
50 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

pyjanitor: A Cleaner API for Cleaning Data

Eric J. Ma‡∗, Zachary Barry‡, Sam Zuckerman, Zachary Sailer§

F

Abstract—The pandas library has become the de facto library for data
wrangling in the Python programming language. However, inconsistencies in
the pandas application programming interface (API), while idiomatic due to
historical use, prevent use of expressive, fluent programming idioms that enable
self-documenting pandas code. Here, we introduce pyjanitor, an open
source Python package that extends the pandas API with such idioms. We
describe its design and implementation of the package, provide usage examples
from a variety of domains, and discuss the ways that the pyjanitor project
has enabled the inclusion of first-time contributors to open source projects.

Index Terms—data engineering, data science, data cleaning

Introduction

Data preprocessing, or data wrangling, is an unavoidable task in
data science. It is a common experience amongst data scientists
that data wrangling can occupy up to 80% of their time [nyt]
[Wic14]. Part of this time is spent defining modelling approaches,
and part of this time is writing code that executes the sequence
of transformations on raw data that wrangle it into the necessary
shape for downstream modelling work.

In the Python ecosystem, pandas is the de facto tool for data
manipulation. This is because it provided an API for manipulating
tabular data when conducting data analysis. This API was notice-
ably missing from the Python standard library and NumPy, which,
prior to pandas emergence, were the primary tools for data
analysis in Python. Hence, through the DataFrame object and its
interfaces, pandas provided a key API that enabled statisticians,
data scientists, and machine learners to wrangle their data into
a usable shape. That said, there are inconsistencies in the pandas
API which, though now are idiomatic due to historical use, prevent
the use of expressive, fluent [flu] programming idioms1 that enable
self-documenting data science code.

Idiomatic Inconsistencies of pandas

A case in point is the following elementary sequence of data
preprocessing operations:

1) Standardizing column names to snake-case
(spelled_like_this, rather than Spelled!
Like! This?),

* Corresponding author: ericmajinglong@gmail.com
‡ Novartis Institutes for Biomedical Research
§ Jupyter Project

Copyright © 2019 Eric J. Ma et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. Fluent interfaces, as a term, were first coined in 2006, and describe a
programming pattern allowing code to more closely resemble written prose.
Method chaining is the most common way to achieve this.

2) Removing unnecessary columns,
3) Adding a column of data,
4) Log-transforming a column,
5) Filtering the log-transformed column,
6) Dropping rows that have null values,
7) Adding a column that is the mean of each sample’s group.

To do this with the pandas API, one might write the following
code.

import pandas as pd
import numpy as np
import re

df = pd.DataFrame(...)

def clean_name(x):
"""Custom function to sanitize column name."""
FIXES = [(r"[* /:,?!()\.-]", "_"), (r"['’]", "")]
for search, replace in FIXES:

x = re.sub(search, replace, x)
return x.lower().replace('__', '_')

df = (
df
clean column names
.rename(columns=clean_name)
remove column
.drop('column_name_14', axis='columns')
log transform
.assign(

column_name_13=lambda x: np.log10(x['column_name_13'])
)
drop null values
.dropna()
filter based on column value
.query("column_name_13 < 3")

)

add a column that is the mean of each sample's group.
col13_means = df.groupby('group').mean()['column_name_13']
df = df.join(col13_means, rsuffix='_mean', on='group')

By using pyjanitor, end-users can instead write code that reads
much closer to the plain English description.

import pandas as pd
import numpy as np
import janitor

df = (
pd.DataFrame(...)
.clean_names()
.remove_column('column_name_14')
.transform_column('column_name_13', np.log10)
.query('column_name_13 < 3')
.dropna()
.groupby_agg(

by="group",
agg_column_name="column_name_13",

mailto:ericmajinglong@gmail.com

PYJANITOR: A CLEANER API FOR CLEANING DATA 51

new_column_name="column_name_13_mean",
agg="mean",

)
)

This is the API design that pyjanitor aims to provide to
pandas users: common data cleaning routines that can be mix-
and-matched with existing pandas API calls. This is in keeping
with Line 7 of the Zen of Python, which states that "Readability
counts"; pyjanitor thus enables data scientists to construct
their data processing code with an easily-readable sequence of
meaningful verbs. By providing commonly-usable data processing
routines, we also save time for data scientists and engineers,
allowing them to accomplish their work more efficiently.

