
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

159 | P a g e

www.ijacsa.thesai.org

A Parallel Genetic Algorithm for Maximum Flow

Problem

Ola M. Surakhi

Computer Science Department

University of Jordan

Amman-Jordan

Mohammad Qatawneh

Computer Science Department

University of Jordan

Amman-Jordan

Hussein A. al Ofeishat

Computer Science Department

Al-Balqa applied university Jordan

Amman-Jordan

Abstract—The maximum flow problem is a type of network

optimization problem in the flow graph theory. Many important

applications used the maximum flow problem and thus it has

been studied by many researchers using different methods. Ford

Fulkerson algorithm is the most popular algorithm that used to

solve the maximum flow problem, but its complexity is high. In

this paper, a parallel Genetic algorithm is applied to find a

maximum flow in a weighted directed graph, by finding the

objective function value for each augmenting path from the

source to the sink simultaneously in the parallel steps in every

iteration. The algorithm is implemented using Message Passing

Interface (MPI) library, and results are conducted from a real

distributed system IMAN1 supercomputer and were compared

with a sequential version of Genetic-Maxflow. The simulation

results show this parallel algorithm speedup the running time by

achieving up to 50% parallel efficiency.

Keywords—Flow network; Ford Fulkerson algorithm; Genetic

algorithm; Max Flow problem; MPI; multithread; supercomputer

I. INTRODUCTION

A flow network is a directed graph where each edge has a
capacity and receives a flow. The amount of flow on an edge
cannot exceed the capacity of the edge, and it must satisfy the
restriction that the amount of flow into a node equals the
amount of flow out of it, except when it is a source, which has
more outgoing flow, or sink, which has more incoming flow
[1]. The flow networks can represent many real-life situations
like fluids in pipes for city water distribution, traffic in roads
and more.

The maximum flow problem is one of the several well-
known basic problems for combinatorial optimization in
weighted directed graphs [2]. It involves finding a feasible
flow from the source to the sink in a maximum flow network.
The Ford-Fulkerson algorithm is the most widely used
algorithm for solving maximum flow problem. The main idea
of the algorithm is to find a path through the graph from the
source (start node) to the sink (end node), in order to send a
flow through this path without exceeding its capacity. Then
we find another path, and so on. A path with available
capacity is called an augmenting path [3], [4]. The time
complexity of the Ford-Fulkerson algorithm is high.
Therefore, a variety of researches have been applied to solve
maximum flow problem using different methods and
techniques [5].

In this paper, Genetic algorithm is applied in parallel to
accelerate the process of finding the maximum flow problem

and increasing the availability of high computer performance.
Two conditions must be satisfied on the maximum flow
problem: 1) The flow at each edge must not exceeds its
capacity. 2) At each vertex, the incoming flow must be equal
to the outgoing flow. The algorithm is implemented using MPI
which is a standard library for message passing that can be
used to develop portable parallel programs using C, C++ or
FORTRAN [6], [7]. The evaluation is done in terms of the
speed and parallel efficiency according to different network
data size and different number of processors. The results were
conducted using IMAN1 supercomputer which is Jordan’s
first and fastest supercomputer. It is available for the use of
academia and industry in the region of Jordan. It provides
multiple resources and clusters to run and test High
Performance Computing (HPC) codes [7], [8].

The rest of this paper is organized as: Section 2 presents
some related works to the maximum flow problem. Section 3
reviews the maximum flow problem. Section 4 introduces the
sequential and parallel Genetic algorithm, and Section 5
presents the conclusion and future works.

II. RELATED WORKS

The maximum flow problem has been studied by many
researchers because of its importance for many areas of
applications, such as communication networks, Airline
scheduling, computer sciences, electrical powers, tracks and
more. Ford Fulkerson proposed the first pseudo code for
solving maximum flow problem by finding the augmenting
path [3], [4]. Other methods translate the maximum flow
problem into maximal flow problem in layered network [9].
[10] introduced the push and re-label method which maintains
a pre-flow and updates it through-push operations. The re-
label operation perform the fine-grain updates of the vertex
distances. Orlin [11] presents improved polynomial time
algorithms for the max flow problem defined on a network
with n nodes and m arcs, and shows how to solve the max
flow problem in O(nm) time, improving upon the best
previous algorithm due to [12] who solved the max flow
problem in O(nm logm/(n log n) n) time. Genetic algorithm
was also applied to solve max flow optimization problems.
[2], each solution is represented by a flow matrix. The fitness
function is defined to reflect two characteristics: balancing
vertices and the saturation rate of the flow. Starting with a
population of randomized solutions, better and better solutions
are sought through the genetic algorithm. Optimal or near
optimal solutions are determined with a reasonable number of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

