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FIG. 5. Transition to self-sustained activity A: Firing
rate of excitatory neurons (averaged over 5s) after the kick of
duration of 100ms. The black line is the prediction from mean
field for the transition point. B: Function F derived by mean-
field equations in the two cases (green and red curves). The
dashed black line is the bisector. In the inset the excitatory re-
sponse of the network to the kick in two cases (EI

L = −63mV
and EE

L = −67mV ). Green light dots in the main panel have
been obtained from the network simulation shown in the inset.

noise fluctuations. The alternation of UP states is ir-
regular, as their duration and structure. Moreover the
conductances of the system stay in a physiological range,
as expected by previous analyses (Fig5).

The deterministic mean-field model with adaptation
used until now cannot reproduce this kind of dynamic
as it does not take into account the amount of noise in-
duced by non-zero external drive (νdrive = 0.315 Hz).
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FIG. 6. UP DOWN state in bistable network From top
to down: raster plot, neurons firing rate and conductances
rescaled with the leakage gL. A little amount of the external
poissonian spikes νext = 0.315 Hz are provided to the network.
The value of RS-cell leak EL = −63mV .

As this external drive is a Poissonian train of spikes, we
added a noisy term ξ(t) as an OU process with fast time
decay (5ms, see methods for details) to the mean field
equations. A simulation of the mean-field model in this
set-up is reported in Fig.7. We observe the alternation of
silent periods with transients of high activity. The firing
rates during the UP states are quantitatively matching
those of the spiking network simulations, as their dura-
tion Finally, a certain level of heterogeneity in between
UP states is reproduced by the mean field, where re-
bounds of activity are present, exactly as in spiking net-
work simulations. In Fig.7B we superimpose the network
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FIG. 7. Adaptation and UP DOWN state in bistable
mean field model Dynamics of the mean field model with
the parameters of the network of Fig. 6 (RS EL = −63mV
and νext = 0.315 ). Top: neurons firing rate (green for excita-
tion and red for inhibition), shadows represent the covariance
based on second order mean field evaluations. Bottom: Phase
plane derived from mean field with superimposed the firing
rate (green dots) of the network dynamics (Fig. 6 ). Black
line is relative to the transfer function for EL = −63mV (zero
adaptation) and blue dashed line is relative to a lower leakage
reversal due to adaptation building up during the UP state.
Green dashed line is used to guide the eyes through the spik-
ing network trajectory during DOWN-UP cycle.

dynamics during an UP-DOWN cycle to the activity map
derived for the mean field (like done in Fig5B). We ob-
serve that the trajectory drawn by the network follows
the stability principles dictated by the mean field. The
system is dynamically bistable when adaptation in zero
(DOWN state) and can jump to the UP state. Then,
when adaptation builds up, the system is not bistable
anymore and comes back to the DOWN state.

V. CONCLUSIONS

We studied a dynamical mean field model of a
conductance–based network of Adaptive Exponential in-
tegrate and fire neurons. We used an extended version
of a master equation formalism in order to take into ac-
count slow variables like adaptation, taking into account
the memory of the network dynamics, not considered
in the original Markovian formulation [15]. Even if we
used a fitting approach for the calculation of the transfer
function for one set of model parameters this approach
turned out to be satisfying and quite robust with respect
to parameters change. In fact, as adaptation varies dy-
namically (e.g. during UP-DOWN state dynamics) or as
neurons parameters change (e.g. neurons leakage), the
mean field model gives good predictions even far from
the benchmark point where the fitting has been done.
This confirms that, in the dynamical regimes investigated
here, the hypothesis that the neuron firing rate can be
expressed as a function of neuron sub-threshold voltage
statistics is correct, and yields good predictions as far
as those quantities (µV , σV and τV ) are accurately cal-
culated (e.g. taking into account adaptation). While
the formalism used here has been applied to spike fre-
quency adaptation, it could potentially be used for other
purposes, e.g. other external variables like Spike-Time-
Dependent-Plasticity (STDP), capable to yield different
dynamical regimes with respect to those investigated here
([27]) or synaptic dynamics in general. In fact, a possi-
ble extension of this model is to consider fast oscillations,
typically due to synaptic or delay dynamics of excitation-
inhibition [28? ]. In our mean field model the dynamics
of synapses is not considered dynamically but a possible
extension, using the same protocol of the one here in-
troduced for adaptation, might be performed. Moreover,
the approach we used to calculate the transfer function
is very general and it may be applied to other neuronal
models or to real data ([20]), provided the neuron dy-
namics has a stationary firing rate. In fact, if neurons
display mechanism like bursting [29] the calculation of
the stationary transfer function can be not even well de-
fined. Moreover, it has been shown that neurons may
display stochastic resonance or in general, a non-trivial
response in the frequency domain [30]. For these classes
of neurons a different approach should be implemented,
calculating the transfer function in the frequency domain.
Nevertheless, for the cortical regimes we described here,
with a high realistic features, our approach was very sat-
isfactory.

Moreover, in [20] it has been shown that neurons are
highly heterogeneous, as reported also by [17], where the
parameters of adaptation dynamics strongly vary across
neurons. In the present mean field model formulation,
neuronal heterogeneity is not taken into account and
might represent a future development of this work, to ob-
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tain a heterogeneous mean field model (similar to what
done in [31] based on experimental measures [20].

Finally, we want to point out that the state dependent
response reported here is a result of both conductances
and adaptation dynamics. The approach we propose in
the present paper could permit the exploration of the
mechanisms giving rise to different level of awareness in
the cortex, with a direct link to testable prediction ac-
cording to the high biological relevance of the microscopic
network model here investigated.
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[28] G. Buzsáki and X.-J. Wang, “Mechanisms of gamma
oscillations,” Annual review of neuroscience, vol. 35,
pp. 203–225, 2012.

