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Abstract: Cottonseed is an important source of protein, oil, and minerals for human health and
livestock feed. Therefore, understanding the physiological and genetic traits influencing the nutrient
content is critical. To our knowledge, there is no information available on the effects of leaf shape—
curly leaf (CRL)—on cottonseed protein, oil, and minerals. Therefore, the objective of the current
research was to investigate the effect of the curly leaf trait on cottonseed protein, oil, and minerals in
cotton lines differing in leaf shape. Our hypothesis was that since leaf shape is known to be associated
with nutrient uptake, assimilation, and photosynthesis process, leaf shape can influence seed protein,
oil, and minerals. A two-year field experiment using two curly leaf lines (Uzbek CRL and DP 5690
CRL) and one normal leaf (DP 5690 wild type) line was conducted in 2014 and 2015 in Stoneville, MS,
USA. The experiment was a randomized complete block design with three replicates. The results
showed that both Uzbek CRL and DP 5690 wild type lines had higher seed oil, and nutrients N,
P, K, and Mg than DP 5690 CRL. Calcium was higher in DP 5690 CRL for two years and protein
was only higher than the parents in 2015. Consistent significant positive and negative correlations
between some nutrients were observed, which may be due to environmental conditions, especially
heat. This indicates that curly leaf trait may partially regulate the accumulation of these nutrients in
seeds. The results demonstrated that leaf shape trait—curly leaf—can affect cottonseed nutritional
qualities. This research is important to breeders for cotton selection for high seed oil or protein,
and to other researchers to further understand the genetic impact of leaf shapes on seed nutritional
quality. It is also important for scientists to use leaf shape as a tool for physiological, biochemical,
and morphological research related to leaf development.
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1. Introduction

Cottonseed is among the major sources of nutrients for human nutrition and livestock
feed. Cottonseed contains protein, oil, carbon (C), nitrogen (N), sulfur (S), and miner-
als, including phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) [1–4].
Therefore, understanding morphological, physiological, and genetic traits contributing
to high level of these nutrients to maintain high quality cottonseed is essential. In the
current research, a leaf shape trait was used to investigate its effects on cottonseed pro-
tein, oil, and minerals in near-isogenic lines differing in leaf shape (curly leaf). Previous
research reported that the curly leaf gene(s) is involved in the cell elongation and division
during leaf morphogenesis. For example, the authors of [5–7] studied the development
of leaf cells of wild type Arabidopsis thaliana and of the curly leaf mutant. The curly leaf
mutant Arabidopsis thaliana was characterized and it was found that it had normal roots,
hypocotyls, and cotyledons, reduced dimensions of leaves and the stems, and a decrease
in cell elongation and cell number [5]. In addition, it was reported that the period of leaf
development was similar to both the mutant and wild type, but the rate of cell elongation
and cell division were lower in the curly leaf mutant. Morphological studies showed that
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multicellular organisms’ morphologies are regulated by mechanisms that control shapes,
sizes, and numbers of cells [5], and the rates of cell division and elongation are known
to contribute to the final shape of the leaf [8]. However, the pattern of leaf blade growth
and morphology are quite complex [9,10]. Kim et al. [5] found that the two-dimensional
growth of the leaf blade was genetically controlled by regulation of the polar elongation
of cells, supporting previous research by others [11]. Kim et al. [5] reported that the curly
leaf gene in Arabidopsis thaliana is required for stable repression of the floral homeotic
gene, AGAMOUS, in leaves and stems, and the curly leaf phenotype could be due to the
result of misexpression of AG. Recent studies also suggest that the wild type curly leaf
gene is required to repress transcription of the AG gene in leaves, inflorescence stems and
flowers [7,12].

It was reported that leaf shape alleles in cotton serve as a model for leaf development
research and production benefits [13]. They found that leaf shape had consistent effects
on boll rot resistance, earliness, flowering rate, chemical spray penetration, lint, and yield.
However, research on the effects of leaf shape on various insect resistances, photosynthetic
rate, water use efficiency, and cotton fiber quality were not consistent. This was due
to canopy closure and light harvesting, affecting the photosynthesis process [13], and
consequently nutrient uptake, assimilation and organic compound synthesis such as protein
oil, and various nutrients in leaves, seeds, and fiber.