160 | P a g e

www.ijacsa.thesai.org

iterations compared to other previous GA applications. In
[13], the CRO algorithm was implemented to solve the
maximum flow problem. The proposed algorithm showed a
better performance with a complexity of O(I E2), for I
iterations and E edges.

III. MAXIMUM FLOW PROBLEM

The flow network is a directed graph with two
distinguished nodes; source and sink. Each edge between two
nodes has a non-negative capacity and receives a flow where
amount of flow on an edge cannot exceed its capacity as
shown in Fig. 1.

Fig. 1. An example of flow network [1].

For a directed graph G = (V, E), with source node S and a
sink node T, and every edge e = (u,v) ∈ E has a non-negative,
real-valued capacity c(u,v). The flow of the network is an
integer valued function f that must satisfy following three
properties for all nodes u and v:

1) Capacity constraints: f(u,v) ≤ c(u,v). The flow on

each edge cannot exceed its capacity.

2) Skew symmetry: f(u,v) = −f(v,u). The flow from u to

v must be the opposite of the net flow from v to u and f(u,u)

=0.

3) Flow conservation: f(s, v) = 0,

 vV

4) the flow into a vertex must also flow out except for

5) the source, that “produces” flow, and the sink, which

“consumes” flow.
The incoming flow to the node is equal to the outgoing

flow from the node and thus the flow is conserved. Also, the
total amount of flow going from source s equals total amount
of flow into the sink t. the value of the flow is given by (1):

VvVv

tvfvsff),(),(||

 (1)

The maximum flow problem involves finding a flow from
the source to the sink that is maximum to route as much flow
as possible from s to t in the network.

IV. SEQUENTIAL AND PARALLEL GENETIC ALGORITHM FOR

MAXIMUM FLOW PROBLEM

A. An overview of Genetic Algorithm

Genetic algorithm (GA) is a search based optimization
algorithm inspired by the principle of genetics and natural
selection. It begins with a population of possible solution to
some problem which can be represented as a set of binary bit

strings. Each individual in the population is assigned a fitness
value based on its objective function value of the problem.
The GA modified the population by applying the three main
operations of it; reproduce, crossover and mutate to produce
new children similar to natural genetic operators.

1) Reproduction selects the best individual string from

the population and discards the bad ones according to the

fitness value. The best individuals are those having more

chances to survive in the next generation.

2) Crossover includes two steps. First, select randomly

two bit strings to be the parents of the new bit strings.
Second, choose a place (crossover site) in the bit string and

exchanges all characters of the parents after that point. The
process tries to artificially mix the genetic of the parents and
reproduce the mating process.

3) Mutation changes the genes of the individual parents

for the bits that didn’t changed by the previous operations due

to its absence from the generation, a 0 to 1 and vise versa.
The genetic algorithm repeats these three operations until

reaching the termination condition.

The pseudo code of GA is shown in Fig. 2.

B. Sequential GA for maximum flow problem

The GA has been applied to solve maximum flow
optimization problems [2]. In [2], a flow matrix is used to
represent each solution. The fitness function is defined to
reflect two characteristics: 1) balancing vertices; and 2) the
saturation rate of the flow.

Fig. 2. Generic pseudocode of a genetic algorithm [14].

Starting with a population of randomized solutions, the
GA is applied for a reasonable number of iteration till
reaching the optimal or near optimal solutions.

In this paper, a sequential implementation for GA is
applied to find maximum flow problem with a different
network size. The algorithm is implemented using Intel core
I7-3632QM CPU2.20GHz, 8GB of RAM and windows 7 64
bits. The application programs were written in C language and
executed on Net-Beans IDE 8.1. As mentioned before, the
GA has three main operations; Reproduction (or Selection),
Crossover and Mutation. The details of the implementation are
discussed here.