[29] E. M. Izhikevich, “Simple model of spiking neurons,”
IEEE Transactions on neural networks, vol. 14, no. 6,
pp. 1569–1572, 2003.

[30] B. Lindner and L. Schimansky-Geier, “Transmission of
noise coded versus additive signals through a neuronal
ensemble,” Physical Review Letters, vol. 86, no. 14,
p. 2934, 2001.

[31] M. di Volo, R. Burioni, M. Casartelli, R. Livi, and A. Vez-
zani, “Heterogeneous mean field for neural networks with
short-term plasticity,” Physical Review E, vol. 90, no. 2,
p. 022811, 2014.

Appendix A: Master equation formulation in
presence of slow variable.

We extend here the framework discussed in [15] using
a consistent notations. Let us consider a network with K
homogeneous populations of neurons. Each population γ
is defined by its network activitymγ that is the number of
neurons which fired in that population in a time bin T . In
the wit of making a probabilistic Markovian formulation,
T should be chosen of the time-scale of correlation decay
in order to have the system that only depends on the
previous step. Also T should be small enough to avoid
to have the same neuron firing twice in the same bin.

We also define the variable Wγ = (1/Nγ)
∑
i wγ,i,

where wγ,i is the adaptation of the i− th neuron in pop-
ulation γ, as defined in the previous paragraph. The
dynamics of the variables W is assumed to be slow with
respect to the autocorrelation time of the system T .

We make the assumption that the state of the system
is defined by the set of variables {mγ ,Wγ}. The network
behavior can be investigated bu studying the transition
probability PT ({mγ ,Wγ}|{m′γ ,W ′γ}), i.e. the probability
that the system is in {mγ ,Wγ} at time t0+T conditioned
to the fact that it was at {m′γ ,W ′γ} at a generic time t0.
Provided the choice for T we discussed above, we can
reasonably assume that population-conditional probabil-
ities are independent beyond the time scale of T, thus
allowing to write:

PT ({mγ ,Wγ}|{m′γ ,W ′γ}) =
∏

α=1..K

PT (mα,Wα|{m′γ ,W ′γ})

(A1)

We can thus define the transition operator W as:

W({mγ ,Wγ}|{m′γ ,W ′γ}) =

∏
α=1..K PT (mα,Wα|{m′γ ,W ′γ})

T
,

(A2)

For this approximation to be valid, the time constant
τw � T , namely we assumed that the adaptation dy-
namics is slower than the firing rate dynamics.

This also involves that W variables are independent
on fluctuations in firing rates and can be described by
a deterministic equation. Thus the probabilities can be
factorized as follows

PT ({mγ ,Wγ}|{m′γ ,W ′γ}) = P̄T ({mγ}|{m′γ ,W ′γ})

·δ(Wγ − [W ′γ +
T

τw
f(W ′γ ,m

′
γ)]).

where we used Eulero integration for W dynamics that
for linear f() can be explicitly written in the following
closed form

∂t〈Wµ〉 = −〈Wµ〉
τw

+ b〈mµ〉. (A3)

Notice that here for the sake of simplicity we consider
a = 0 (see Eq. 1), neglecting voltage -dependent adapta-
tion. The extension to a 6= 0 is trivial once the average
population voltage is calculated and is described in the
methods section.

Using the same approach as in [15] we obtain the fol-
lowing equations for the average activity and for the cor-
relations

∂t〈mµ〉 = āµ({〈mγ〉, 〈Wγ〉}) +
1

2
∂λ∂ηāµ({〈mγ〉, 〈Wγ〉})cλη

∂tcµν = āµν({〈mγ〉, 〈Wγ〉}) + ∂λāµ({〈mγ〉, 〈Wγ〉})cνλ +

∂λāν({〈mγ〉, 〈Wγ〉})cµλ
where

āµ({〈mγ〉, 〈Wγ〉}) =
∏

β,=1..K

∫ T−1

0

∫
Ω

dm′βdW
′
β

(m′µ − 〈mµ〉)W({m′γ ,W ′γ}|{mγ ,Wγ}).

and

āµν({〈mγ〉, 〈Wγ〉}) =
∏

β,=1..K

∫ T−1

0

∫
Ω

dm′βdW
′
β

(m′µ − 〈mµ〉)(m′ν − 〈mν〉)W({m′γ ,W ′γ}|{mγ ,Wγ}).

Using the assumption made in eq.(A3) W can be ex-
plicitly written as

W({mγ ,Wγ}|{m′γ ,W ′γ}) =
1

T

√
det(A)

2πK

exp

[
− 1

2
(mµ − νµ(m′γ ,W

′
γ))Aµν(mν − νν(m′γ ,W

′
γ))

]

·δ(Wγ − [W ′γ +
T

τx
f(W ′γ ,m

′
γ)]), (A4)
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where νµ depends on the single neuron model and

where Aµν = δµν
Nµ

νµ(m′γ ,W
′
γ)(1/T−νν(m′γ ,W

′
γ) .

We finally get the equations for the moments:

T∂t〈mµ〉 = (νµ − 〈mµ〉) +
1

2
∂λ∂ηcλη

T∂t〈cµν〉 = δµνA
−1
µµ + (νµ − 〈mµ〉)(νν − 〈mν〉)

+∂λνµcνµ + ∂λννcνλ − 2cµν

∂t〈Wµ〉 = −〈Wµ〉
τw

+ b〈mµ〉

where, once again, only the first order for the equation
of W are considered, since we suppose its dynamics not
to be fluctuation driven. Here we stress that the activity
variables dynamics are a function of the adaptation level.
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