notion of elimination dags (EDAGs) [7].
That is, we send the K-th column of L rowwise to the process owning the J-th column of L
only if there exists a path between (super)nodes K and J in the elimination dags. This is
done similarly for the columnwise communication of rows of U. Therefore, each block in I
may be sent to fewer than P. processes and each block in U may be sent to fewer than P,
processes. In other words, our communication takes into account the sparsity of the factors
as opposed to “send-to-all” approach in a dense factorization. For example, for AF23560
on 32 (4 x 8) processes, the total number of messages is reduced from 351052 to 302570, or
16% fewer messages. The reduction is even more with more processes or sparser problems.

3.3 Sparse triangular solve

The sparse lower and upper triangular solves are also designed around the same distributed
data structure. The forward substitution proceeds from the bottom of the elimination
tree to the root, whereas the back substitution proceeds from the root to the bottom.
Figure 7 outlines the algorithm for sparse lower triangular solve. The algorithm is based
on a sequential variant called “inner product” formulation. In this formulation, before the
K -th subvector #(K') is solved, the update from the inner product of L(K,1: K — 1) and
(1 : K —1) must be accumulated and subtracted from b(K'). The diagonal process, at the
coordinate (K mod P,, K mod P.) of the process grid, is responsible for solving z(K). Two
counters, frecv and fmod, are used to facilitate the asynchronous execution of different
operations. frecv[K] counts the number of process updates to z(K ) to be received by
the diagonal process owning x( K ). This is needed because L(K,1: K — 1) is distributed
among the row processes PROCR(K'), and due to sparsity, not all processes in PROCR(K)
contribute to the update. When frecv(K') becomes zero, all the necessary updates to z(K')
are complete and z(K) is solved. fmod(K') counts the number of block modifications to be
summed into the local inner product update (stored in lsum(K)) to z(K). When fmod(K )
becomes zero, the partial sum [sum(K) is sent to the diagonal process that owns z(K).

The execution of the program is message-driven. A process may receive two types of
messages, one is the partial sum lsum(K ), another is the solution subvector z(K). Appro-
priate action is taken according to the message type. The asynchronous communication
enables large overlapping between communication and computation. This is very important
because the communication to computation ratio is much higher in triangular solve than
in factorization.

3.4 Parallel performance

Table 2 shows the performance of the factorization on the Cray T3E-900. The symbolic
analysis is not yet parallel, so we start with a copy of the entire matrix on each processor,
and run symbolic analysis independently on each processor. Thus the time is independent
of the number of processors. The first column of Table 2 reports the time spent in the



Let mycol (myrow) be my process column (row) number in the process grid
Let PROCc(K) be the column processes that own block column K
z=>5
lsum =0
for each block K that I own ... Compute leaf nodes
if ( myrow = K mod P, & mycol = K mod P. & frecv[K]=0)
2(K)=L(K,K)™' 2(K)
Send z(K') to the column processes PROC o (K)
endif
end for
while ( I have more work ) do ... Compute internal nodes
Receive a message
if ( message is {sum(K') )
2(K)=a(K)+ lsum(K);
freco(K) = frecv(K)—1
if ( frecv(K)=10)
2(K)=L(K,K)™! 2(K)
Send z(K') to the column processes PROCc(K )
endif
else if ( message is 2(K) )
for each [ > K, L(I, K) # 0 that I own
lsum(l) =lsum(l)— L(I,K)-2(K)
fmod(I) = fmod(I) -1
if ( frnod(1)=10)
Send lsum(I) to the diagonal process who owns L(I, )
endif
end for
endif

end while

Fia. 7. Distributed lower triangular solve L - x = b.

symbolic analysis. The memory requirement of the symbolic analysis is small, because we
only store and manipulate the supernodal graph of L and the skeleton graph of U, which
are much smaller than the graphs of I and U. The subsequent columns in the table
show the factorization time with a varying number of processors. For four large matrices
(BBMAT, ECL32, FIDAPM11 and WANGH4), the factorization time continues decreasing
up to 512 processors, demonstrating excellent scalability. The last column reports the
numeric factorization rate in Mflops. More than 8 Gflops is achieved for matrix ECL32.

As a reference, we compare our distributed memory code to our shared memory
SuperLU_MT code using small numbers of processors. For example, using 4 processor DEC
AlphaServer 8400 (SMP) !, the factorization times of SuperLU_MT for matrices AF23560
and EX11 are 19 and 23 seconds, respectively, comparable to the 4-processor T3E timings.
This indicates that our distributed data structure and message passing algorithm do not
incur much overhead.

Table 3 shows the performance of the lower and upper triangular solves altogether.

!Each processor is the same as one T3E processor, except there is a 4 MB tertiary cache.



Symbolic Numeric

P=4 16 32 64 128 256 512 || Mflops
ATF23560 1.7 322 11.0] 73| 59| 5.8 | 7.0 7.1 856
BBMAT 11.8 || 430.8 | 110.5 | 62.3 | 35.6 | 25.8 | 18.4 | 17.0 2493
ECL32 14.0 || 325.0 | 92.3 | 52.2 | 30.8 | 21.5 | 15.7 | 14.3 8352
EX11 1.8 20.6 6.7 43| 33| 3.2 | 34 3.4 2628
FIDAPM11 4.1 | 115.1 | 31.9 | 19.0 | 11.7 8bH | 76| 7.1 2291
RMA10 1.6 13.6 70| 54| 60| 54| 6.5 7.2 511
TWOTONE 6.6 99.8 | 48.1 | 31.6 | 29.4 | 28.5 | 29.9 | 31.7 297
WANG4 4.2 72.8 1 21.1 ] 13.3| 8.8 6.6 | 6.8| 6.5 5542

TABLE 2

LU factorization time in seconds and Megaflop rate on the 512 node T3E-900.

P=4 8 16 32 64 Mflops
AF23560 0.94 1 0.90 | 0.69 | 0.67 | 0.64 42
BBMAT 3.69 | 3.42 | 2.27 | 2.23 | 1.83 56
ECL32 2.95 | 2.60 | 1.66 | 1.57 | 1.17 128
EX11 0.50 | 0.46 | 0.32 | 0.31 | 0.26 112
FIDAPMI11 1.39 | 1.26 | 0.83 | 0.83 | 0.68 70
RMA10 0.77 1 0.74 | 0.8 | 0.53 | 0.50 60
TWOTONE || 4.37 | 4.37 | 3.65 | 3.15 | 2.95 16
WANG4 1.09 | 0.99 | 0.67 | 0.63 | 0.50 112

TABLE 3

Triangular solves time in seconds and Megaflop rate on the T3E-900.

When the number of processors continues increasing beyond 64, the communication takes
more than 95% of the solve time, and the solve time remains roughly the same. Although
triangular solves do not achieve high Megaflop rates, the time is usually much less than
that for factorization.

4 Conclusions

We propose a number of techniques in place of partial pivoting to stabilize sparse
Gaussian elimination. Their effectiveness is demonstrated by numerical experiments.
These techniques enable static analysis of the nonzero structure of the factors and the
communication pattern. As a result, a more scalable implementation becomes feasible
on large-scale distributed memory machines with hundreds of processors. Qur prototype
software is being used in a quantum chemistry application at Lawrence Berkeley National
Laboratory, where a complex unsymmetric system of order 736,164 has been solved within
20 minutes.
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