For a graph, G with n vertices and m edges: G is
represented by the flow capacity matrix, C = [cij], i, j = 1, n.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

161 | P a g e

www.ijacsa.thesai.org

Each solution is represented by a flow matrix F = [fij], i, j = 1,
n. The initial flow was generated randomly.

Selection step: There are different steps for selection.
Through our approach, the probability to select some
individual depends on its fitness value. We select half of all
the individuals after calculating its fitness, then it will be
ranked based on the fitness value, and from 0 to N/2 of the
individuals will be selected.

Cross Over step: There are many ways to do crossover.
Through our solution we make a cross over between selected
population. We divide the population into two halves: F1 and
F2. The crossover is done between the first half of F1 and the
second half of F2 to produce S1, and crossover between first
half of F2 with second half of F1 to produce S2, from this
cross over new population was generated.

Mutation Step: A new population with full of individuals
created after selection and crossover steps.

Some of them are directly copied, while others are
produced by crossover. All the individuals should not be
exactly the same. In order to ensure that a loop through all the
alleles of all the individuals, and if that allele is selected for
mutation, we can either change it by a small amount or replace
it with a new value. The probability of mutation is usually
between 1 and 2 tenths of a percent.

These steps will be repeated until reaching to maxflow
value for selected generation. There fitness function used here
is same as an objective function which is used to calculate
Maxflow from source node to sink each iteration. These
different steps will be repeated to select new population with
new values for Maxflow from source to sink node.

The initialization step is important, through this step,
different values must be defined and specified, like number of
iteration, population size and mutation ratio. Number of
iterations are important to achieve enhancement of solution at
each iteration as GA is heuristic. Our experiment use different
population size. The initial network size was 5000. The
experiment was repeated by increasing the number of nodes,
and stopped when it equals to 15,200 nodes as it consumes
memory efficiency and space. The time needed to find max
flow value is in seconds and shown in Table 1.

For the sequential implementation, the complexity depends
on the population size and number of generations. And it can
be defined as O(npg) where p is the population size and g is
the number of generations.

C. Parallel GA for maximum flow problem

Finding the maximum flow value in a network graph can
be done by running two main steps: 1) as long as there is a
flow path from the source to the sink with a capacity c less
than its flow value f, find this path; 2) change the flow
accordingly. If no augmenting path exists, then we get the
maximum flow. For a large network size with large number of
nodes and arcs, dividing the graph into subgraph will enhance
the running time needed to find the maximum flow value. In
this case, the graph will be divided to a number of sub graph
with a source and sink nodes for each one, every subgraph
then, can be implemented in one processor to find its

maximum flow value. The number of subgraphs will be equal
to the number processors and the degree of concurrency will
equal to the number of augmenting paths divided by number
of processors as follows:

TABLE. I. TIME NEEDED FOR SEQUENTIAL GA TO FIND MAXFLOW

VALUE WITH DIFFERENT NUMBER OF NODES

No. of nodes Time/second

1000 0

2000 1

3000 1

4000 2

5000 3

6000 4

6300 4

7000 6

7700 7

8000 8

8300 9

8602 9

9000 10

10000 12

10400 14

11000 14

11400 15

11600 17

11800 21

12000 23

12200 29

12400 35

12800 39

13000 40

13400 50

14000 94

14200 147

14600 261

14800 343

15000 417

15200 480

Parallelism = total number of augmenting path/number of
processors (2)

The implementation was done on Message Passing
Interface (MPI) library, and results are conducted from a real
distributed system IMAN1 supercomputer. The first
implementation was done with one processor and then with
two processors which reduced the time to half compared with
the sequential time needed to solve maxflow problem as

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

162 | P a g e

www.ijacsa.thesai.org

shown in Fig. 3, then the number of processors were increased
to 4, 8, 12, 16, 24 and 32, respectively. The initial network
size 5000 and is increased repeatedly to reach 35,000 nodes.
The implementation results are shown in Table 2.

The results show that using up to 4 processors in parallel
can achieve a better result with a large network size, as the C
language can measure the time with seconds only, we could
not catch the enhancement in the running time when the
number of nodes equals 5000 to 9000, the implementation
gave an equal running time for 2 and 4 processors which could
be less than the measured one if the estimated time was in
millisecond. As the network size increased the running time
reduced one or two seconds, a comparison between the
running time for parallel maxflow-Genetic with 2 and 4
processors can be shown in Fig. 4.