Understanding the molecular processes controlling leaf shape phenotypic changes
may help advance our efforts in developing cotton cultivars with ideal leaf shapes, en-
hancing sustainability, profitability, and production [13]. Morphological, physiological,
molecular, and genetic research was conducted to understand the effect of leaf shape on
cell division and elongation, leaf development, and cottonseed and fiber production and
quality. For example, it was reported that major leaf shapes of Upland cotton are a multiple
allelic of a single incomplete dominant genetic locus L-D1 on chromosome 15-D1 (Chr15).
Major leaf shape genes were mapped in cotton and gene expression changes, resulting in
leaf shape phenotypic diversity. Additionally, it was found that, using cultivars of normal
leaves or broad leaves (NL), subokra/Sea-Island (subOL), Okra (OL), and Superokra (su-
perOL), leaf shapes affected cotton disease and insect resistance, as well as yield production
and fiber quality. It was found that okra leaf cultivars had lower yields rot by 7–11% due to
boll compared to normal leaves when boll rot level was low to moderate severity [14,15],
and 43–45% when boll rot was severe [16]. In addition, superokra leaf cultivars showed
further reduction under disease infection, resulting a reduction in boll rot by 55% than
normal leaf cultivars under severe conditions [17]. It was explained that the reduction in
boll rot was due to microclimatic differences that led to canopy closure/openness, allowing
for greater air circulation and light penetration. These conditions provide less favorable
environment for microbial growth and activities [17]. Additionally, it was found that
Okra leaf cultivars were earlier genotypes (earlier to flowering and maturity) than normal
leaves cultivars [14,18]. The four-leaf shapes are well-established as alleles at a single locus
called L or L-D1. The earlier maturity (increase in flowering rate and decrease in time to
maturity) was due to the fact that okraleaf cultivars and superokra leaf cultivars had less
photosynthate for development of new leaves and maintenance of existing leaves, and
contribute more assimilate to reproductive development earlier [19]. In addition, these
cultivars initiate more bolls than they can support, leading to higher rates of abortion [19].
Using near-isogenic lines showed that okra leaf cultivars had less damage from the pink
bollworm (PBW) Pectinophora gossypiella [20,21]. Again, the reduction in this infection was
partially due to earliness of okra leaf cultivars [20]. In another study using leaf shape NILs,
it was shown that only three genetic backgrounds out of seven had a reduction in PBW
damage by okra leaf genotypes [22]. Another study showed that Stoneville 7A-Okra was
50% damage from PBW than its NIL [20,22] due to decreased boll penetration by PBW
larvae, and Stoneville 7A-Okra leaf genotypes had increased thickness of the carpel (boll)
walls in some genetic backgrounds [22].
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Liu et al. [23] reported that curly leaf gene, a histone methyltransferase of Polycomb
Repressive Complex 2 (PRC2) for trimethylation of histone H3 Lys 27 (H3K27me3), is
thought to be a repressive regulator controlling mainly postgermination growth in Ara-
bidopsis thaliana, and about 14 to 29% of genetic regions are represented by H3K27me3 in the
Arabidopsis genome. However, transcriptional repression activities of PRC2 is still not un-
derstood. Using transcriptome profile analysis, they showed that about 11.6% genes in the
Arabidopsis genome were repressed by curly leaf in some plant organs. They also showed
that about 54% of these genes were repressed in siliques, suggesting the involvement of
H3K27me3 in embryonic development. For example, plants of curly leaf 28 produced
bigger sized and higher weight seeds with higher oil contents, larger oil bodies, and
altered long-chain fatty acid compositions compared with wild type. This shows that
curly leaf silences specific gene expression modules and genes involved in these modules,
contributing to the regulation of specific physiological function during embryo devel-
opment. Katz et al. [24] showed that the Arabidopsis FERTILIZATION-INDEPENDENT
ENDOSPERM (FIE) polycomb group protein regulated the development of endosperm
and embryo and repressed the flowering during embryo and seedling development. They
found that low level of FIE resulted in significant alteration of plant morphology, including
loss of apical dominance, curled leaves, early flowering and homeotic conversion of leaves,
flower organs, and ovules into carpel-like structures. They reported that these morpho-
logical changes were similar to those exhibited by the overexpressing AGAMOUS. They
concluded that FIE is essential for the control of shoot and leaf development [24]. Therefore,
these morphology changes could be due to the differential expression of alleles of the same
genes in a parent-of-origin-specific manner [25]. They also reported that high-throughput
sequencing analyses showed that more than 200 loci were imprinted in Arabidopsis, and
most imprinted loci were characterized as maternally expressed genes (MEGs); PHERES1
(PHE1) and ADMETOS (ADM) are paternally expressed imprinted genes (PEGs). Genomic
imprinting is the parent-of-origin-dependent differential allelic expression of a single gene.
Jeong et al. [25] reported that a gene encoding an E3 ligase (UPWARD CURLY LEAF1
(UCL1)) that degrades the CURLY LEAF (CRL) polycomb protein is a PEG. They found that
after fertilization, paternally inherited UCL1 was expressed in the endosperm, but not in
the embryo, and polycomb repressive complex 2 (PRC2) silences the maternal UCL1 allele
in the central cell prior to fertilization and in the endosperm after fertilization. The UCL1
imprinting pattern was not affected in paternal PRC2 mutants. They also found that the
maternal UCL1 allele is reactivated in the endosperm of Arabidopsis lines with mutations
in cytosine DNA METHYLTRANSFERASE 1 (MET1) or the DNA glycosylase DEMETER
(DME), which antagonistically regulate CpG methylation of DNA. On the other hand,
maternal UCL1 silencing was not altered in mutants with defects in non-CpG methylation.
They concluded that silencing of the maternal UCL1 allele was regulated by both MET1
and DME.