History of pyjanitor

pyjanitor started as a Python port of the R package janitor,
which provides the same functionality to R users. The initial
goal was to explicitly copy the janitor function names while
engineering it to be compatible with pandas.DataFrames,
following Pythonic idioms, such as the method chaining provided
by some pandas class methods. As the project evolved, the scope
broadened, to provide a defined language for data processing
as an extension on pandas DataFrames, including submodules
with functions specific for bioinformatics, cheminformatics, and
finance.

Architecture

pyjanitor relies completely on the pandas extension
API (https://pandas.pydata.org/pandas-docs/stable/development/
extending.html), which allows developers to create functions that
behave as if they were native pandas.DataFrame class meth-
ods. The only requirement here for such functions is that the first
argument to it be a pandas.DataFrame object:
def data_cleaning_function(df, **kwargs):

...
data cleaning functions go here
...
return df

In order to reduce the amount of boilerplate required,
pyjanitor also makes heavy use of pandas_flavor [pf],
which provides an easy-to-use function decorator that handles
class method registration. As such, to extend the pandas API
with more instance-method-like functions, we only have to dec-
orate the custom function, as illustrated in the following code
sample:
import pandas_flavor as pf

@pf.register_dataframe_method
def data_cleaning_function(df, **kwargs):

...
data cleaning operations go here
...
return df

pandas-flavor has functionality that warns, at runtime,
whether a DataFrame attribute has been overwritten by a custom
function. Our test suite allows us to catch this issue before
committing contributed code to the library.

Underneath each data cleaning function, we are free to use
both the imperative and functional APIs. What is exposed, then, is
a functional and fluent API for the end-user.

Thanks to the pandas.DataFrame.query() API, sym-
bolic evaluations are generally available in pyjanitor for

filtering data. This enables us to write functions that do filtering of
the DataFrame using a verb that might match end-users’ intuitions
better. One such example is the .filter_on('criteria')
method, illustrated in the opening example.

Design

Inspired by the dplyr world, pyjanitor functions are named
with verb expressions. This, as mentioned earlier, this helps with
readability. Hence, if we want to "clean names", the end user can
call on the .clean_names() function/class method. If the end
user wants to "remove all empty rows and columns", they can
call on .remove_empty(). As far as possible, function names
are expressed using simple English verbs that are understandable
cross-culturally and well-documented, to ensure that this API is
inclusive and accessible to the widest subset of users possible.

Where domain-specific verbs are used, we strive to match the
mental models and vocabulary of domain experts. One example
comes from the biology submodule, where the join_fasta
function allows a bioinformatics-oriented user to add in a column
of sequences based on FASTA accession numbers that are keys for
sequence values in a FASTA-formatted file [PL88].

Keyword arguments are also likewise named with verb ex-
pressions where relevant. For example, if one wants to preserve
and record the original column names before cleaning, one
can add the preserve_original keyword argument to the
.clean_names method:
(

df
.clean_names(

preserve_original=True,
remove_special=True,
...

)
)

In order to adhere to a functional programming paradigm, no
operations that change the original DataFrame are allowed. Hence,
if the internal implementation of a function results in a mutation
of the original DataFrame, we explicitly make a copy of the
DataFrame first, though we also generally try to avoid double-
copying as well. This decision, which was made after a fairly
extensive discussion on our issue tracker, balances functional
design principles and pragmatic considerations when dealing with
potentially large dataframe objects.

A final design choice we made was to explicitly disallow
overriding or duplicating existing DataFrame class methods. The
goal here is to extend pandas, rather than replace its API, and
we have turned down user requests to do so.

Documentation

Full API Documentation for pyjanitor is available on ReadThe-
Docs [doc].

An examples gallery, which contains Jupyter notebooks that
showcase how to use pyjanitor, is also part of the documenta-
tion.

Development

The reception to pyjanitor has been encouraging thus far.
Newcomer contributors to open source have made their first
contributions to pyjanitor, and experienced software devel-
opers have also chipped in. Many contributors are data scientists

https://pandas.pydata.org/pandas-docs/stable/development/extending.html
https://pandas.pydata.org/pandas-docs/stable/development/extending.html

52 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

themselves, who are also seeking cleaner APIs to help them get
their work done. There is a salient lesson here: with open source
tools, savvy users can help steer development in a direction that
they need, and we would encourage other contributors to join in
too.

As with most open source software development, maintenance
and new feature development are entirely volunteer driven. Users
are invited to post feature requests on the source repository issue
tracker, but are more so invited to contribute an implementation
themselves to share. To date, 31 contributors have made pull
requests into pyjanitor, and we look forward to further contri-
butions being made at the SciPy conference sprints.

In the spirit of being beginner-friendly, new contributions to
the pyjanitor library are encouraged to solve one and only one
specific problem first, before we figure out how to either (1) gen-
eralize the function use case, or (2) generalize the implementation.

