A novel efficient two-phase algorithm for training interpolation radial basis function networks

Huan H.X., Hien D.T.T., Huynh H.T.
Faculty of Information Technology, College of Technology, Vietnam National University, Hanoi, Viet Nam;
Faculty of Electronics and Telecommunications, College of Technology, Vietnam National University, Hanoi, Viet Nam; Department of Electrical and Computer Engineering, Laval University, Que., Canada

Abstract: Interpolation radial basis function (RBF) networks have been widely used in various applications. The output layer weights are usually determined by minimizing the sum-of-squares error or by directly solving interpolation equations. When the number of interpolation nodes is large, these methods are time consuming, difficult to control the balance between the convergence rate and the generality, and difficult to reach a high accuracy. In this paper, we propose a two-phase algorithm for training interpolation RBF networks with bell-shaped basis functions. In the first phase, the width parameters of basis functions are determined by taking into account the tradeoff between the error and the convergence rate. Then, the output layer weights are determined by finding the fixed point of a given contraction transformation. The running time of this new algorithm is relatively short and the balance between the convergence rate and the generality is easily controlled by adjusting the involved parameters, while the error is made as small as desired. Also, its running time can be further enhanced thanks to the possibility to parallelize the proposed algorithm. Finally, its efficiency is illustrated by simulations. © 2007 Elsevier B.V. All rights reserved.

Author Keywords: Contraction transformation; Fixed point; Output weights; Radial basis functions; Width parameters
Index Keywords: Contraction transformation; Fixed point; Output weights; Width parameters; Algorithms; Computer simulation; Errors; Interpolation; Problem solving; Radial basis function networks

Year: 2007
Source title: Signal Processing
Volume: 87
Issue: 11
Page: 2708-2717
Link: Scopus Link
Correspondence Address: Huynh, H.T.; Faculty of Electronics and Telecommunications, College of Technology, Vietnam National University, Hanoi, Viet Nam; email: huynh@gel.ulaval.ca
ISSN: 1651684
CODEN: SPROD
DOI: 10.1016/j.sigpro.2007.05.001
Language of Original Document: English
Abbreviated Source Title: Signal Processing
Document Type: Article
Source: Scopus
Authors with affiliations:

- Huan, H.X., Faculty of Information Technology, College of Technology, Vietnam National University, Hanoi, Viet Nam
- Hien, D.T.T., Faculty of Information Technology, College of Technology, Vietnam National University, Hanoi, Viet Nam
- Huynh, H.T., Faculty of Electronics and Telecommunications, College of Technology, Vietnam National University, Hanoi, Viet Nam, Department of Electrical and Computer Engineering, Laval University, Que., Canada

References:

- Poggio, T., Girosi, F., Networks for approximating and learning (1990) IEEE Proc., 78 (9), pp. 1481-1497

Download: 0557.pdf