Mineral nutrition in plants is essential for plant growth, development, production,
and seed quality. Deficiencies in minerals at any plant stages result in yield loss and
poor seed quality. Physiological and biochemical roles of macronutrients such as S, Ca,
K, Mg, and P, or micronutrients such as Fe, B, and Zn have been previously reported
for plants [26,27]. For example, the roles of K+ [28] and Ca2+, Cl−, and Na+ [29,30] in
osmotic pressure and regulation of stomatal opening [28] and cell membrane integrity and
function [31] have previously been shown. The role of K in protein synthesis, glycolytic
enzymes, photosynthesis, cell expansion and turgor, carbohydrate movement, stomatal
regulation, osmoregulation, energy status, charge balance, homeostasis [27,32], and tran-
spiration [33] were also explained. Phosphorus involvement in several physiological and
biochemical processes such as nucleic acids, phospholipids, phosphoproteins, energy stor-
age and transfer, photosynthesis, and enzyme regulation were reported by others [27,34]. P
has roles in stomatal conductance [35], photosynthesis [36], cell membrane stability, water
relations [37], solute movement, stomatal function, signaling systems [38], osmoregula-
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tion [28], and Ca2+ ATPases to restore and maintain homeostasis by pumping Ca++ out of
the cytosol to terminate a signaling event [39].

The objective of the current study is to investigate the effects of leaf shape (curly leaf
trait) on cottonseed protein, oil, C, N, S, and minerals (macronutrients) using near-isogenic
lines differing in leaf shape. Our hypothesis was that leaf shape will influence cottonseed
nutrients as leaf shape is known to be associated with nutrient uptake, assimilation, and
the photosynthesis process.

2. Results and Discussion

An ANOVA showed that line and year were significant for protein, oil, N, S, and
minerals (P, K, Mg, and Ca) (Table 1). Year × line interactions were significant for protein,
oil, Mg, K, and N, but not for Ca, P, S, and C, indicating that the rankings differ in each year
for protein, oil, Mg, K, and N, but not Ca, P, S, and C. In 2014, mean values of nutrients
showed that Uzbek CRL and DP 5690 wild type had higher seed oil, N, P, K, and Mg than
DP 5690 CRL, but protein content in DP 5690 CRL was higher in 2015 only or high as in
DP 5690 wild type in 2014, although Uzbek CRL was higher than both lines (Table 2). In
2015, protein in the DP 5690 CRL was higher than both Uzbek CRL and DP 5690 wild type,
but oil was higher in Uzbek CRL and DP 5690 wild type than the DP 5690 CRL line. The
contents of N, C, and other minerals were higher in Uzbek CRL and DP 5690 wild type
than DP 5690 CRL, similar responses as in 2014 (Tables 2 and 3).

Table 1. Analysis of variance (F and P values) for the effect of leaf shape trait (curly leaf) on cottonseed protein and oil
(g/kg); calcium (Ca), magnesium (Mg), potassium (K), phosphorus (P), sulfur (S) (mg/g); carbon (C), and nitrogen (N) (%).
The experiment was conducted in 2014 and 2015 in Stoneville, MS, USA.