As an example, the commit history for clean_names()
follows this pattern. The initial implementation manually listed out
every character to be replaced by an underscore, in a DataFrame
with a single column level. A later pull request extended the
implementation to multi-level columns, and the current improved
version uses regex string replacement to concisely express the
cleaning operation. Most notably, each of these contributions were
made by first-time open source contributors.

For the long-term health of the package, we are on the lookout
for underrepresented contributors who would like to help maintain
the package long-term as well. A code of conduct document, and
a community guidelines document, are also on our development
roadmap.

Other Related Tools

When developing pyjanitor, we originally set out to port
janitor (the R package) to Python, providing compatibility
with pandas DataFrames in a style compatible with Pythonic
idioms (e.g. method chaining). While development was under
way, we also found the Python alternatives described below,
and found them to either (a) be lacking active development, (b)
inventing a new pipe-like operator, (c) be restricted to dplyr verbs,
and/or (d) lacking a robust community of developers. Hence, the
development of pyjanitor was, and still is, oriented towards
solving these problems.

For the convenience of our readers, we list our assessment of
related tools below.

janitor [jan]: This is the original source of inspiration for
pyjanitor, and the original creator of janitor is aware
of pyjanitor’s existence. A number of function names in
janitor have been directly copied over to pyjanitor and
re-implemented in a pandas-compatible syntax.

dplyr [dplb]: The dplyr R package can be considered as "the
originator" for verb-based data processing syntax. janitor the
R package extends dplyr. It is available for use by Python users
through rpy2; however, its primary usage audience is R users.

pandas-ply [pan]: This is a tool developed by Coursera, and
aims to provide the dplyr syntax to pandas users. One advan-
tage that it has over pyjanitor is that symbolic expressions can
be used inside functions, which automatically get parsed into an
appropriate lambda function in Python. However, it is restricted to
the dplyr verb set.

dplython [dpla]: Analogous to pandas-ply, dplython
also aims to provide the dplyr syntax to pandas users, but just
like pandas-ply, it is restricted to dplyr verbs.

dfply [dfp]: This is the most actively-developed, pandas-
compatible dplyr port. Its emphasis is on porting over the
piping syntax to the pandas world. From our study of its source
code, in principle, every function there can be wrapped with
pandas-flavor’s .register_dataframe_method dec-
orator, thus bringing the most feature-complete implementation
of dplyr verbs to the pandas world. It does, however, re-
implement a number of pandas functions using dplyr names.
This makes it distinct from the pyjanitor project, where extension,
rather than replacement, of existing pandas functionality is
generally encouraged. Whether the developers are interested in
collaboration remains to be discussed.

plydata [ply]: Like the others mentioned before, plydata
also aims to provide the dplyr-style data manipulation grammar
to pandas. It also provides a pipe-like operator (>>), and features
integration with plotnine, a grammar of graphics plotting
library for the Python programming language.

kadro [kad]: Kadro uses a wrapper around
pandas.DataFrame objects to provide dplyr-style syntax.

pdpipe [pdp]: pdpipe provides a language for creating data
preprocessing pipelines that are turned into Python callables,
through which a DataFrame can be passed. Its design choice is to
create fluent pipelines as pre-declared functions that are chained,
rather than as methods that are attached onto a DataFrame. This
distinction separates pyjanitor and pdpipe.

Limitations of pyjanitor

A current technical limitation of pyjanitor is the inability
to symbolically parse expression strings to perform column-wise
transformations. An example of a desired API might be:
df = (

pd.DataFrame(...)
.mutate(

expression="column_name_12 + column_name_13",
new_column_name="summation"

)
)

As of now, because symbolic parsing is unavailable, this fluent and
declarative syntax that is available to dplyr users is unavailable
to pyjanitor users. We would welcome a contribution that
enables this, perhaps using the patsy package.

Extensions beyond pyjanitor

pyjanitor does not aim to be the all-purpose data cleaning
tool for all subject domains. Apart from providing a library of
generally useful data manipulation and cleaning routines, one
can also think of the project as a catalyst project for other
specific domain applications. Following the verb-based grammar,
one may imagine even more specific domain terms. Hence we
have developed domain-specific submodules with a view towards
encouraging their further development as independent packages.

For example, in our chemistry submodule, we have the
following functions implemented that aid in cheminformatics-
oriented data science tasks:

• smiles2mol(df, col_name): to convert a column
of smiles into RDKit [rdk] mol objects.

• mol2graph(df, col_name): to convert a column of
mol objects into NetworkX [HSS08] graph objects.

