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Abstract: On-line remaining-useful-life (RUL) prognosis is still a problem for satellite Lithium-ion
(Li-ion) batteries. Meanwhile, capacity, widely used as a health indicator of a battery (HI),
is inconvenient or even impossible to measure. Aiming at practical and precise prediction of the
RUL of satellite Li-ion batteries, a dynamic long short-term memory (DLSTM) neural-network-based
indirect RUL prognosis is proposed in this paper. Firstly, an indirect HI based on the Spearman
correlation analysis method is extracted from the battery discharge voltages, and the relationship
between the indirect HI indices and battery capacity is established using a polynomial fitting
method. Then, by integrating the Adam method, L2 regularization method, and incremental learning,
a DLSTM method is proposed and applied for Li-ion battery RUL prognosis. Finally, verification of
the results on NASA #5 battery data sets demonstrates that the proposed method has better dynamic
performance and higher accuracy than the three other popular methods.
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1. Introduction

Rechargeable lithium-ion (Li-ion) battery are widely applied in various satellites, because of
their high-energy density, light weight, good performance, long lifetime, etc. [1]. Li-ion batteries are
designed to supply power during a satellite’s launch phase, shadow phase, and high load phase.
However, after long-term, repeated charges and discharges, the lifetime of the Li-ion battery will be
gradually reduced due to some irreversible reactions [2]. Li-ion battery degradation could result in the
failure of satellite power subsystems, and even in a catastrophic occurrence. Therefore, it is critical to
improve the safety and reliability of Li-ion battery in satellite systems, with the aid of a prognostic and
health management (PHM) approach.

Technologically, PHM aims at predicting the current health status and the remaining useful
life (RUL) of a system [3]. Specifically, the RUL prognosis [4–6] is the key technology of PHM
to analyze, guarantee, and improve system safety and reliability. In general, the existing RUL
prognosis of Li-ion batteries can be classified into three major categories: (1) experience-based
approaches [7], such as the physicochemical ageing model, the weighted Ah ageing model, and
the event-oriented ageing model; (2) model-based approaches, such as the Kalman filter (KF) [8–10]
and particle filter (PF) [11–15]; and (3) data-driven approaches. Data-driven approaches also contain
three major technologies: (1) time-series technology, such as the auto regressive (AR) and auto
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regressive moving-average (ARMA) models [16]; (2) machine-learning technology, such as artificial
neural networks (ANN) [17–19], support vector machine (SVM), or [4] relevance vector machine
(RVM) [20,21]; and (3) statistical technology such as the Bayesian method [22,23] and Gaussian process
regression (GPR) [24].

Data-driven approaches are attracting more attention than the other two approaches, since they
need neither long term accumulation of the related experience, nor accurate aging mechanism of battery
degradation phenomenon. Instead, data-driven approaches only depend on historical data, and use
data mining, pattern recognition, and machine-learning techniques to forecast the RUL of Li-ion battery.
In existing data-driven approaches, most researchers directly adopt capacity or resistance as health
indicators (HI) [16–24]. In real applications, it is hard to measure and monitor Li-ion battery capacity or
resistance directly. Meanwhile, to realize on-line RUL prognosis, computationally-efficient data-driven
approaches are preferable.

A dynamic long short-term memory (DLSTM) neural-network-based indirect RUL prognosis
for satellite Li-ion battery is proposed in this paper. The main contributions of this paper can be
summarized as follows:

• For measured discharge voltages, a novel polynomial-fitting-based HI is constructed to replace
Li-ion capacity for Li-ion battery RUL prognosis.

• Considering on-line and multi-step prediction, a DLSTM with the Adam method, L2
regularization method, and incremental learning idea is proposed.

The structure of this article is as follows. Section 2 briefly analyzes Li-ion battery data and clarifies
the problem. Then, the proposed HI extraction and DLSTM methods are described in Section 3.
Verification results are presented and analyzed in Section 4. Finally, Section 5 gives the conclusions
and discusses future work.

2. Data Analysis and Problem Statement

2.1. Li-Ion Battery Data Analysis

In this paper, the NASA dataset [25] is exploited. It contains four different Li-ion batteries (#5, #6,
#7, and #18), and each Li-ion battery repeats three operations (charge, discharge, and impedance
measurements) at room temperature (24 ◦C). The test conditions of the NASA battery are listed in
Table 1.

Table 1. Test condition of NASA battery data set.