Protein Oil Calcium Magnesium Potassium

Effect DF F Value P Level F Value P Level F Value P Level F Value P Level F Value P Level

Year 1 3.76 * 71.53 *** 7.05 * 80.82 *** 30.41 ***
Line 2 3.77 * 74.88 *** 41.99 *** 18.69 *** 120 ***

Year*Line 2 4.99 * 5.36 * 0.41 ns 17.32 *** 4 *
Residuals 61.27 76.68 0.006 0.071 0.81

Phosphorus Sulfur Carbon Nitrogen

Effect DF F Value P Level F Value P Level F Value P Level F Value P Level

Year 1 5.02 * 17.95 ** 13.08 *** 46.27 ***
Line 2 34.58 *** 69.97 *** 121.82 *** 39.18 ***

Year*Line 2 0.6 ns 0.15 ns 2.75 ns 4.55 ***
Residuals 0.71 0.033 0.281 0.039

* Significance at p≤ 0.05; ** significance at p ≤ 0.01; *** significance at p ≤ 0.001; ns = not significant.

Table 2. Effects of leaf shape trait (curly leaf; CRL) on cottonseed protein and oil (g/kg); calcium (Ca), magnesium (Mg),
potassium (K), phosphorus (P), sulfur (S) (mg/g); carbon (C), and nitrogen (N) (%). The experiment was conducted in 2014.

Line Protein Oil Ca K Mg P S N C

Uzbek CRL 273 299 1.51 21.17 7.07 11.23 4.27 5.83 59.07
DP 5690 wild type 267 291 1.33 18.93 7.13 10.67 4.14 4.95 58.97

DP 5690 CRL 268 251 1.76 12.30 5.50 7.03 3.17 4.67 55.27
LSD 4.5 4.49 0.59 0.71 0.34 0.79 0.10 0.085 0.33

LSD = Least Significant Difference test, significant at the 5% level. Within each column, the difference between two values is statistically
significant if it equals or exceeds the corresponding LSD.
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Table 3. Effects of leaf shape trait (curly leaf; CRL) on cottonseed protein and oil (g/kg); calcium (Ca), magnesium (Mg),
potassium (K), phosphorus (P), sulfur (S) (mg/g); carbon (C), and nitrogen (N) (%). The experiment was conducted in 2015.

Line Protein Oil Ca K Mg P S N C

Uzbek CRL 271 345 1.3 17.17 3.96 11.23 4.27 4.87 58.50
DP 5690 wild type 268 327 1.2 17.10 3.97 10.67 4.60 4.68 58.04

DP 5690 CRL 292 273 1.6 11.10 3.20 7.03 3.63 4.02 53.55
LSD 4.66 5.7 0.059 0.22 0.097 0.14 0.13 0.14 0.29

LSD = Least significant difference test, significant at the 5% level. Within each column, the difference between two values is statistically
significant if it equals or exceeds the corresponding LSD.

In 2014, the correlation showed that there were negative significant correlations
between Ca and oil; K and Ca; P and Ca; S and Ca; C and Ca (Table 4). A positive
significant correlation was shown between K and oil; Mg and oil; oil and P; oil and S;
oil and C; oil and N. Potassium showed positive correlations with Mg, P, S, C, and N.
Additionally, positive correlations were shown between Mg and S and between Mg and C;
between P and S, between P and C, and between P and N; between S and C, between S and
N; between C and N.

Table 4. Pearson correlation coefficients (P and R values) between seed nutrients in the near-isogenic
lines (Uzbek curly leaf, DP 5690 wild type, and DP 5690 curly leaf) cotton in 2014. The experiment
was conducted in Stoneville, MS, USA.

Protein Oil Ca K Mg P S C

Oil ns
Ca ns −0.629

*

K ns 0.903
***

−0.663
*

Mg ns 0.827
** ns 0.773

**

P ns 0.778
*

−0.738
*

0.880
** ns

S ns 0.907
***

−0.785
*

0.876
**

0.857
**

0.783
**

C ns 0.948
***

−0.686
*

0.951
***

0.853
**

0.779
**

0.921
***

N ns 0.733
* ns 0.809

** ns 0.671
*

0.669
*

0.742
*

* Significance at p ≤ 0.05; ** significance at p ≤ 0.01; *** significance at p ≤ 0.001; ns = not significant.

In 2015, a negative correlation was shown between protein and oil; between protein
and K, P, S, C, and N (Table 5). A negative correlation was also found between oil and Ca;
between Ca and K, P, S, C, N. A positive correlation was recorded between K and P, S, C,
and N; between P and S, C, and N; between S and C, and N; between C and N.