In our biology submodule, convenience functions exist to
accomplish the following tasks:

PYJANITOR: A CLEANER API FOR CLEANING DATA 53

• join_fasta(df, file_name, id_col,
col_name): create a column that contains the string
representation of a biological sequence, by "joining" in a
FASTA file, mapping the string to a particular column that
already has the sequence identifiers in it.

The dependencies required for their usage are optional at
install-time, and we provide instructions for end-users to install
the relevant packages if they are not already installed locally.

Acknowledgments

We would like to thank the users who have made contributions to
pyjanitor. These contributions have included documentation
enhancements, bug fixes, development of tests, new functions, and
new keyword arguments for functions. The list of contributors,
which we anticipate will grow over time, can be found under
AUTHORS.rst in the development repository.

We would also like to acknowledge the tremendous conve-
nience provided by pandas-flavor, which was developed by
one of our co-authors, Dr. Zachary Sailer.

REFERENCES

[dfp] dplyr-style piping operations for pandas dataframes. https://github.
com/kieferk/dfply. Accessed: 24 November 2019.

[doc] pyjanitor documentation. https://pyjanitor.readthedocs.io. Accessed:
22 May 2019.

[dpla] Dplython: Dplyr for python. https://github.com/dodger487/dplython.
Accessed: 22 May 2019.

[dplb] A grammar of data manipulation: dplyr. https://dplyr.tidyverse.org.
Accessed: 22 May 2019.

[flu] Fluentinterface. https://martinfowler.com/bliki/FluentInterface.html.
Accessed: 22 May 2019.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring
network structure, dynamics, and function using networkx. In Gaël
Varoquaux, Travis Vaught, and Jarrod Millman, editors, Proceedings
of the 7th Python in Science Conference, pages 11 – 15, Pasadena,
CA USA, 2008.

[jan] janitor: Simple tools for examining and cleaning dirty data. https:
//github.com/sfirke/janitor. Accessed: 22 May 2019.

[kad] A friendly pandas wrapper with a more composable grammar sup-
port. https://github.com/koaning/kadro. Accessed: 22 May 2019.

[nyt] For big-data scientists, ‘janitor work’ is key hurdle to in-
sights. https://www.nytimes.com/2014/08/18/technology/for-big-
data-scientists-hurdle-to-insights-is-janitor-work.html. Accessed:
22 May 2019.

[pan] pandas-ply: functional data manipulation for pandas. https://github.
com/coursera/pandas-ply. Accessed: 24 November 2019.

[pdp] https://github.com/shaypal5/pdpipe. Accessed: 22 May 2019.
[pf] Pandas flavor: The easy way to write your own flavor of pandas.

https://github.com/Zsailer/pandas_flavor. Accessed: 22 May 2019.
[PL88] W. R. Pearson and D. J. Lipman. Improved tools for biological

sequence comparison. Proc. Natl. Acad. Sci. U.S.A., 85(8):2444–
2448, Apr 1988.

[ply] A grammar for data manipulation in python. https://github.com/
has2k1/plydata. Accessed: 22 May 2019.

[rdk] Rdkit: Open-source cheminformatics. http://www.rdkit.org. Ac-
cessed: 22 May 2019.

[Wic14] Hadley Wickham. Tidy data. Journal of Statistical Software, Ar-
ticles, 59(10):1–23, 2014. URL: https://www.jstatsoft.org/v059/i10,
doi:10.18637/jss.v059.i10.

https://github.com/kieferk/dfply
https://github.com/kieferk/dfply
https://pyjanitor.readthedocs.io
https://github.com/dodger487/dplython
https://dplyr.tidyverse.org
https://martinfowler.com/bliki/FluentInterface.html
https://github.com/sfirke/janitor
https://github.com/sfirke/janitor
https://github.com/koaning/kadro
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://www.nytimes.com/2014/08/18/technology/for-big-data-scientists-hurdle-to-insights-is-janitor-work.html
https://github.com/coursera/pandas-ply
https://github.com/coursera/pandas-ply
https://github.com/shaypal5/pdpipe
https://github.com/Zsailer/pandas_flavor
https://github.com/has2k1/plydata
https://github.com/has2k1/plydata
http://www.rdkit.org
https://www.jstatsoft.org/v059/i10
http://dx.doi.org/10.18637/jss.v059.i10

	Introduction
	Idiomatic Inconsistencies of pandas
	History of pyjanitor
	Architecture
	Design
	Documentation
	Development
	Other Related Tools
	Limitations of pyjanitor
	Extensions beyond pyjanitor
	Acknowledgments
	References