TABLE. II. THE IMPLEMENTATION RESULTS FOR RUNNING MAXFLOW-
GENETIC ON 1, 2, 4, 8, 12, 16, 24 AND 32

No of

nodes

Time
with

1-P

Time
with

2-P

Time
with

4-P

Time
with

8-P

Time
with

12-P

Time
with

16-P

Time
with

24-P

Time
with

32-P

5,000 3 2 2 2 4 4 4 4

6,000 4 3 2 3 3 4 4 5

7,000 5 4 4 5 5 5 6 7

8,000 8 5 5 6 7 8 10 10

9,000 10 6 6 6 7 8 10 10

10,000 12 8 7 8 8 8 11 11

11,000 15 10 8 10 10 13 13 14

12,000 18 12 9 12 15 16 16 18

13,000 21 13 11 13 15 17 18 19

14,000 23 15 12 16 16 17 20 20

15,000 27 17 14 17 18 18 18 22

20,000 48 31 40 31 31 37 38 39

25,000 74 49 48 49 49 57 59 59

30,000 107 70 69 70 70 73 73 85

35,000 146 93 93 94 94 97 97 101

Using two-processors enhanced the efficiency of the
system by reducing the running time to half as shown in

Fig. 3.

Fig. 3. Running time for parallel maxflow-Genetic with 1 and 2 processors.

Fig. 4. Running time for parallel maxflow-Genetic with 2 and 4 processors.

Another important result could be noticed from Table 2. It
shows that using more processors in parallel to solve
maximum flow problem using GA could not give a better
enhancement. It shows that using more processors in parallel
to solve maximum flow problem using GA could not give a
better enhancement. The speed up for this implementation is
given in the following equation:

Speedup = sequential processing time/ parallel processing

time (2)
Using (2) to find the speedup when using 2 and 4

processors give a result of 2. Fig. 5 shows the average speed
up when using 1, 2, 4, 8, 12, 16, 24 and 32 processors.

Fig. 5. Average speed up using 1, 2, 4, 8, 12, 16, 24 and 32 processors for

parallel Maxflow-Genetic.

For 8, 12, 16, 24 and 32 processors, the running time
increased by one second as the network size increased, which
is close to the running time when using 4 processors. That’s
because of the communication between the processors to send
and receive data. As the network size increase and the number
of processors increase, the communication between the
processors increased, which take more time than the time
needed for execution. The running time for parallel maxflow-
Genetic using 8, 12, 16, 24 and 32 processors are shown in
Fig. 6.

0

50

100

150

200

0 10,000 20,000 30,000 40,000

Ti
m

e

No. of nodes

sequential 2-processors

0

20

40

60

80

100

0 10,000 20,000 30,000 40,000

Ti
m

e

No. of nodes

2-processors 4-processors

0
5

10
15
20
25
30
35
40
45

Time
with
1-P

Time
with
2-P

Time
with
4-P

Time
with
8-P

Time
with
12-P

Time
with
16-P

Time
with
24-P

Time
with
32-P

A
ve

ra
ge

 t
im

e

No. of processors

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

163 | P a g e

www.ijacsa.thesai.org

Fig. 6. Running time for parallel maxflow-Genetic with 8, 12, 16, 24 and 32

processors.

D. Parallel GA for maxflow problem in multi core processor

The parallel maxflow-Genetic has been applied on a multi
core processors. That idea is similar to the parallel
implementation on the distributed system, but in this case, the
graph is divided over different number of threads, each of
these threads work on separated core of CPU cores. Each
subgraph has a set of augmenting paths, so each thread will
calculate maximum flow value for its own nodes. The
experiment was done with 2 threads, 4 and 6 threads
respectively with a network size started initially with 5000
nodes and repeated 9 times till the number of nodes reached
12,000 with increasing by 1000 each time. The
implementation was done using C programming language, on
Intel Core I7-3632 QM CPU@2.20 GH with 8 GB internal
memory.

The results show a better enhancement in the running time
when compared with the time needed to find maxflow value
with a sequential version of the maxflow-Genetic. The results
are shown in Table 3 and Fig. 7.