Since there is no literature available on the effects of curly leaf trait on seed protein,
oil, and minerals in cotton, we reported related topics to our research in this discussion.
The significant effects of line and year indicated that both of these factors are important for
nutrient contents. The significant interaction effects (line × year) for some nutrients such
as protein, oil, Mg, K, and N may reflect that growth conditions were different in each year
due to temperature or drought. Since the experiment was irrigated, the effect of drought
could be minimally compared with temperature. The significant effects of year × line
indicated that the nutrients had different ranking, may be due mainly to temperature
changes in each year. For example, in 2014, the maximum temperatures were 31.39, 31.15,
and 32.49, and 31.28 ◦C, respectively, in June, July, August, and September; in 2015 the
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maximum temperatures were 32.63, 34.10, 33.35, and 33.0 ◦C, respectively, in June, July,
August, and September (Figure 1) [40].

Table 5. Pearson correlation coefficients (P and R values) between seed nutrients in the near-isogenic
lines (Uzbek curly leaf, DP 5690 wild type, and DP 5690 curly leaf) cotton in 2015. The experiment
was conducted in Stoneville, MS, USA.

Protein Oil Ca K Mg P S C

Oil −0.849
**

Ca ns −0.872
**

K −0.865
**

0.930
***

−0.861
**

Mg ns ns ns ns

P −0.865
**

0.906
***

−0.818
**

0.982
*** ns

S −0.802
**

0.843
**

−0.826
**

0.908
*** ns 0.940

***

C −0.796
**

0.925
***

−0.844
**

0.974
*** ns 0.965

***
0.917
***

0.859
**

N −0.853
**

0.835
**

−0.710
*

0.878
** ns 0.887

**
0.899

***
0.859

**
* Significance at p ≤ 0.05; ** significance at p ≤ 0.01; *** significance at p ≤ 0.001; ns = not significant.

Therefore, 2015 was warmer than the 2014 growing season. It was shown that grow-
ing crops under different environmental conditions, especially under high temperatures,
particularly during the crucial seed-filling period, can affect growth and alter seed nutrient
levels, including protein, oil, and fatty acids profiles [41–48]. The higher oil in the Uzbek
line and DP 5690 wild type than DP 5690 CRL could be partially due to the fact that leaf
shape affected oil content and yield. Unpublished data showed that Uzbek CRL and DP
5690 wild type had larger seeds than DP 5690 CRL, and the highest 100-seed weight was
recorded in the Uzbek CRL line (12.04 g) compared with the DP 5690 wild type (10.43 g)
and DP 5690 CRL (9.48 g). The Uzbek CRL line had the largest boll, followed by the DP
5690 wild type, and then DP 5690 CRL, which had the smallest size. Figure 2 shows the size
of the three lines in the field, and the bolls for both Uzbek curly leaf and DP 5690 curly leaf.

Previous research showed that leaf shape alleles in cotton had production benefits
and had consistent effects on boll rot resistance, earliness, flowering rate, chemical spray
penetration, lint, and yield [13]. They also indicated that leaf shape effects on insect resis-
tances, photosynthetic rate, water use efficiency, and fiber quality were not consistent. They
explained that leaf shape benefit effects were due to canopy closure and light harvesting,
influencing the photosynthesis process, nutrient uptake, assimilation, and organic com-
pound synthesis such as protein, oil, and various nutrients in leaves, seeds, and fiber [13].
In addition, the canopy of a curly leaf line is different from that of a normal leaf line,
resulting in more light penetration in curly leaves. However, in normal leaf lines, it might
take more time for the lower part of the canopy to heat up (due to shading) and it also
might be slower to cool off. These leaf shape parameters could also be a source of seed
composition and mineral nutrient differences between curly and normal leaves. It was also
explained that the reduction in boll rot was due to a microclimate differences and canopy
closure/openness, allowing for greater air circulation and light penetration, providing
a less favorable environment for microbial growth and activities [17]. Although Wilson
and George [21] reported an 8% reduction loss due to okra leaf and Landivar et al. [19]
reported a 5% yield reduction, okraleaf genotypes can perform well under optimal growth
environments and okra leaf cotton provided greater reproductive structures compared
with normal leaf [40]. In addition, subokra lines were shown to have a higher yield than
normal leaf by 3.0% [49], especially in better growth environments that allow greater plant
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stature. Others reported that the earlier maturity of Okraleaf cultivars and superokra leaf
cultivars had less photosynthate for development of new leaves and maintenance, but
more assimilate for the earlier reproductive development [19]. Our research showed that
both Uzbek CRL and DP 5690 wild type had higher seed oil, N, P, K, and Mg than DP
5690 CRL. The decrease in these nutrients in DP 5690 CRL compared with the parents
could be due to the fact that introducing leaf curly shape trait/gene resulted in alteration
uptake, assimilation, and metabolism of protein and oil and other nutrients. This is clearly
shown by the higher level of cottonseed oil and nutrient accumulation in the parent lines
compared to DP 5690 CRL. Our preliminary results on cotton lint also showed that cotton
lint of both Uzbek CRL and DP 5690 wild type had more N, P, K, and Mg than DP 5690 CRL
(data not shown). However, Ca content was higher in DP 5690 CRL than Uzbek CRL or DP
5690 wild type line.
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Figure 2. Uzbek curly leaf, DP 5690 wild type (smaller, narrow, rolled-up leaves), and DP 5690 curly leaf lines in the field,
top photo; bolls from Uzbek curly leaf (larger) and DP 5690 curly leaf lines (smaller) showing the boll sizes, bottom photo.