Battery No. Constant Charge
Current/A

Charge Cut-off
Voltage/V

Discharge
Current/A

Discharge Cut-off
Voltage/V

Nominal
Capacity/Ah

5 1.5 4.2 2.0 2.7 2.0
6 1.5 4.2 2.0 2.5 2.0
7 1.5 4.2 2.0 2.2 2.0

18 1.5 4.2 2.0 2.5 2.0

Figure 1 shows the #5 Li-ion charge and discharge process in one cycle. Obviously, the charge
process consists of constant current (CC) mode and constant voltage (CV) mode. In the charge in CC
mode, the current is kept at 1.5 A until the Li-ion battery voltage is increased to 4.2 V. In the charge CV
mode, the voltage holds 4.2 V until the Li-ion battery current drops to 20 mA from 1.5 A. In the whole
charge process, the battery terminal voltage, battery output current, battery temperature, measured
current, and measured voltage are recorded. The discharge process belongs to the CC mode, and the
current is 2 A until the Li-ion battery voltage drops to 2.7 V from 4.2 V. In the discharge process, the
recorded variables (except battery capacity) are the same as those of the charge process. Meanwhile,
NASA Ames utilizes the electrochemical impedance spectroscopy (EIS) method (frequency sweep from
0.1 Hz to 5 kHz) to measure impedance. In the impedance process, the sensor current, battery current,
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and ratio of the above currents are recorded to calculate battery impedance, electrolyte resistance (Re),
and charge transfer resistance (Rct). As time goes on, the repeated charge and discharge process results
in accelerated degradation, and eventually, the end of the battery’s service life (EOL).
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Figure 1. Charge and discharge process of Li-ion battery in one cycle [11].

2.2. Problem Statement

Typically, the EOL model of the Li-ion battery is closely related to that of a battery capacity [26];
the specific Li-ion battery remaining capacity model can be acquired in the literature [27]. This model
gives all parameters (except some constant coefficients) by various experimental curve fittings. Despite
knowledge of the complicated Li-ion mechanisms, the state of health (SOH) can be defined as:

SOH(τ) =
C(τ)
C(0)

(1)

where C(0) is the capacity value at the initial stage of Li-ion battery, and C(τ) is the capacity value at
time τ (it is usually the index of cycle number).

Figure 2 gives the battery capacity changing curve according to the measured capacity of the
discharge process. The curve clearly presents the degradation trend of a Li-ion battery. In the
literature [28], Li-ion is regarded as being at EOL when its capacity drops to 70% (1.38 Ah) of its initial
value. For satellite Li-ion batteries, it is inconvenient or even impossible to measure battery capacity
values during in-orbit service. The main reason is that battery capacity measurements require the
performance of a full charge and discharge cycle [29]. Hence, the problem is: how can we use basic
measurements to construct a novel HI which can replace the capacity, and realize a dynamic RUL
prognosis of Li-ion batteries used in satellites.
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3. DLSTM Based Indirect RUL Prognosis

3.1. Polynomial Fitting Based HI

For Li-ion battery RUL prognosis, it is important to construct an indirect HI which shows
the degradation phenomenon, because the battery capacity cannot be directly acquired on-line.
In most real-life applications, the battery capacity can be estimated by one of a number of complex
methods (electrochemical analysis, Ampere-hours, impedance, and other methods). These methods are
time-consuming, and their accuracy is not satisfying. Therefore, using the charge current or discharge
voltage to construct an indirect HI is more meaningful for online RUL prognosis.

It is widely known that a battery’s life is closely related to its voltage. Similar to [30], we also
adopt the time interval of equal discharge voltage difference (TIEDVD) as an indirect HI in each cycle.
As shown in Figure 3, the Li-ion battery discharge time becomes shorter with each cycle. Due to the
discrete monitoring time, the TIEDVD HI in the τth cycle can be defined as:

HI(τ) = max(T(τ))−min(T(τ)), τ = 1, 2, ..., k (2)

where T(τ) is the voltage measurement time aggregation of the τth cycle in the predefined discharge
voltage range. The voltage range (Figure 3) contains Vmax (upper limit) and Vmin (lower limit). So,
the HI series can be described as:

HI = {HI(1), HI(2), ..., HI(k)} (3)
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However, the literature [30] did not give the specific principle of discharge voltage range selection
and the mapping relationship between the constructed HI and Li-ion battery capacity. Hence, in
order to solve these problems, this paper utilizes the Spearman correlation coefficient method [31]
to analyze and predefine the discharge voltage range. Spearman correlation analysis does not have
specific data conditions, in contrast to two other correlation analysis methods (Person and Kendall).
Then, the polynomial fitting method is used to analyze the correlation character [32] and establish the
mapping relationship. Finally, the indirect HI construction framework can be summarized as follows:

Step 1: Acquire and preprocess the voltage measurements in each discharge cycle;
Step 2: Predefine the Vmax and Vmin, then use Equation (2) to calculate the HI of each cycle, and

gain the HI series, as shown in Equation (3);
Step 3: Utilize Spearman method to calculate and analyze the correlation coefficient between

the HI series and the Li-ion battery capacity series. If the correlation coefficient meets the demand,
perform the next step. Otherwise, repeat Steps 2 and 3;
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Step 4: Use the polynomial fitting method to build the mapping relationship between the HI and
the Li-ion battery capacity.

3.2. DLSTM for RUL Prognosis

In this section, the LSTM [33] is introduced for Li-ion battery RUL prognosis. Compared with
the recurrent neural network (RNN), the LSTM adds a memory cell structure which can solve the
vanishing gradient problem and the exploding gradient problem. The LSTM is more suitable for time
series prediction.

The basic LSTM architecture predictor is shown in Figure 4. Here, xt is the input at the current
time step, ht−1 stands for the output at the previous time step, and Ct−1 is the cell memory at the
previous time step; ht stands for the output at the current time step, and Ct is the cell memory at
the current time step. The red line (Figure 4) can maintain information transfer and not change the
information through the whole cell state, which is the key to LSTM. The LSTM mainly contains a forget
gate, input gate, input node, and output gate.

Appl. Sci. 2018, 8, x FOR PEER REVIEW  5 of 11 

3.2. DLSTM for RUL Prognosis 

In this section, the LSTM [33] is introduced for Li-ion battery RUL prognosis. Compared with 

the recurrent neural network (RNN), the LSTM adds a memory cell structure which can solve the 

vanishing gradient problem and the exploding gradient problem. The LSTM is more suitable for time 

series prediction. 

The basic LSTM architecture predictor is shown in Figure 4. Here, tx  is the input at the current 

time step, 1th   stands for the output at the previous time step, and 1tC   is the cell memory at the 

previous time step; th  stands for the output at the current time step, and tC  is the cell memory at 

the current time step. The red line (Figure 4) can maintain information transfer and not change the 

information through the whole cell state, which is the key to LSTM. The LSTM mainly contains a 

forget gate, input gate, input node, and output gate.  

The forget gate is important; it can decide which information is discarded. For Li-ion battery 

RUL prognosis, the forget gate can discard some previous redundant information which does not 

influence the prediction result of next time step. The input gate and input node can determine which 

new information is stored. The output can realize the information output. Therefore, according to 

Figure 4, the essential formulas of LSTM are expressed as follows: 

1( [ , ] )t f t t ff W h x b     (4) 

1( [ , ] )t i t t ii W h x b     (5) 

1tanh( [ , ] )t C t t CC W h x b  %  (6) 

1t t t t tC f C i C    % (7) 

1( [ , ] )t o t t oo W h x b     (8) 

tanh( )t t th o C   (9) 

where   is the sigmoid function; fW , iW , CW  and oW  are weight matrices; fb , ib , Cb  and ob  

are bias vectors. 

Sigmoid Sigmoid tanh Sigmoid

tanh

1tC 

1th 

tx

Forget Gate

Input Gate Output Gate

th

tC

th
2th 

2tC 

1tx 

1tx 

1th 

1tC 

tf

ti tC to

 1,t th x fW
iW cW

oW

Next time stepCurrent time stepPrevious time step

Input node

 

Figure 4. Basic LSTM architecture. 

When the LSTM is applied for Li-ion battery RUL prognosis, there are three problems. First, the 

traditional gradient descent methods, such as stochastic gradient descent (SGD), mini batch gradient 

descent, and RMSprop, cannot guarantee rapid convergence. They are also not suitable for on-line 

RUL prognosis. The second problem is the overfitting phenomenon. The last problem is dynamic 

prediction with high accuracy. 

In order to solve these problems associated with the deep learning in LSTM, this paper 

contributes three possible solutions. (1) Based on the resilient back-propagation algorithm [34] 

Figure 4. Basic LSTM architecture.