TABLE. III. RUNNING TIME FOR MAXFLOW-GENETIC WITH 2, 4 AND 6

THREADS

No. of nodes SEQ 2TH 4TH 6TH

5000 5 3 2 2

6000 6 3 3 3

7000 8 4 3 3

8000 9 5 4 4

9000 11 8 6 6

10000 13 9 7 7

11000 18 12 9 9

11500 23 16 16 12

12000 38 21 16 14

Fig. 7. Running time for maxflow-Genetic with 2, 4 and 6 threads.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, a parallel genetic algorithm has been
implemented to solve maxflow problem. The implementation
was done using open MPI library on IMAN1 supercomputer.
The evaluation of the algorithm includes a different network
size which starts from 5000 to 14,000 nodes. The results are
compared with the sequential version of the algorithm and
show a good enhancement in terms of the running time and
system performance. Another implementation was done on a
multi-core processor by dividing the graph into a set of
subgraphs where each sub graph runs on its own thread. The
results show a better enhancement in the running time when
compared with the time needed to find maxflow value with a
sequential version of the maxflow-Genetic.

As a future work, another heuristic, meta-heuristic or
evolutionary algorithm could be used to find the maximum
flow problem, like Chemical Reaction Optimization
algorithm. The parallel implementation of the algorithm could
be compared with the proposed one, and the results will be
compared in terms of accuracy and performance.

REFERENCES

[1] Zhipeng Jiang, Xiaodong Hu, and Suixiang Gao, “A Parallel Ford-
Fulkerson Algorithm For Maximum Flow Problem’.

[2] Munakata, T. and Hashier, D.J. “A genetic algorithm applied to the
maximum flow problem”, Proc. 5thInt. Conf. Genetic Algorithms, 1993,
pp. 488-493.

[3] Ford jr., L.R., Fulkerson, D.R., “Maximal flow through a network”. Can.
J. Math. 8(3), 1956, pp. 399-404.

[4] L.R. Ford, Jr. and D.R. Fulkerson, Flows in Networks, Princeton, NJ:
Princeton University Press, 1962.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
Algorithms, 3rd ed., The MIT Press, 2009.

[6] http://www.iman1.jo/iman1/, Accessed on (2014) July 10.

[7] M. Jeon and D. Kim, “Load-Balanced Parallel Merge Sort on
Distributed Memory Parallel Computers”, Proceedings of the IEEE
International Parallel and Distributed Processing Symposium, IPDPS.02,
(2002).

0 20 40 60 80 100 120

5,000

8,000

11,000

14,000

25,000

Time

N
o

. o
f

n
o

d
es

32-processors 24-processors 16-processors

12-processors 8-Processors

0

5

10

15

20

25

30

35

40

0 5000 10000 15000

Ti
m

e

No. og nodes

SEQ 2TH 4TH 6TH

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

164 | P a g e

www.ijacsa.thesai.org

[8] M. Saadeh, H. Saadeh, M. Qatawneh, “Performance Evaluation of
Parallel Sorting Algorithms on IMAN1 Supercomputer” , International
Journal of Advanced Science and Technology Vol.95 (2016), pp.57-72.

[9] Dinic, E.A., “Algorithm for solution of a problem of maximum flow in
networks with power estimation”. Sov. Math. Doklady. 11(8), 1970,
pp. 1277-1280.

[10] R.K. Ahuja, T. L. Magnanti, and J. B. Orlin., Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, 1993.

[11] V. King, S. Rao, and R. Tarjan, “A faster deterministic maximum flow
algorithm”, In Proceedings of the 8th Annual ACM–SIAM Symposium
on Discrete Algorithms, 1992, pp. 157–164.

[12] J.A. McHugh, Algorithmic Graph Theory, Englewood Cliffs, NJ:
Prentice-Hall 1990, Chapter 6.

[13] R.Barham, A.Sharieh, A.Sliet. “Chemical Reaction Optimization for
Max Flow Problem”, (IJACSA) International Journal of Advanced
Computer Science and Applications, Vol. 7, No. 8, 2016.

[14] MahmoodA.Rashid,M.A.HakimNewton,Md.TamjidulHoque,
AbdulSattar, “Mixing Energy Models in Genetic Algorithms for On-
Lattice Protein Structure Prediction”, Hindawi Publishing Corporation
Bio Med Research International, Volume 2013,Article ID
924137,15 pages.