Previous researchers explained that leaf shape genes are involved at the morphological,
physiological, molecular, and genetic levels. For example, Liu et al. [23] reported that
curly leaf gene, a histone methyltransferase of polycomb repressive complex 2 (PRC2) for
trimethylation of histone H3 Lys 27 (H3K27me3), is thought to be a repressive regulator
mainly controlling postgermination growth in Arabidopsis thaliana, and about 14 to 29% of
genetic regions are represented by H3K27me3 in the Arabidopsis genome. Although the
transcriptional repression activities of PRC2 are still not understood, about 54% of these
genes were repressed in siliques, suggesting the involvement of H3K27me3 in embryonic
development. They showed in their study that plants of curly leaf 28 produced bigger
sized and higher weight seeds with higher oil contents, larger oil bodies, and altered
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long-chain fatty acid compositions compared with wild type. They concluded that curly
leaf silences specific gene expression modules and genes contribute to regulate specific
physiological function during embryo development. Jeong et al. [25] reported that the
morphology changes could be due to the differential expression of alleles of the same genes
in a parent-of-origin-specific manner [25]. Our findings support those of Liu et al. [23]
in that seeds of Uzbek CRL and DP 5690 CRL leaves had higher total oil, although we
have no evidence as to whether or not the oil profile was altered. Further research may
be needed to find out about oil profile (palmitic, stearic, oleic, linoleic, and linolenic
fatty acids). Our previous research on NILs differing in seed fuzz [3,4] or leaf color [45]
showed that seed oil was higher in fuzzless genotype, but Ca and C proteins were higher
in fuzzy genotypes. Additionally, N, S, B, Fe, and Zn were higher in most of the fuzzy
genotypes [3,4]. Using NILs differing in leaf color, Bellaloui et al. [45] found that, generally,
green leaf lines had higher contents of oil than yellow leaf lines. Additionally, seed C, N,
P, B, Cu, and Fe contents were higher in green lines than in yellow lines, and there were
significant correlations between protein and nutrients, and between oil and nutrients in
only one year as the temperature was warmer in one year than the other [45]. Therefore,
morphological traits such as leaf shape can influence the regulation of carbon and nitrogen
metabolism, and uptake and assimilation of nutrients, especially those involved in the
photosynthesis process and oil production such as N, C, S, P, K, and Mg, supporting the
findings of others [3,4,13,23,25,45].

Based on the above observation on the correlation between nutrients, it was clear to see
that some correlation trends were consistent over years and some were not. For example,
the negative correlation between oil and Ca; between Ca and K; between Ca and P; between
Ca and P; between Ca and S; between Ca and C were shown in both years (2014 and 2015).
However, the negative correlation between oil and K; between oil and Mg; between oil and
P; between oil and S; between oil and C; between oil and N was only observed in 2015. On
the other hand, a positive correlation was only shown in 2014 between oil and K; between
oil and Mg; between oil and P; between oil and P; between oil and C; between oil and
N. Sometimes, there was no correlation between nutrients—for example, in 2014, protein
did not show any correlation between nutrients, but in 2015, protein showed a negative
correlation with all nutrients, except Ca and Mg. The inconsistency or changes of the
correlation trends (positive, negative, or no change) of some nutrients mainly depend on
growth conditions of the crop in each year, especially heat and drought, although drought
may play a minor role if the field is irrigated. Conducting a correlation within each separate
correlation analyses on curly leaf lines and normal leaf lines for nutrients did not result in
additional information (data not shown). For example, in 2015, there were no correlations
between nutrients in in DP 5690 CRL and Russian CRL, and only positive correlations were
seen between protein and N, and between Mg and S in Russian CRL. In 2014, there were
only correlation between Mg and S; between P and N in DP 5690 CRL; between protein and
Ca; between Mg and C in Russian CRL; between Mg and N; between P and C in wild type
DP 5690. The few correlations between nutrients, when separate correlation analyses were
conducted, was due to a few data points involved in the correlation (number of observation
for Pearson correlation on separate correlation is 3 versus 9 across all lines). Therefore,
correlation across lines resulted in additional information (Tables 4 and 5).