The forget gate is important; it can decide which information is discarded. For Li-ion battery
RUL prognosis, the forget gate can discard some previous redundant information which does not
influence the prediction result of next time step. The input gate and input node can determine which
new information is stored. The output can realize the information output. Therefore, according to
Figure 4, the essential formulas of LSTM are expressed as follows:

ft = σ(W f · [ht−1, xt] + b f ) (4)

it = σ(Wi · [ht−1, xt] + bi) (5)

C̃t = tanh(WC · [ht−1, xt] + bC) (6)

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)

ot = σ(Wo · [ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

where σ is the sigmoid function; W f , Wi, WC and Wo are weight matrices; b f , bi, bC and bo are
bias vectors.

When the LSTM is applied for Li-ion battery RUL prognosis, there are three problems. First, the
traditional gradient descent methods, such as stochastic gradient descent (SGD), mini batch gradient
descent, and RMSprop, cannot guarantee rapid convergence. They are also not suitable for on-line
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RUL prognosis. The second problem is the overfitting phenomenon. The last problem is dynamic
prediction with high accuracy.

In order to solve these problems associated with the deep learning in LSTM, this paper contributes
three possible solutions. (1) Based on the resilient back-propagation algorithm [34] (Appendix A),
this paper adopts the adaptive moment estimation (Adam) method [35] so that LSTM can have rapid
convergence. The Adam method can avoid learning-rate loss, slow convergence, and significant change
of loss function. The literature [35] has demonstrated that the Adam method can be applied for practical
deep-learning problems, using large models and datasets. Therefore, we do not repeat it in this paper.
(2) The L2 regularization method [36] is utilized to avoid overfitting. (3) Combining the incremental
learning idea with the advantage of the forget gate, a dynamic long short-term memory neural network
(DLSTM) is developed. The major steps of DLSTM for RUL prognosis can be summarized as follows:

Step 1: Partition the training data and test data according to the acquired indirect HI time series
in Section 3.1. The training data is used as the input of DLSTM;

Step 2: In the process of forward propagation, calculate the six intermediate parameters ft, it, C̃t,
Ct, ot and ht according to Equations (4)–(9);

Step 3: In the process of resilient back-propagation (as shown in Equations (A1)–(A7)), add the L2
regularization method to avoid overfitting, and utilize the Adam method to update the matrices W f ,
Wi, WC, and Wo, and the bias vectors b f , bi, bC, and bo;

Step 4: Output the next five prediction values;
Step 5: Use the acquired mapping relationship to transfer the prediction values to battery capacity;
Step 6: If the predicted values exceed the failure threshold, perform the next step. If not, add

five new prediction values to the training data, update the neural network structure dynamically, and
repeat Steps 2–6;

Step 7: Output the predicted RUL of Li-ion battery.

3.3. Evaluation Criterion

In this paper, root mean square error (RMSE), mean absolute error (MAE), and RUL predicted
error (RULerror) are used to evaluate the prediction performance:

RMSE =

√√√√1
t

t

∑
i=1

(yi − f (xi))
2 (10)

MAE =
1
t

t

∑
i=1
‖yi − f (xi)‖ (11)

RULerror = RULpredict − RULtrue (12)

where yi is the real value and f (xi ) is the predicted value; RULpredict is the predicted RUL, and RULtrue

is the true RUL.

4. Verification

4.1. Indirect HI Construction

In this section, the #5 satellite Li-ion battery (as described in Section 2.1) is used and handled to
verify the proposed method of this paper.

Firstly according to Steps 1–3 in Section 3.1, the upper and lower limit voltages are set 3.8 V and
3.41 V respectively. Figure 5a,b gives the Li-ion battery capacity and indirect HI series curves. From the
two figures, it is shown that the constructed indirect HI is very similar to Li-ion battery capacity,
and the Spearman correlation coefficient between indirect HI series and Li-ion battery capacity series
is equal to 0.9991. The result of Figure 5c also verifies the higher correlation. Finally, the mapping
relationship between indirect HI and Li-ion battery capacity is obtained by the polynomial fitting
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method. The specific mapping relationship can be expressed as a linear function; the parameters are,
respectively, 0.0005 and 0.7193. According to the two parameters, the transfer result of indirect HI can
be seen in Figure 5d.Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 11 
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Therefore, the constructed indirect HI can replace Li-ion battery capacity for on-line
RUL prognosis.

4.2. Li-Ion Battery RUL Prognosis

In this section, the constructed indirect HI series is divided into two parts: the 1 to 81 series data
is training data; the remaining data is used as testing data.