Positive and negative correlations between nutrients were previously reported and
the correlations depend on growth conditions, genotype, and nutrient supply [26,27].
Additionally, it was also reported that nutrient uptake, translocation, redistribution, and
accumulation processes control the accumulation of nutrients in seeds [50,51], and most
of these processes and their genetic bases are still not understood [52]. The inconsistency
of the correlation between nutrients across years was observed by other researchers in
cotton and others crops in that the correlation can change from positive to negative to
no-change, depending on the year, and was attributed mainly to gene x environment
interactions [3,4,41–47]. Further research is needed to understand the nature of the nutrient
relationship as this relationship (negative, positive, or no-change) between nutrients is
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important because it determines nutrient uptake, assimilation, and metabolism, which
impacts production and seed nutritional quality.

3. Materials and Methods

Cultivar DP 5690 (Bayer Corporation, Whippany, NJ, USA; PVPC 009100118) was
developed into DP 5690 F6 by single seed descent for six generations. After three years
of single seed descent, DP 5690 F6 (wild type) was obtained with a theoretical purity
of 98.44%.

The DP 5690 wild type was crossed with the Uzbek CRL, and the F1 progeny were
self-pollinated in the greenhouse once. DP 5690 wild type was backcrossed to F2 plants
with curly leaves. This process was repeated through six generations from BC1F1 through
BC5F2, and resulted in normal and curly leaf phenotypes in a near-isogenic DP 5690
background. A cotton line (Gossypium hirsutum L.) expressing the curly leaf phenotype
was obtained from a collection of cotton lines originating in Uzbekistan and was sent to
the USDA Agricultural Research Service in Stoneville, Mississippi (W. Meredith, personal
communication).

A two-year field experiment was conducted in Stoneville, MS, in 2014 and 2015
to investigate the effect of leaf shape trait (in our case curly leaf, CRL) on cottonseed
protein, oil, and macronutrients, including carbon (C), nitrogen (N), phosphorus (P),
potassium (K), calcium (Ca), magnesium (Mg) in a DP 5690 cotton (Gossypium hirsutum L.)
background. Two near-isogenic lines (DP 5690 curly leaf and DP 5690 wild type) and the
Uzbek curly leaf parent were used. Single-row field plots with 1.02 m apart and 8.53 m
in length were planted with in a Bosket very fine sandy loam soil (fine loamy, mixed,
active, thermic Mollic Hapludalfs) (Soil Survey Staff, 2014) on 5 May 2014 and 30 April
2015. Pentachloronitrobenzene (Terraclor Super × 18.8 G, Chemtura USA Corporation,
Middlebury, CT, USA) was applied in furrow at 11.2 kg/ha to manage seedling diseases.
Field management and standard agronomic practices for cotton production were used as
recommended by the Mississippi Delta region [53]. Furrow irrigation was used. Plots were
treated with defoliant (thidiazuron and diuron; Ginstar EC, Bayer CropScience, Research
Triangle Park, NC, USA) and boll opener (ethephon; Boll Buster, Loveland Products, Inc.,
Greeley, CO, USA) to maximize boll opening, cotton fiber quality and yields. The boll
samples were collected by hand on 6 October 2014 and 2 October 2015, and seed cotton
was processed on a standard saw gin. Seeds were acid-delinted prior to protein, oil, and
nutrient analyses.

3.1. Experimental Design and Statistical Analysis

The experiment was a randomized complete block design with three replicates. Anal-
ysis of variance was conducted by PROC MIXED in SAS (SAS, SAS Institute, 2002–2010,
Cary, NC, USA) [54]. Year and genotype were considered as fixed effects. Rep (Year)
was considered as a random factor. The residuals refer to Restricted Maximum Residual
Likelihood (REML) values [3,4], which reflect the total variance of the random parameters
in the model. Means were separated using Fisher’s protected least significant difference
test at significant level of 5% using SAS (SAS Institute, 2002–2010, Cary, NC, USA) [54].
Correlations were conducted using PROC CORR in SAS. Since year by genotype interac-
tions were significant for some seed composition constituents, and results were presented
by each year.

3.2. Soil Nutrient Analysis

Random samples were collected from across the field in 2014 and 2015. Soil analysis
for nutrient levels in soil was conducted by inductively coupled plasma spectrometry
(Thermo Jarrell-Ash Model 61E ICP and Thermo Jarrell-Ash Autosampler 300 (C Jarrell-
Ash Corporation, Waltham, MA, USA)) as previously detailed [55]. Briefly, a sample of
5 g soil:20 mL Mehlich-1 solution was used for analysis. Analysis of N, S, and C were
based on the Pregl-Dumas method [56,57] using a C/N/S elemental analyzer with thermal
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conductivity cells (LECOCNS-2000 elemental analyzer, LECO Corporation, St. Joseph, MI,
USA). Oxygen atmosphere at 1350 ◦C was used to combust soil samples and to convert
elemental N, S, and C into N2, SO2, and CO2 gases. The content of N, S, and C in soil was
analyzed by the elemental analyzer as previously detailed (Bellaloui et al., 2015b). Soil
analysis showed no nutrient deficiencies in soil. The following are averages of nutrient
content in soil across the field: C = 1.02%, N = 0.11%; (g·kg−1) P = 0.289, K = 2.13, S = 0.084,
Ca = 4.1, Mg = 3.0, and Fe = 21.03; (mg·kg−1) B = 1.8; Cu = 15.2; Zn = 62.5. Organic
matter in soil was 2.87%. The crop did not show any nutrient deficiency symptoms under
these conditions.

3.3. Analysis of Seed Minerals, N, S, and C

Nutrients N, S, and C were conducted in the ground, dried samples. Seed samples
were ground with a Laboratory Mill 3600 (Perten, Springfield, IL, USA) and analyzed by
digesting a 0.6 g in HNO3 in a microwave digestion system and nutrients were quantified
using inductively coupled plasma spectrometry (Thermo Jarrell-Ash Model 61E ICP and
Thermo Jarrell-Ash Autosampler 300) [55]. Seed N, C, and S were determined by the
C/N/S elemental analyzer as detailed previously [47,55].

3.4. Determination of Seed P

Phosphorus concentrations in mature seeds were determined by the yellow phosphor-
vanado-molybdate complex method [58], as previously described [47,55]. The P was
extracted with 2 mL of 36% v/v HCl. A reagent of 5 mL of 5 M HCl and 5 ml of ammonium
molybdate-ammonium metavanadate was used. Phosphorus concentration was deter-
mined by a Beckman Coulter DU 800 spectrophotometer by reading the absorbance at
400 nm, as previously described by others [47,55].

3.5. Cottonseed Protein and Oil Analysis

Protein and oil contents were measured in mature cottonseed. Briefly, approximately
25 g of seed was ground using a Laboratory Mill 3600 (Perten, Springfield, IL, USA). The
contents of protein and oil in cottonseed were analyzed by near infrared reflectance [3,4,59]
using a diode array feed analyzer AD 7200 (Perten, Springfield, IL, USA). Calibrations
were developed using Perten’s Thermo Galactic Grams PLS IQ software, and the calibra-
tion equation was established according to AOAC methods AOAC, 1990a [60]; AOAC,
1990b [61]. Protein and oil were expressed on a seed dry matter basis [62,63]

4. Conclusions

The current research showed that curly leaf trait can alter cottonseed nutrition, in-
cluding protein, oil, and some macronutrients, including N, P, K, and Ca. Higher levels
of cottonseed oil in Uzbek CRL and DP 5690 wild type may provide a potential source of
oil and nutrients, although the range of seed protein, oil, and all seed nutrients still fall
within the normal ranges. The lower levels of protein in Uzbek CRL and DP 5690 wild
type compared with DP 5690 CRL are due to the inverse relationships between protein
and oil. Since the Uzbek CRL isoline was higher in oil and minerals than the DP 5690
CRL isoline (both are near isolines for curly leaf trait), curly leaf trait may be partially
involved in the regulation and accumulation of oil and nutrients in cotton seeds. These
constituents determine cottonseed nutritional qualities for human health and livestock
feed. This research is beneficial to breeders for cotton selection for high seed oil or high
protein, and to other researchers for further understanding the effect of morphological
traits such as leaf shape on cottonseed protein, oil, and mineral nutrition.
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