Firstly, the neuron, the factor for dropping the learning rate, and the factor for L2 regularization
(three major parameters of DLSTM) are set as 200, 0.3, and 0.1 respectively. Then, the proposed DLSTM,
LSTM, ANN, and ARMA are used to predict the indirect HI series respectively. Finally, the prediction
results of four methods are transferred to Li-ion battery capacity using the mapping relationship (in
Section 4.1), and the RUL is calculated according to the failure threshold (described in Section 2.2).

Figure 6a–d show the RUL prognosis processes of four methods; the prediction performance
comparison of four methods is listed in Table 1. Comparing Figure 6a,b, the proposed DLSTM has
better dynamic performance than LSTM, and the error of RUL is very small. From Figure 6a–d and
Table 2, it can be seen that the RMSE, MAE, and RULerror of DLSTM are better than LSTM, ANN
and ARMA.
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Figure 6. Comparison of four different methods for satellite Li-ion battery RUL prognosis: (a) DLSTM
for RUL prognosis; (b) LSTM for RUL prognostic; (c) ANN for RUL prognosis; (d) ARMA for
RUL prognosis.

Table 2. Prediction performance comparison of four methods.

Methods RMSE MAE RULerror

DLSTM 0.0119 0.0087 2
LSTM 0.0413 0.0348 20
ANN 0.0334 0.0303 −4

ARMA 0.0356 0.0302 −5

To summarize, the proposed DLSTM method based on indirect HI has good dynamic performance,
and is more suitable for satellite Li-ion battery long-term RUL prognosis.

5. Conclusions

Considering the unmeasured satellite Li-ion battery capacity and dynamic demand of RUL
prognosis, a DLSTM-based, indirect RUL prognosis method is provided in this paper. This method
can extract an indirect HI which can replace battery capacity and realize Li-ion battery on-line RUL
prognosis. The verification results on NASA #5 battery data sets demonstrate the feasibility and
effectiveness of the proposed method.

However, the operation conditions and environment are constant in this paper. The Li-ion
battery RUL, based on different operations and environments, will be considered in future research.
Furthermore, the management of uncertainties is also important for the PHM of Li-ion battery. Its main
purpose is to analyze the influence of various uncertainties, and provide a confidence coefficient
for predictions. In future, Bayesian theory, particle filter, or other uncertainty technologies will be
considered and added to realize the management of uncertainties of Li-ion batteries.
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Appendix A.

Here, we give the brief resilient back-propagation calculation process of LSTM. Firstly, we define:

W · st =


W f
Wi
WC
Wo

 · st =


W f hW f xb f
WihWixbi

WChWCxbC
WohWoxbo

 ·
 ht−1

xt

1

 (A1)

Then, we assume ∂Et

∂ht = δht, where Et is the error at time t. Next, we will calculate the gradient of
LSTM (orderly solve as shown in Figure A1). δot and δot are acquired by Equation (A2); δ ft, δit, δC̃t

and δCt−1 acquired by Equation (A3); δW f , δWi, δWC and δWo are acquired by Equations (A4) and
(A5). Therefore, the total gradient can be summarized as Equation (A6). Finally, the matrix W can be
updated as Equation (A7).

δot = ∂Et

∂ot = δht � tanh(Ct)

δCt = ∂Et

∂Ct = δht
i � ot � [1− tanh2(Ct)]

(A2)

δ f t = ∂Et

∂ f t = δCt � Ct−1

δit = ∂Et

∂it = δCt � C̃t

δCt−1 = ∂Et

∂Ct−1 = δCt � f t

δC̃t = ∂Et

∂C̃t
i
= δCt � it

(A3)

∂Et

∂W f
= [δ f t � f t � (1− f t)]⊗ (st)

T

∂Et

∂Wi
= [δit � it � (1− it)]⊗ (st)

T

∂Et

∂Wo
= [δot � ot � (1− ot)]⊗ (st)

T

∂Et

∂WC
= [δC̃t � (1− (C̃t)

2
)]⊗ (st)

T

(A4)

∂Et

∂W
=


δ f t � f t � (1− f t)

δit � it � (1− it)

δot � ot � (1− ot)

δC̃t � (1− (C̃t)
2
)

⊗ (st)
T (A5)

∂E
∂W

=
T

∑
t=0

∂Et

∂W
(A6)

W = W − η
∂E
∂W

(A7)
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